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Abstract. Purpose: To propose an innovative approach to better detect 

Alzheimer’s Disease (AD) based on a finer detection of hippocampus (HC) 

atrophy patterns. Method: In this paper, we propose a new approach to 

simultaneously perform segmentation and grading of the HC to better capture 

the patterns of pathology occurring during AD. Based on a patch-based 

framework, the novel proposed grading measure estimates the similarity of the 

patch surrounding the voxel under study with all the patches present in different 

training populations. The training library used during our experiments was 

composed by 2 populations, 50 Cognitively Normal subjects (CN) and 50 

patients with AD. Tests were completed in a leave-one-out framework. Results: 

First, the evaluation of HC segmentation accuracy yielded a Dice’s Kappa of 

0.88 for CN and 0.84 for AD. Second, the proposed HC grading enables 

detection of AD with a success rate of 89%. Finally, a comparison of several 

biomarkers was investigated using a linear discriminant analysis. Conclusion: 

Using the volume and the grade of the HC at the same time resulted in an 

efficient patient classification with a success rate of 90%.  

Keywords: hippocampus segmentation, hippocampus grading, patient 

classification, nonlocal means estimator, Alzheimer’s disease. 

Introduction 

The atrophy of medial temporal lobe structures, such as the hippocampus (HC) and 

entorhinal cortex, is potentially specific and may serve as early biomarkers of 

Alzheimer’s disease (AD) [1]. In particular, the atrophy of the HC can be used as a 

marker of AD progression since changes in HC are closely related to changes in 

cognitive performance of the subject [1]. The evaluation of HC atrophy is usually 
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estimated by volumetric studies on anatomical MRI, requiring a segmentation step 

that can be very time consuming when done manually. This limitation can be 

overcome by using automatic segmentation methods [2-5]. However, despite the high 

segmentation accuracy of these HC segmentation approaches, using only the HC 

volume enables a separation between AD and cognitively normal (CN) subjects with 

a success rate around 72-74% [6]. This limited capability to classify AD patients by 

using the HC volume only may be due to a simplification of the complex 

hippocampal atrophy patterns to a volume changing measurement. Recently, several 

shape analysis methods have been proposed [7-8] to capture detailed patterns of 

change in order to obtain a more accurate classification. These approaches provide a 

slightly better classification rate of around 77% [6].    
 

Inspired by work in image denoising [9], a new nonlocal patch-based label fusion 

method has recently been proposed to segment anatomical structures [5]. By taking 

advantage of the redundancy of information present within the subject’s image, as 

well as the redundancy across the training subjects, the patch-based nonlocal means 

scheme enables robust use of a large number of samples during estimation. In [5], this 

approach has been applied to label fusion for the segmentation of anatomical 

structures. We propose an extension of this patch-based segmentation method in order 

to evaluate the similarity (in the nonlocal means sense) of the intensity content of one 

MRI compared to several training populations. By using training populations with 

different pathological status (e.g., CN subjects and patients with AD), a nonlocal 

means estimator is used to evaluate the proximity (i.e., the grade or the degree of 

atrophy in case of AD) of each voxel of the MRI under study compared to the training 

populations. Since the grade estimation and the label fusion steps require the same 

patch comparison, simultaneous segmentation and grading of HC can be achieved in 

one pass. In the proposed approach, the nonlocal patch-based comparison is used to 

efficiently fuse the HC segmentations of MRI in a training database and at the same to 

aggregate the pathological status of the populations constituting the training database. 

Finally, the average grading value obtained over the segmented HC is proposed as a 

new biomarker to estimate the pathological status of the subject under study. The 

contributions of the paper are: i) the introduction of an innovative approach to better 

characterize the patterns of pathology (e.g., atrophy) in AD through the new concept 

of HC grading, ii) the presentation of a method to automatically and simultaneously 

perform the segmentation and the grading of HC, and iii) the demonstration that the 

proposed approach can be used as a novel biomarker to efficiently achieve patient 

classification in the context of AD. 

Materials and Methods 

Dataset and Preprocessing 

In this study, the ADNI database (www.loni.ucla.edu/ADNI) was used to validate 

the proposed approach. This database contains both 1.5T and 3.0T T1-w MRI scans. 

For our experiments, we randomly selected 120 MRI scans, 60 1.5T MRI baseline 

scans of CN subjects and 60 1.5T MRI baseline scans of patients with AD. All the 



selected images were preprocessed as follows: 1) correction of inhomogeneities using 

N3 [10], 2) registration to the stereotaxic space using a linear transform to the 

ICBM152 template (1x1x1 mm³ voxel size) [11] and 3) cross-normalization of the 

MRI intensity using the method proposed in [12]. After preprocessing, all the MRIs 

are coarsely aligned (linear registration), tissue intensities are homogeneous within 

each MRI volume (inhomogeneity correction) and across the training database 

(intensity normalization). From the 120 processed MRI scans, 20 scans (10 CN and 

10 AD) were randomly selected to be used as seed dataset. The left and right 

hippocampi of this seed dataset were then manually segmented by an expert at our 

centre. The manual segmentations of the seed dataset were propagated to the 100 

remaining scans constituting our test dataset. After segmentation propagation using 

[5], the test dataset was composed of 100 MRI (50 CN subjects and 50 patients with 

AD) with their corresponding automatic segmentations. 

Method overview 

In nonlocal means-based approaches [9], the patch P(xi) surrounding the voxel xi 

under study is compared with all the patches P(xj) of the image Ω whatever their 

spatial distance to P(xi) (it is the meaning of the term “nonlocal”). According to the 

patch similarity between P(xi) and P(xj), estimating by the Sum Squared Difference 

(SSD) measure, each patch receives a weight w(xi, xj):  
 

2

2

2
)()(

),( h

xPxP

ji

ji

exxw

−−

=  

 

where ||.||2 is the L2-norm computed between each intensity of the elements of the 

patches P(xi) and P(xs,j), and h is the smoothing parameter of the weighting function. 

This weighting function is designed to give a weight close to 1 when the SSD is close 

to zero and a weight close to zero with the SSD is high. Finally, all the intensities 

u(xj) of the central voxels of the patches P(xj) are aggregated through a weighted 

average using the weights w(xi, xj). In this way, the denoised intensity û(xi) of the 

voxel xi can be efficiently estimated: 
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 In [5], we introduced this estimator in the context of segmentation by averaging 

labels instead of intensities. By using a training library of N subjects, whose 

segmentations of structures are known, the weighted label fusion is estimated as 

follows:      

v(x i) =

w(x i,xs, j )l(xs, j )
j∈Ω

∑
s=1

N

∑

w(x i, xs, j )
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where l(xs,j) is the label (i.e., 0 for background and 1 for structure) given by the expert 

to the voxel xs,j at location j in training subject s. It has been shown that the nonlocal 

means estimator v(xi) provides a robust estimation of the expected label at xi [5]. With 

a label set of {0,1}, voxels with value v(xi)≥0.5 are considered as belonging to HC 

and the remaining voxels as background. 



In this paper, we propose to extend it to efficiently aggregate pathological status in 

order to estimate the proximity (in the nonlocal means sense) of each voxel compared 

to both populations constituting the training library. To do that, we introduce the new 

concept of patch-based grading that reflects the similarity of the patch surrounding the 

voxel under study with all the patches present in the different training populations. In 

this way, the neighborhood information is used to robustly drive the search of 

anatomical patterns that are specific to a given subset of the training library. When the 

training populations include data from subsets of patients with different stages of the 

pathology progression, this approach provides an estimation of the grade (i.e., degree 

of atrophy in case of AD) for each voxel: 
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where ps  is the pathological status of the training subject s. In our case, ps=-1 was 

used for AD status and ps=1 for CN status. A negative grading value (respectively, a 

positive grading value) g(xi) indicates that the neighborhood surrounding xi is more 

characteristic of AD than CN (respectively, of CN than AD). The absolute value 

|g(xi)| provides the confidence given to the grade estimation. When |g(xi)| is close to 

zero, the method indicates that the patch under study is similarly present in both 

populations and thus is not specific to one of the compared populations and provides 

little discriminatory information. When |g(xi)| is close to 1, the method detects a high 

proximity of the patch under study with the patches present in one of the training 

population and not in the other. Finally, for each subject, an average grading value is 

computed over all voxels in the estimated segmentation (i.e., for all xi with v(xi)≥0.5) 

by assigning the same weight to the left and right HC (i.e., 2/)( rightleft ggg +=  ). 

During all our experiments, the default parameters proposed in [5] have been used. 

The patch size was fixed to 7x7x7 voxels and the search window of similar patches 

has been limited within a restricted volume of 9x9x9 voxels for computational 

reasons (i.e., Ω is replaced by a cubic volume Vi centered on xi). Finally, the 

smoothing parameter h
2
 was locally set as the minimal SSD found between the patch 

under study and all the patches in the training library as proposed in [5]. 

Validation framework 

Segmentation accuracy validation: In order to evaluate the segmentation accuracy 

of the method proposed in [5] on patients with AD, we first perform a leave-one-out 

procedure on the 20 subjects with manual segmentation composing the seed dataset. 

The N=16 closest training subjects (in the SSD sense, see [5] for details) were equally 

selected within both populations (i.e., 8 AD and 8 CN). The Dice’s kappa was then 

computed by comparing the expert-based segmentation, used as gold standard, and 

the segmentation obtained automatically. This first validation is used to support the 

fact that the segmentation propagation over the 100 subjects in our test dataset from 

the 20 subjects in our seed dataset is done in an accurate manner.  

Grading validation: After the segmentation propagation step, a leave-one-out 

procedure is performed over the 100 subjects of the test dataset. For each subject, the 

N closest training subjects are selected equally in both populations. This is done to 



ensure that the size of the “patch pool” from AD population is coarsely similar to the 

size of the “patch pool” from CN population. To save computational time, N is 

automatically adjusted according to the obtained g . In the first iteration, N=20 (10 

CN and 10 AD). If the resulting 1.0<g (i.e., the confidence in the obtained grade is 

low), the size of the used training library is increased by 20 to N=40 (20 CN and 20 

AD). This process is repeated until 1.0>g  or N>80.  The sign of the final grading 

value is used to estimate the pathological status of the testing subjects. Finally, the 

success rate of the patient classification is provided to demonstrate the robustness of 

the proposed new biomarker.  

Comparison of biomarkers for patient classification with AD: The last part of our 

validation framework is the comparison of two biomarkers (HC volume and HC 

grade) and the investigation of their combination. The segmentations obtained at the 

same time as the grading were used to obtain the HC volume for each of the subjects 

in the test dataset. Through a leave-one-out procedure, each subject was classified by 

using optimal boundary separating both populations. This optimal boundary was 

obtained by performing a linear discriminant analysis over the 99 remaining subjects. 

This approach was applied to volume-based classification, grade-based classification 

and the combination of both volume and grade. The success rate (SR), the specificity 

(SPE), the sensitivity (SEN), the positive predictive value (PPV) and negative 

predictive value (NPV) are presented for each of the tested biomarkers (see [6] for 

details on these quality metrics). 

Results 

Table 1 shows the segmentation accuracy obtained on the seed dataset by using 

N=16 training subjects (8 CN and 8 AD). For the CN population, the median Dice’s 

Kappa was similar to the Dice’s Kappa presented in [5] on healthy young subjects 

from the ICBM database, which demonstrates the robustness of the segmentation 

method. A lower median Dice’s Kappa value was obtained for the AD population. A 

median Dice’s Kappa value superior to 0.8 indicates a high correlation between 

manual and automatic segmentations, and a median Dice’s Kappa value superior 0.88 

is similar to the highest published values in literature [3-4]. The difference between 

populations might come from two sources. First, the higher anatomy variability of 

patients with AD makes the segmentation more difficult and may require a larger 

training library. Second, the smaller HC volumes of patients with AD, due to the HC 

atrophy, can negatively bias the Dice’s Kappa index measure. Finally, these results 

indicate that a similar accuracy can be expected during the segmentation propagation 

step to the 100 subjects of the test dataset.  

Table 1: Median Dice’s Kappa values (with the standard deviation) obtained on the seed 

dataset composed of 20 MRI (10 CN and 10 AD) with manual segmentations.   

Median Dice’s Kappa 

(standard deviation) 

Left HC Right HC Both HC 

CN population 0.891 (0.035) 0.866 (0.038) 0.883 (0.037) 

AD population 0.830 (0.042) 0.858 (0.035) 0.838 (0.038) 



Figure 1 shows the final grading values for the 100 subjects of the test dataset. In 

the perfect case, the 50 first subjects (CN) should have positive average grading 

values and the 50 last (AD) should have negative average grading values. As shown 

in the graph, the success rate of the classification was 89% (5 false positive CN and 6 

false negative AD). Figure 1 also presents the size of the used training library for each 

of the testing subjects. Most of the test subjects were classified by using only N=20 

training subjects. Around 5% of test subjects seem to require larger training library 

(i.e., N>80) since at the end of the procedure g  is still inferior to 0.1.  

 

Figure 1. Left: the final average grading values obtained for the test dataset. Right: the used 

size of training library (i.e., N) for all the testing subjects. 

Figure 2 shows the grading maps obtained for 2 test subjects (1 CN and 1 AD). 

The corresponding average grading values and the estimated volumes are also 

provided for left and right HC. While the volume of HC is similar for these 2 subjects, 

and thus does not allow an efficient patient classification, their grading values provide 

a useful indication on their pathological status. Visually, the CN subject clearly 

appears closer to the CN population (mainly red color related to values close to 1) 

while the AD patient is visually closer to the AD population (mainly purple and black 

colors related to values close to -1). Finally, Fig. 2 also provides a visual assessment 

of the quality of the segmentation propagation on the test dataset. For a given 

subject, the segmentation and the grading maps were obtained in less than 5 minutes 

using a single core of an Intel Core 2 Quad Q6600 processor at 2.4 GHz with N=20. 
 

Table 2 presents the results of the patient classification for the different biomarkers 

under consideration. These results clearly demonstrate the advantage of using the 

grading approach (89% of success rate) compared to the classical volumetric 

approach (78% of success rate). The SEN, SPE, PPV and NPV obtained by our 

grading approach were higher than the ten methods compared in [6] involving Voxel-

Based Morphometry (VBM), cortical thickness, HC volume and HC shape. The 

higher SR of our volumetric approach compared to the results presented in [6] might 

come from differences in the test dataset used here or due to a higher accuracy and 

consistency of the segmentation method used compared to [2]. It is also interesting to 

note that the optimal boundaries found by linear discriminant analysis provided 

similar results as using 0 as threshold value as in the previous experiment (see Fig 1.). 



Finally, using the volume and the average grade of the HC simultaneously provides a 

very high success rate of 90%.   
 

   
CN subject (ID 23) 

Left HC: 57.0=leftg  and Volume = 2.48 cm3 

Right HC: 47.0=rightg  and Volume = 2.18 cm3 

   
AD patient (ID 72) 

Left HC: 62.0−=leftg  and Volume = 2.31 cm3 

Right HC: 35.0−=rightg  and Volume = 2.50 cm3 

Figure 2. Top: the obtained grading map for one CN subject (ID 23). Bottom: the obtained 

grading map for one AD patient (ID 72). The slices of both subjects have the same position in 

the stereotaxic space. Red color indicates a grading close to 1 (i.e., CN) and black color 

indicates a grading close to -1 (i.e., AD).  

Table 2: Results of the patient classification (AD vs CN) for the different biomarkers under 

investigation. These results were obtained by using linear discriminant analysis through a 

leave-one-out procedure on the test dataset.   

AD vs. CN SR SEN SPE PPV NPV 

HC volume 78% 72% 84% 82% 75% 

HC grading 89% 86% 92% 91% 87% 

HC volume and grading 90% 88% 92% 92% 88% 

Conclusion 

In this paper, a new method is proposed to robustly detect the hippocampal atrophy 

patterns accruing during AD. Based on a nonlocal means estimation framework, the 

proposed novel grading measure (i.e., the atrophy degree in AD context) enables an 

accurate distinction between CN subjects and patients with AD leading to a success 

rate of 89% when used alone, and 90% when combined with HC volume. These 

results are competitive compared to the AD detection performance of VBM, cortical 

thickness, HC volume and HC shape methods extensively compared in [6]. In contrast 



to these approaches, our method has the advantage of simplicity (it can be coded in 

few hundred lines of code), low computational cost (does not required non-rigid 

registration), robustness of the process (all the subjects get final grading maps) and 

the possibility to achieve individual classifications based on a single time point 

contrary to group classification or longitudinal studies. These first results are 

promising and indicate that the new HC grading approach could be a useful biomarker 

to efficiently detect AD. Further work will investigate the possibility to discriminate 

population of patients with Mild Cognitive Impairment (MCI) compared to AD or 

CN.  
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