
HAL Id: hal-00639095
https://hal.science/hal-00639095

Submitted on 8 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicitating semantics in Enterprise Information
Systems Models

Mario Lezoche

To cite this version:
Mario Lezoche. Explicitating semantics in Enterprise Information Systems Models. 2011. �hal-
00639095�

https://hal.science/hal-00639095
https://hal.archives-ouvertes.fr

Faculté de Sciences et

Technologies
Ecole Doctorale IAEM Lorraine

 Centre de Recherche
en Automatique de Nancy

UMR 7039
NANCY-UNIVERSITE

CNRS

Laboratoire Lorrain de
Recherche en Informatique

et ses Applications		

	

UMR 7503
NANCY-UNIVERSITE

CNRS	

Rapport de Recherche

Présenté en vue de l’obtention du

Diplôme de Recherche Post Doctorale de l’Université Henri Poincaré, Nancy 1

par

Mario Lezoche

Docteur de l’Université Roma TRE (Italie)

Explicitating semantics in Enterprise Information Systems Models

Soutenance publique le 7 Novembre 2011 devant la commission d’examen :

Membres du Jury :

Président du Jury : Thierry Divoux Professeur à l’Université Henri Poincaré – Nancy 1

Directeur de Travaux : Hervé Panetto Professeur à l’Université Henri Poincaré – Nancy 1

Encadrant : Alexis Aubry Maitre de Conférences à l’Université Henri Poincaré – Nancy 1

Examinateur : Nacer Boudjlida Professeur à l’Université Henri Poincaré – Nancy 1

 2

To my beloved Bebaia and my faithful Chicca

 3

Acknowledgement

This Post-Doctoral experience was firstly started under Interop VLab project and it was

completed at the CRAN laboratory in the SYMPA team, SIO project, Université Henri

Poincaré – Nancy 1 and at LORIA in the Score team. Therefore I would like to thank the

CRAN laboratory director, Pr. Alain Richard, the SYMPA thematic manager, Pr. Thierry

Divoux, the responsible of the SIO project, Pr. Benoit Iung, the LORIA director Françoise

Simonot, the Score team manager Francois Charoy and Pr. Nacer Boudjlida, my guide in the

Loria world, for welcoming me in such a warm way. I would like also to thank the Director

of ESIAL School of engineering, Pr. André Schaff, who welcomed me during my pedagogic

duties.

When I arrived in Nancy I found a weather that was quite different from that of my birth

country. It was January and, I remember precisely, there were -18 Celsius degrees. I really

hoped the people I would have met the next day would have been much warmer. My hopes

were more than fulfilled. I am greatly attached to the concept of family and Life helped me

letting meet people who became my new extended family.

Firstly, I would like to express my thankfulness to Professor Hervé Panetto who greeted me

with an enormous smile. He guided me through the development of this research topic but

also he let me acquire knowledge in different domains, better comprehension of research and

pedagogic methodologies, involvement in laboratory and school life at all levels. It was

really a diving experience in a new way to conceive this job, this passion. Our friendly

relationship let me find the fire that warmed the cold distance to my family. I would like to

thanks A/Professor Alexis Aubry, he is a special researcher and person. We had a lot of

interesting and worthwhile discussions during this period and, from the moment we became

roommates we deepened our knowledge and I find an all-accomplished person with whom I

have many common interests. I like to thanks my colleague Esma Yahia for welcoming me

in an enthusiastic way and for working hard together during all this time. Her feisty character

 4

spurred me to always deepen the topics we discussed on. We rapidly became friends and

knowing and helping each other made me feel at home.

Next to the core people teams, with whom I worked, there are all the laboratory people that

enriched in an extraordinary way my work and private Nancy life. Pierre, Gabriela, Pascale

and Chiara created a little family, my little Nancy family, who shared sadness and happiness,

failures and victories… Life.

I would like to thanks all the other kind people of the laboratory and of the school who were

always nice and wishful to help, David, William, Thomas, Alexandre, Fabien, Yongxin,

Leila, Sylvain, Jéremy, Alex, Ludovic, Romain and all the other really kind people with

whom I passed my time in and out the laboratory.

What I am living is a dream, one of my oldest dream, living an experience in a country I

always wanted to know and performing a job I was eager to transform in my life.

The same life that changed three years ago when I met the person who transformed the way I

felt my life. I would like, so, to thank my beloved Costanza who gave me the strength, the

energy and a new perspective to look at the events, a new hope in our private spiritual road

and who made me remember what the meaning of Life is.

	

 5

1	 INTRODUCTION	...	7	
1.1	 RESEARCH	DOMAIN	CONTEXT	...	7	

2	 COOPERATIVE	INFORMATION	SYSTEM	...	11	

3	 OUR	APPROACH	FOR	SEMANTICS	ENACTMENT	IN	CONCEPTUAL	MODELS	15	
3.1	 STEP 1: REVERSE ENGINEERING	...	17	
3.2	 STEP 2: EXPERT KNOWLEDGE INJECTION	..	18	
3.3	 STEP 3: FACT-ORIENTED TRANSFORMATION	...	20	
3.4	 FOL REPRESENTATION	...	23	

3.4.1	 Translation of UML Artefacts and Semantic Annotations in FOL	...	24	
1.	 UML artefacts	..	24	
2.	 Semantic Annotation in Fact-Oriented Model	..	28	

4	 A	SEMANTICS	STRUCTURING	PROCESS	...	31	
4.1	 CORE AND EXTENDED SEMANTICS	...	31	
4.2	 SOME MATHEMATICAL DEFINITIONS	...	32	
4.3	 SEMANTIC BLOCKS IDENTIFICATION	...	34	
4.4	 USING GRAPH THEORY FOR BUILDING SBCCI	..	38	
4.5	 A PROCEDURE TO COMPUTE THE SEMANTIC BLOCKS	...	40	

5	 CASE	STUDY	...	45	
5.1	 CONCEPTUALISATION OF SAGE X3 ERP MODEL	...	45	
5.2	 SEMANTICS STRUCTURING OF FLEXNET MES MODEL	...	50	

6	 SEMANTIC	ANNOTATION	MODEL	DEFINITION	FOR	SYSTEMS	INTEROPERABILITY	.	61	
6.1	 WHAT IS SEMANTIC ANNOTATION?	..	62	

6.1.1	 Semantic annotation	...	63	
6.2	 METAMODEL OF SEMANTIC ANNOTATION STRUCTURE MODEL	...	65	
6.3	 CONCLUSIONS	...	66	

7	 CONCLUSIONS	...	69	
7.1	 SCIENTIFIC CONTRIBUTION	..	69	

8	 REFERENCES	..	73	

APPENDIX	..	83	

9	 APPENDIX	A	...	84	

10	 APPENDIX	B	...	99	

11	 APPENDIX	C	...	118	

12	 APPENDIX	D	...	130	

 6

 7

1 Introduction

The present Post-Doctoral work was firstly financed with a grant offered by the University

Henri Poincaré, Nancy I, and it was completed at the Research Centre for Automatic Control

(Centre de Recherche en Automatique de Nancy - CRAN) in the Ambient Manufacturing

System (SYMPA) team, Inter Operating System (SIO) project, and at the Lorraine Research

Laboratory in Computer Science and its Applications (Laboratoire Lorrain de Recherche en

Informatique et ses Applications – LORIA) in the Score team.

During this period, passed working as a researcher in these laboratories, I had the possibility

to act as a teacher at the School of Engineering in Information Technology (“École

Supérieure d’Informatique et Applications de Lorraine” - ESIAL). This experience helped

me to better comprehend the different views of the research and teaching life.

1.1 Research domain context

In a present expanded market, enterprises are forced to become increasingly fast adapting

and flexible in order to manage the rapid changing business conditions. Today’s challenges

mainly concern Enterprise Interoperability (EI) that focuses on removing organisational

barriers and improving different type of interaction between people, systems and companies.

EI passes, mainly, through their Enterprise Information Systems (EISs). They involve large

number of ISs distributed over large, complex networked architecture. Such cooperative

enterprise information systems (CEIS) have access to a large amount of information and

have to interoperate to achieve their purpose. CEIS architects and developers have to face a

hard problem: interoperability.

Interoperability can be defined as the ability of two or more systems to share, to understand

and to consume information (IEEE, 1990). The work (Chen et al., 2006) in the INTEROP

NoE project has identified three different levels of barriers for interoperability: technical,

conceptual and organisational. Organisational barriers are still an important issue but they

are out of scope of this paper. The technological barriers are strongly studied by researchers

 8

in computer science and they are, in general, addressed by the models transformation

(Frankel, 2003).

Enterprise Modelling (EM) plays a critical role in this interoperability action, enabling the

capture of all the information and knowledge relevant for the enterprise operations and

organisation (Vernadat, 1996; Panetto and Molina, 2004). The produced Enterprise Models

must contain the necessary and sufficient semantics in order to be intelligible and then

enabling the global Enterprise Interoperability. While studying an Information System (IS)

model, we observe that its semantics is scrambled, due to the implementation requirements,

and, more important, it is tacit.

Our research focuses on the conceptual level of interoperability, namely the ability to

understand the exchanged information. Information may be defined as data linked to

knowledge about this data. It is represented by so-called concepts. A concept is a cognitive

unit of meaning (Vyvyan, 2006), an abstract idea, a mental symbol. It is created in the

activity of conceptualisation, that is, a general and abstract mental representation of an

object. During the history of human effort to model knowledge, different conceptualisation

approaches regarding different application domains were developed (Aspray, 1985).

This research memory will show the results obtained during the Post Doc study referring to

the published works. It deals with a first phase from our general research work that focuses

on the study of the semantic loss that appears in the exchange of information about business

concepts. In order to quantify the semantic gap between interoperating ISs, their

semantics needs to be enacted and structured by enriching, normalising and analysing

their conceptual models. We propose a conceptualisation approach for explicitation of the

finest-grained semantics, embedded into conceptual models in order to facilitate the semantic

matching between two different information systems that have to interoperate. The structure

of the document represents the different steps and the research domain on which the study

focused.

In section 2, we present the general context of our work, namely cooperative enterprise

information systems. The following section, the 3rd section proposes a knowledge

 9

explicitation process that transforms implemented relational model to a fact-oriented

conceptual one. This process allows us to discover the finest-grained semantics that must be

enacted to study semantics interoperability between collaborating ISs. Then, we will define

First Order Logic formalisations of UML artefacts (classes, attributes, associations).

In the 4th section, the semantics structuring method is described. It assumes the definition of

semantic aggregates that highlight the structure of the embedded semantics in the conceptual

model obtained after the conceptualisation process. Each semantic aggregate (namely, each

semantic block) is associated with a concept and defines the minimal mandatory semantics

attached to this concept.

In order to illustrate the proposed approach, a case study is also presented in the section 5.

This case study deals with B2M (Business to Manufacturing) interoperability requirements

between an Enterprise Resource Planning (ERP) system and a Manufacturing Execution

System (MES) applications and consists in applying our approach in order to extract the

semantics embedded into those ISs. In Section 6 new study on Semantic annotation structure

and use is presented in order to better explicitate the tacit knowledge hidden in the Enterprise

Models. Moreover, enriching this semantics is still an open issue; we can for example quote

those researches made by (Boudjlida and Panetto, 2008) in terms of process models

annotations.

In section 7 we will discuss about further works concerning using the resulting semantic

conceptual model and architecture for facilitating the assessment of the (non)-interoperation

barriers between Enterprise Information Systems or some of their subsystems (identified, for

instance, by the semantic blocks) as suggested in (Yahia, 2011). The resulting analysis,

based on an interoperability measures map, can help information technology consulting

companies for parameterising and integrating enterprise applications (ERP, MES…) taking

into account interoperability constraints. The Appendix, containing all the published research

works, completes this report.

	 	

 10

	 	

 11

2 Cooperative Information System

Information Systems are systems whose activities are devoted to capture, store and process

data and to produce knowledge, used by any stakeholders within an enterprise or among

different networked enterprises. It is commonly agreed that Cooperative Information

Systems provide a backbone for the Integrated Information Infrastructure (Sheth, 1998).

Fully understanding and exploiting the advances in computing is the only way to encompass

the complexity of developing and maintaining such systems.

Although the progress made in Information Technology (IT) considerably improved the

efficiency of software development, its drawbacks and limitations are obvious and serious.

In fact, the models involved in a single application development are numerous and diverse,

each coping only with particular and partial aspects of the overall task. Moreover, the

components’ technologies are diverse, platform- and machine-dependant. The above-

mentioned limitations and barriers hinder the development and the maintenance process,

significantly. Though our knowledge has been enriched by such diversity, an ancillary

consequence has been separate research conversations, hampering cross-pollination of

ideas and findings and making it difficult for those working outside the area to understand

what we have learned. (Melville et al., 2004).

There is a growing demand for integrating such systems tightly with organizational work so

that these information systems can be fully, directly and immediately exploited by the intra

and inter-enterprise processes (Izza, 2009).

Here, the need of interoperation clearly appears. In fact, to achieve the purpose of the

cooperation between the different Information Systems, information must be physically

exchanged (technical interoperability), must be understood (conceptual interoperability) and

must be used for the purpose for which it has been produced (conceptual and organisational

interoperability). When trying to assess the understanding of an expression coming from a

system to another system, several possible levels of interoperability can be identified

(Euzenat, 2001):

 12

 encoding: being able to segment the representation in characters;

 lexical: being able to segment the representation in words (or symbols);

 syntactic: being able to structure the representation in structured sentences (or

formulas or assertions);

 semantic: being able to construct the propositional meaning of the representation;

 semiotic: being able to construct the pragmatic meaning of the representation (or its

meaning in context).

This tiered structure is arguable in general; it is not as strict as it seems. In a way, it reflects

maturity levels of the interoperability between the information systems, because each level

cannot be achieved if the previous levels have not been completed (Euzenat, 2001).

The encoding, lexical and syntactic levels are the most effective solutions for removing

technical barriers for interoperability, but they are not sufficient to achieve a practical

interoperability between computerised systems. Enabling a seamless data and model

exchange at the semantic and semiotic levels is still a big challenge which needs conceptual

representation of the intended exchanged information and the definition of its pragmatic

meaning in the context of the source and destination applications.

Different cooperation types have been investigated in ISO 14528 (ISO, 1999). In fact, this

standard considers that models could be related in three ways:

(1) integration, when there exists a standard or pivotal format to represent these models;

(2) unification, when there exists a common meta-level structure establishing semantic

equivalence between these models; and

(3) federation, when each model exists per se, but mapping between concepts could be

done at an ontology level to formalise the interoperability semantics.

Integration is generally considered to go beyond mere interoperability to involve some

degree of functional dependence (Panetto, 2007). Classification of the interoperability

problems (Tursi, et al. 2009) may help in understanding the degree of development needed to

solve, at least partially, these problems. However, conceptualisation and semantics extraction

 13

is still an important issue because of the different, often contextual understanding of tacit

knowledge embedded into those applications. This issue is typically driven by the

misbalance of the needed ontological commitment and epistemological dimension in the

conceptualisation process. In this sense, our task is not really to conceptualise the EIS

models, but to make assumptions on the mental models of the information systems’

designers, which they then expressed as Entity-Relationship models, and to introduce the

ontological commitments by making those models fully or partially equivalent to the real

world semantics. The main prerequisite for achievement of interoperability of information

systems is to maximise the amount of semantics which can be used and to enact it by making

it increasingly explicit (Obrst, 2003).

	
	
This	section	is	derived	from	the	following	scientific	publication:		
	

Lezoche M., Panetto H., Aubry A., (2011). Conceptualisation approach for cooperative

information systems interoperability, ACM. 13th International Conference on

Enterprise Information Systems, ICEIS 2011, Jun 2011, Beijing, China. pp. 101-110

	
	 	

 14

	

	 	

 15

3 Our approach for semantics enactment in conceptual models
	

In order to cooperate, two (or more) Information Systems have to interoperate. As previously

discussed, we focus our interest on the conceptual level of interoperability and on enabling

different information systems to share and use knowledge models which they represent. In

order to make this possible, we consider (Lezoche et al., 2011) two steps that need to be

taken: first, we need to understand the conceptual relationships between those models in the

context of their use; and second, we need to unhide the tacit knowledge buried inside them,

by using conceptualisation.

Conceptualisation is a decision process (Guarino, 1998), a view, in which knowledge of the

studied part of reality, typically available in an implicit and complex form, is reorganised

and generalised in different aggregates. Conceptual models range in type from the more

precise, such as the mental image of a familiar physical object, to the abstractness of

mathematical models which cannot be visualized in mind. They can be developed in

different levels of abstraction of a single domain (Zdravković et al., 2011). Conceptual

models also range in terms of the scope of the subject matter that they are taken to represent.

The variety and scope of conceptual models is due to the variety of purposes that people had

while using them. The same applies for conceptualisation approaches, which are numerous

and have been developed in different knowledge domains (LaOnsgri, 2009). According to

(Engelbart, 1962), developing conceptual models means specifying the essential objects or

components of the system to be studied, the relationships of the objects that are recognised,

the types of changes in the objects or their relationships which affect the functioning of the

system and the types of impact these changes have on the system. Similarly, Genesereth and

Nilson (Genesereth and Nilson, 1987) define conceptualisation as “the objects, concepts and

other entities that are assumed to exist in some area of interest and their inter-relationships”.

Both definitions assume extensional character of the conceptualisation process, in the sense

that they imply that the elements of the mental image of the specific domain are simply

enumerated or listed. Some researchers (Guarino, 1997) argue that this contradicts to an

intentional character of a human thinking, where the meaning of elements is constituted by

 16

their necessary and sufficient conditions. These arguments are partially taken into account in

our work by interpreting the semantics of the cardinality of relationships and existential

constraints (mandatory elements).

Our contribution is to have at our disposal an approach which enables us to fragment

knowledge through the transformation of attributes into entities and relationships, and thus to

discover finest-grained knowledge atoms. In the proposed approach, presented in the Figure

1, different inputs can be used, such as an application, a data model, or a logical view. On

this approach, the initial process (Step 1) is application of the reverse engineering methods,

such as in (Fonkam, 1992) and in (Chiang, 1994), for delivering a conceptual model starting

from the considered inputs. Then, the resulted initial model is enriched and validated through

an Expert Knowledge Injection process (Step 2). In fact, the model is examined with the help

of a domain expert or an end-user, who are the most qualified persons to describe the context

of the particular domain and to affirm the conceptual model. According to the enterprise best

practices and the associated data, they would clean and better organise the knowledge

represented in the derived model. However, the obtained initial conceptual model, in the

form of a UML class diagram, still has some major limitations from a semantic perspective.

Indeed, for example, all the attributes are buried inside classes. Hence, their semantics is not

explicit.

In order to overcome these limitations, in the next step of our approach (Step 3), namely a

Fact-Oriented Transformation (Halpin, 1991), a set of rules for transforming the enriched

conceptual model to a fact-oriented model (FOM) is applied. The core of this approach

(FOM) is based on the so-called Lexical ObjecTs (LOTs) and Non-Lexical ObjecTs

(NOLOTs). These artefacts are defined in (Meersman, 2003) as follows: a lexical object

(LOT), a term, is an object in a certain reality that can be written down. LOTs always

consist of letters, numbers, symbols or other characters. They can be used as names for or

references to other objects. A non-lexical object (NOLOT), a concept, is an object in a

certain reality that cannot be written down. Non-lexical objects must be named by lexical

objects or referred to by means of lexical objects. In the outcome of the step 3, all the classes

and their attributes are transformed into NOLOTs and LOTs respectively. The resulting fact-

 17

oriented model, displaying the finest-grained semantic atoms, is then used as an input for the

structuring process presented in section 4.

In the following sub-sections, we will discuss, in detail, the proposed 3 steps.

Figure 1 - Conceptualisation process

3.1 Step 1: Reverse Engineering

Our scenario assumes that we start from an enterprise application database. So, the first

process is a reverse engineering. It is an approach to extract the domain semantics from the

existing database structures.

Typically, the reverse engineering process concerns the application of transformation rules

which transform logical to conceptual schema. In (Fonkam, 1992), the authors propose a

general algorithm based on several old attempts to make explicit the logical structure buried

into DB schemas, application programs and assumed intent of designers and developers.

(Chiang, 1994) presents a methodology for extracting an extended Entity-Relationship

model from a relational database, by using a combination of data schema and data instance

analysis. In our study, we will consider and reuse the reverse engineering experiences

developed in the past. These methods are, by now, adopted by the industry which produced a

number of software tools. We choose MEGA Suite (http://www.mega.com), a modelling

 18

management environment to transform relational models into conceptual ones. MEGA Suite

implements a parameterised reverse engineering method coping with major existing

approaches from direct database metadata analysis to a semi-automatic conceptual models

building from existing database schemas.

3.2 Step 2: Expert Knowledge Injection

Although most of the reverse engineering approaches (Fonkam, 1992) (Chiang, 1994)

produce the information structure, they deliver models without the explicitation of the tacit

semantics. The ADM (Architecture-Driven Modernization) initiative (OMG, 2003) from

OMG (Bézivin et al., 2005) is tackling this problem by implementing a common Knowledge

Discovery Meta-model to facilitate discovery of the tacit knowledge embedded inside

existing software. Sometimes, Entity-Relationship models, namely database schemas, do not

capture the semantics of the application functionality and underlying data models; when

information systems are highly generic, the application semantics is actually captured in the

populated table rows. For example, in Business Process Management systems, the structure

of the enterprise processes, namely activities, associated data structures (messages),

compensation and error handling blocks, etc. are defined by a system user and are not

expressed by the database schema. In these cases, the intervention of the domain expert in

enriching the conceptual model may be useful. Some research is tackling this issue by

providing the tools to automatically or semi-automatically discover the semantics buried into

existing data patterns (Astrova, 2004). In our scenario, we are considering that enterprise

applications store all their business knowledge into a DBMS. We can then extract, from each

of them, some knowledge in a form of a conceptual model, by using reverse engineering

approaches. Then, a domain expert has to enrich that model with enterprise best practices

(knowledge coming from users). This is the goal of the current step.

After the reverse engineering process has produced a conceptual model, it is enriched by

injecting some enterprise knowledge, expressed by the domain experts’ or users’ practices of

using the corresponding enterprise application. These stakeholders know the domain

peculiarities and they are capable to express the specific constraints that must be embedded

 19

into the conceptual model. However, this phase must follow a structured process, in order to

preserve the ontological commitment. This is particularly important when more experts are

involved in the knowledge injection. In such cases, the approaches of setting up a

collaborative conceptualisation processes (Guo, 2009) may be useful.

The first stage of the Step 2 is the renaming process. Usually, the database tables and

columns (and consequently, the modelled concepts) do not have standard names. Thus, the

renaming process is essential for bringing coherence and semantics to the lexical terms that

otherwise would be very difficult to comprehend.

The next stage is the redefinition of the attributes and of the associations’ roles multiplicities,

according to the enterprise system users’ practices. This step is fundamental for defining the

real constraints which are not always explicit in the implementation model. For example,

considering a particular attribute a1, two possible redefinition cases are identified:

(1) a1 is a non-mandatory attribute in the conceptual model but, as users are always

requested to populate it with a specific value, the enriched model must formalise that

this attribute a1 has to be treated as mandatory;

(2) a1 is defined as mandatory in the conceptual model but, in practice, the users never

care about its value and generally fill it with some dummy one. In such case, the

enriched model may formalise that this attribute is not mandatory.

The last stage concerns of making explicit some implicit associations. Those implicit

associations relate some concepts but they are defined only by enterprise practices even if

they are not expressed in the model itself. For example, let us consider, in a given enterprise,

a good practice imposed for achieving information update traceability. When a user updates

information concerning one product, the application must store, in dedicated fields, the date

of the update and the name of the logged user. This feature is implemented directly into an

application like the ERP Sage X3 but it is not reflected in the data model. Moreover, for the

sake of simplifying the implementation, the developers did not set these attributes as

mandatory. In order to consider this practice in the conceptual model, the constraint must

 20

then be conceptualised as one mandatory association between the existing concepts Product

and Users and by constraining the existing attribute UpdateDate in the previous association.

At this time, the enriched conceptual model formalises the whole application semantics (both

the explicit ones and the users’ implicit ones).

3.3 Step 3: Fact-Oriented Transformation

The quality of a conceptual model is often influenced by the conceptual language used for its

specification. There are different approaches in conceptual modelling and these differences

are reflected in the conceptual languages used for the modelling action. Entity-Relationship

approaches (E-R) have been widely used and extended. They led to the development of

different languages for data modelling (Barker, 1990), (Czejdo et al, 1990), (Hohenstein,

1991). Object-Oriented Modelling (OOM) (Rumbaugh et al, 1991) approach addresses the

complexity of a problem domain by considering the problem as a set of related, interacting

Objects. Entity-attribute-value model (EAV) (Chen et al, 2000) is a data modelling approach

used to represent entities with a potentially vast number of attributes (properties,

parameters).

However, the abstract semantics inherent to these approaches imposes the modeller to make

subjective choices between entities, attributes and relationships artefacts for modelling a

universe-of-discourse. Let us consider, for instance, the same concept modelled in two

different ways (Figure 2). Intuitively, those concepts (represented as UML classes) represent

out similar semantics (at least from a global point of view), but are modelled differently. For

instance, the WEIGHT of a PRODUCT on the right side of the figure is represented by a

single class due to, for example, an implementation constraint. When other classes are

related to this class, a querying for specific values related to the weight is facilitated. In

contrast, on the left side of the figure, the WEIGHT of a PRODUCT is modelled by two

attributes (its value and its unit).

 21

Figure 2 - Two choices of concept modelling

In order to cope with such heterogeneous modelling patterns, we focus our interest on

approaches that enable their normalization to a fine-grained semantic model by fragmenting

the represented knowledge into atoms. NIAM (Natural-language Information Analysis

Method) (Nijssen et al, 1989) proposed to model the world in term of facts (either presenting

terms (real things), or representing characteristics (attributes) of these real things), and

relationships between facts. NIAM is attribute-free. We adapted this fact-oriented modelling

approach idea to the UML (OMG, 2004) class notation representation of the conceptual

models. Thus, we developed in (Lezoche et al., 2011) a set of transformation modelling

rules, to be applied to selected UML patterns (Table1). In the resulting fact-oriented model,

the semantics is preserved by adding annotations. The added annotations concern particular

artefacts semantics such as generalisation, association class, aggregation and composite

aggregation.

A set of transformation modelling rules, to be applied to selected UML patterns is presented

on Table1.

Let us refer to the definitions of LOT and NOLOT facts given in the beginning of section 3.

Transforming a particular conceptual model in a fact-oriented model must follow these rules:

(1) all classes are transformed into LOT facts. Using UML Class notation, a LOT fact is

represented by a UML Class.

(2) all attributes are transformed into NOLOT facts. Using the UML Class notation, a

NOLOT fact is represented as a UML Class.

(3) for each attribute a belonging to a UML Class C, an association is created between

the corresponding LOT a and the corresponding NOLOT C, created by the two

previous rules.

 22

(4) the multiplicity associated to each attribute a is copied as the multiplicity of the role

of the previous association (rule 3) attached to the NOLOT a. The opposite role of

the same association must have a constraint multiplicity equal to one.

(5) all “simple” associations between classes are transformed into “simple” associations

between NOLOTs.

(6) all generalisation relationships between classes are transformed into “simple”

associations with a constraint multiplicity equal to one on the role attached to

generalised NOLOT and a non-constraint multiplicity equal to * on the opposite role.

In order to trace the fact that this association was derived from a generalisation, we

annotate semantically the new corresponding association with a logical predicate.

Moreover, the inheritance features of the generalisation association are mapped as

new associations between LOTs representing the attributes of the generalised

NOLOT, and all the specialised NOLOTs (sub-classes).

(7) composite aggregation and aggregation relationships are transformed into simple

association (rule 3) that keep unchanged the existing roles’ multiplicities but trace

their specific semantics by an attached semantic annotation.

(8) association classes are transformed into a LOT fact with two associations linked to

the corresponding initial LOT facts. The multiplicities of the roles of these two

associations are determined by inverting the ones initially formalised on the roles of

the previous association.

(9) any other specific constraints (generally modelled using OCL logical rules) are kept

during the transformation process.

(10) we did not take into account the special cases of constraints in generalisations

because they are not usually used in data conceptual modelling.

One of the conceptual modelling requirements is that a conceptual model must have formal

foundations, which allow comparing that model with other conceptual models in a formal

and exact way.

	
	

 23

Class and Attributes Composite aggregation

UML FOM UML FOM

Aggregation

UML FOM

Generalisation Association Class

UML FOM UML FOM

Table 1 - Fact-Oriented modelling patterns using UML notation

	

3.4 FOL representation

A concern facing both developers and users of models is the degree of confidence in the

model correctness. It is very easy to make errors, including errors in parameter estimations,

in model assumptions and in programming. Verification methods are designed to address

this question and have become important parts of model building process (Clarke et al.,

1996), (Störrle, 2005).

 24

As shown in Table1, a Fact-Oriented Model (FOM) uses semantic annotations to preserve

coherence between the input and output models of transformation rules. Since those

annotations are not formal objects, we need to verify the real semantics of the FOM model in

comparison with the UML one.

(Berardi et al, 2005) and (Tursi et al, 2009) formalised UML class constructs semantics in

First Order Logic (FOL) assertions. We propose to adapt and to extend these works to

formalise the fact-oriented model patterns (presented in Table 1) in FOL assertions.

3.4.1 Translation of UML Artefacts and Semantic Annotations in FOL

1. UML artefacts

The conceptual models, produced after the first two steps of our approach, are representing

concepts semantics using UML artefacts such as class, attribute, association, association

class, aggregation, composite aggregation and generalisation. Let us now formalise each of

these artefacts in FOL.

Class. A class in UML designates a set of object with common features (OMG, 2004).

Formally a class C corresponds to a FOL unary predicate C.

 ሻ . (1)ݔሺܥ	ݔ∀

Attribute. An attribute a of type T for a class C associates to each instance of C a set of

instances of AttribType, its multiplicity [i..j] specifies that a associates to each instance of C

at least i and at most j instances of AttribType. Formally, an attribute a of type AttribType for

class C corresponds to a binary predicate.

ሻݔሺܥ൫	ݕ∀	ݔ∀ ∧ ܽሺݔ, ሻ൯ݕ → ሻ . (2)ݕሺ݁݌ݕܾܶ݅ݎݐݐܣ

A multiplicity [i..j] is composed of two specifications: the minimal value (i) and the

maximal value (j). Those minimal and maximal values are specified as “0” or “1” or “*” or

 25

any positive integer. However, generally, in conceptual models, we do not specify positive

integers for multiplicity because those numbers are embedded as constraints into the data

processing of the software. We are then restraining our formalisation to the three generic

cases: “1” (uniqueness), “0” (absence) and “*” (unlimited). This restraining postulate allows

us to model each of the four general multiplicity cases (0..1, 1, 1..*, *) using a logical

disjunction operator between the three logical expressions ((3), (4), (5)):

Uniqueness (“1”): for any instance x of class C, there is a unique value for the attribute a in

the instance x.

ሻݔሺܥ	ݔ∀ →	 ൫∃ݕ ܽሺݔ, ∧	ሻݕ ,ݔሺܽሺ	ݖ∀ ሻݖ → ݕ ൌ ሻ൯ . (3)ݖ

Absence (“0”): for any instance x of class C, there is not any value for the attribute a in the

instance x.

ሻݔሺܥ	ݔ∀ ሻ . (4)ݕ,ݔ൓ܽሺ	ݕ∀	→

Unlimited (“*”): for any instance x of class C, there is an unlimited number of values for the

attribute a in the instance x.

ݔ∀ ሻݔሺܥ ,ݔሺܽ	ݕ∃	→ ሻݕ . (5)

Association. An association in UML is a relation between two or more instances of classes.

The multiplicity [m..n] attached to each role of an association specifies that each instance of

the class C can participate at least m times and at most n times to the related association. The

n-ary association construct may always be transformed into two or more binary associations.

Thus an association ܣ between two classes ܥଵ and ܥଶ is represented by a unary predicate ܣ

and two binary predicates ݎଵ and ݎଶ, one for each role name, and can be formalised as the

following set of FOL assertions:

 26

ሻݔሺܣ	ݕ∀	ݔ∀ ,ݔଵሺݎ	∧ ሻݕ → ሻ . (6)ݕଵሺܥ

ሻݔሺܣ	ݕ∀	ݔ∀ ,ݔଶሺݎ	∧ ሻݕ → ሻ . (7)ݕଶሺܥ

ݔ∀ ሻݔሺܣ → ,ݔଵሺݎ	ݕ∃ ሻ . (8)ݕ

ݔ∀ ሻݔሺܣ → ,ݔଶሺݎ	ݕ∃ ሻ . (9)ݕ

ሻݔሺܣ	ݖ∀	ݕ∀	ݔ∀ ∧ ,ݔଵሺݎ ሻݕ ∧ ,ݔଵሺݎ ሻݖ → ݕ ൌ z . (10)

ሻݔሺܣ	ݖ∀	ݕ∀	ݔ∀ ∧ ,ݔଶሺݎ ሻݕ ∧ ,ݔଶሺݎ ሻݖ → ݕ ൌ z . (11)

ሻݔሺܣ	ݖ∀	ݔ∀	ଶݕ∀	ଵݕ∀ ∧ ሻݖሺܣ ⋀ ൫ݎ௜ሺݔ, ௜ሻݕ ∧ ,ݖ௜ሺݎ ௜ሻ൯ݕ
ଶ
௜ୀଵ → ݔ ൌ z . (12)

Assertions (6) and (7) are typing the association. Assertions (8), (9), (10) and (11) are

specifying that any association ܣ has at least one role at each of its ends and that each role is

unique; Assertion (12) imposes that each instance of an association ܣ is unique.

The multiplicity constraints attached to association roles are formalised with logical

expressions having the same structure as the previous ones ((3), (4), (5)) for the attributes.

Association Class. An association may have a related association class that describes

properties of the association, such as attributes, operations, etc. It can be formalised in the

same way of an association.

Aggregation. A particular kind of binary associations is aggregation, which plays an

important role in UML class conceptual models. An aggregation is a binary relation between

the instances of two classes ܥଵ and ܥଶ, denoting a part-whole relation, i.e., a non-symmetric

relation which specifies that each instance of a class (the containing class, ܥଵ) contains a set

of instances of another class (the contained class, ܥଶ). The aggregation is represented by a

unary predicate Aggregation(x) for which all the association assertions are valid. To

complete its semantics, in order to formalise the fact that an instance cannot be its own

aggregate, the following FOL assertion has to be added:

ሻݔሺ݊݋݅ݐܽ݃݁ݎ݃݃ܣ	ݖ∀	ݕ∀	ݔ∀	 ∧ ,ݔଵሺݎ ሻݕ ∧ ,ݔଶሺݎ ሻݖ ∧ ሻݕଵሺܥ ∧ ሻݖଶሺܥ → ൓ሺ	ݕ ൌ . ሻݖ

 27

Moreover, in order to formalise the non-symmetry of the aggregation, the following FOL

assertion has to be added:

ሻݔሺ݊݋݅ݐܽ݃݁ݎ݃݃ܣ	ݖ∀	ݕ∀	ݔ∀	ݓ∀ ∧ ሻݓሺ݊݋݅ݐܽ݃݁ݎ݃݃ܣ ∧ ൓ሺ ݔ ൌ ሻݓ ∧ ,ݔଵሺݎ ሻݕ ∧

,ݔଶሺݎ	 ሻݖ ∧ ሻݕଵሺܥ ∧ ሻݖଶሺܥ → ൓ ൫ݎଵሺݓ, ሻݖ ∧ ,ݓଶሺݎ 	. ሻ൯ݕ

Composite aggregation. Composite aggregation is a strong form of aggregation that

requires a component instance to be included in at most one composite at a time. The

composite aggregation is represented by a unary predicate Composition(x) for which all the

aggregation assertions are valid. To complete its semantics, in order to formalise the fact that

a component cannot participate to more than one composite aggregation, the following FOL

assertion has to be added:

ݖ∀	ݕ∀	ݔ∀ ሻݔሺ݊݋݅ݐ݅ݏ݋݌݉݋ܥ ∧ ,ݔଵሺݎ ሻݕ ∧ ,ݔଶሺݎ ሻݖ ∧ ሻݕଵሺܥ ∧ ሻݖଶሺܥ →

	ሺ∀ݓ ,ݔଵሺݎ ሻݓ → ݓ ൌ . ሻݕ

Moreover, in order to formalise the non-sharing property of the components, the following

FOL assertion has to be added:

ሻݑሺ݊݋݅ݐ݅ݏ݋݌݉݋ܥ	ݖ∀	ݕ∀	ݔ∀	ݓ∀	ݑ∀ ∧ ሻݔሺ݊݋݅ݐ݅ݏ݋݌݉݋ܥ ∧ ,ݔଵሺݎ ሻݕ ∧ ,ݔଶሺݎ	 ሻݖ ∧

,ݑଵሺݎ	 ሻݓ ,ݑଶሺݎ	∧ ሻݖ ∧ ሻݕଵሺܥ ∧ ሻݖଶሺܥ ∧ ሻݓଵሺܥ → ݑ ൌ . ݔ

Generalisation. In UML, one can use a generalisation between a parent class and a child

class to specify that each instance of the child class is also an instance of the parent class.

Hence, the instances of the child class inherit the properties and the relationships of the

parent class, but typically they also possess additional properties that do not hold for the

parent class. Disjointness and completeness constraints can also be enforced on a class

hierarchy. In this paper (and in our conceptualisation approach), we do not take into account

 28

overlapping and incompleteness constraints over a class hierarchy because they generate

hidden and poor semantics.

The semantics of a UML class ܥ generalizing a class ܥଵ can be formally captured by means

of the following FOL assertion:

ሻݔଵሺܥ	ݔ∀ → . ሻݔሺܥ

Disjointness among the child classes ܥଵ :௡ is expressed by the additional FOL assertionܥ	…

ݔ∀ ሻݔ௜ሺܥ → Λ௝ୀଵ,௝ஷ௜
௡ ൓ܥ௝ሺݔሻ ݎ݋݂ ݅ ൌ 1,… , ݊ .

The completeness constraint, expressing that each instance of the parent class ܥ is an

instance of at least one of its child classes ܥଵ ௡, is formally defined by the additionalܥ	…

assertion:

ݔ∀ ሻݔሺܥ → 	∨௜ୀଵ
௡ . ሻݔ௜ሺܥ

2. Semantic Annotation in Fact-Oriented Model

In order to keep track of the initial model semantics, which may be lost sometimes after

applying the FOM transformation rules on specific UML artefacts, we embed semantic

annotations of some key modelling constructs (association class, generalisation, aggregation,

composite aggregation) in resulting models. These annotations highlight, with the presented

logic assertions, the specific semantics that can be lost. For the composite aggregation

construct the semantic annotation brings also, in a textual form, the particular semantics of

life cycle that relate to its instances.

	 	

 29

	
This	section	is	derived	from	the	following	scientific	publications:		
	

Lezoche M., Panetto H., Aubry A., (2011). Conceptualisation approach for cooperative

information systems interoperability, ACM. 13th International Conference on

Enterprise Information Systems, ICEIS 2011, Jun 2011, Beijing, China. pp. 101-110

Lezoche M., Panetto H., Aubry A., (2011). Formal Fact-Oriented model transformations for

cooperative information systems semantic conceptualisation, Selected and extended

version of ICEIS 2011. Lecture Notes in Business Information Processing, Proof read

	
	
	
	 	

 30

	

	 	

 31

4 A semantics structuring process

After conceptualising and enacting finest-grained semantics embedded into CISs models,

resulting with a normalised FOM, the latter has to be structured into semantic aggregates

(Yahia et al., 2011). Each of those identified aggregates represents a “semantic molecule”,

composed of atomic concepts, with its own minimal mandatory semantics.

To build such aggregates, we propose a recursive approach for analysing the detailed

semantics of the IS conceptual models obtained by the conceptualisation approach presented

in section 3. We are considering that these models embed the whole explicited semantics of

the associated IS.

Our structuring approach starts by identifying core atomic concepts and it ends by

computing the semantic aggregates (namely, the semantic blocks) according to algorithms

based on graph theory.

4.1 Core and extended semantics

When considering an available fact-oriented conceptual model from one IS (outputs from

section 3), we can distinguish the mandatory (constrained) and non-mandatory (non-

constrained) association roles, which represent mandatory and non-mandatory concepts

expressing semantics.

The set of mandatory concepts represents all the necessary and sufficient elements which

make the conceptual model semantically coherent and understandable. It comprises all the

non-lexical and lexical concepts linked to constrained association roles with a multiplicity

equal to 1 or 1..*. On the contrary, the non-mandatory concepts correspond to the non-

mandatory roles (multiplicity equal to 0..1 or *) and are only enriching the semantics of

those IS conceptual models.

 32

To some extent, the set of mandatory concepts corresponds to the core semantics that is

embedded into a given IS conceptual model. The extended semantics is defined by the set of

mandatory and non-mandatory concepts.

4.2 Some mathematical definitions

We define, for each IS conceptual model, the following notations.

Definition 1. ܥூௌ is the set of the identified lexical and non-lexical concepts, formally

defined by

ூௌܥ ൌ ሼܿ௜|ܿ௜	is	a	lexical	or	a	non െ lexical	concept	from	the	IS	conceptual	modelሽ

Moreover, we define two subsets of ܥூௌas follows:

 ܰܥܮூௌ is the subset of ܥூௌ restricted to the non-lexical concepts and,

 ܥܮூௌ is the subset of ܥூௌ restricted to the lexical concepts.

We can note that:

ூௌܥ ൌ ூௌܥܮܰ ∪ ூௌܥܮ

ூௌܥܮܰ ∩ ூௌܥܮ ൌ ∅

Definition 2. ܴ݈݁ூௌ is the set of the identified associations between concepts. Formally, it is

defined by

ܴ݈݁ூௌ ൌ ൛݈݁ݎ൫ܿ௜, ௝ܿ൯ห൫ܿ௜, ௝ܿ൯ ∈ ሺܥூௌሻଶ 	∧ 	ܿ௜	݅ݏ	݀݁ݐܽ݅ܿ݋ݏݏܽ	݋ݐ	 ௝ܿ	ൟ

Definition 3. ݐ݈ݑܯ ቀ݈݁ݎ൫ܿ௜, ௝ܿ൯ቁ is the multiplicity of the role of ௝ܿ when considering the

association between ܿ௜ and ௝ܿ if it exists. For each	൫ܿ௜, ௝ܿ൯ ∈ ሺܥூௌሻଶ, if ݈݁ݎ൫ܿ௜, ௝ܿ൯ exists then

we have ݐ݈ݑܯ ቀ݈݁ݎ൫ܿ௜, ௝ܿ൯ቁ ∈ ሼ∗ ,0. .1,1,1. .∗ሽ and it is read 	 ௝ܿ is associated to ܿ௜ with a

multiplicity equal to ݐ݈ݑܯ ቀ݈݁ݎ൫ܿ௜, ௝ܿ൯ቁ.

 33

Definition 4. ܥܯூௌ is the subset of ܥூௌ restricted to mandatory concepts (the core semantics).

It is formally defined by

ூௌܥܯ ൌ ൜ܿ௜ฬ∃ ቀܿ௜, ,൫ܿ௜݈݁ݎ ௝ܿ൯ቁ ∈ ூௌܥ ൈ ܴ݈݁ூௌ ∧ ݐ݈ݑܯ ቀ݈݁ݎ൫ܿ௜, ௝ܿ൯ቁ ∈ ሼ1,1. .∗ሽൠ

Moreover, we define two subsets of ܥூௌ as follows:

 ܥܮܰܯூௌ is the subset of ܥூௌ restricted to the mandatory non-lexical concepts and,

 ܥܮܯூௌ is the subset of ܥூௌ restricted to the mandatory lexical concepts.

We can note that:

ூௌܥܯ ൌ ூௌܥܮܰܯ ∪ ூௌܥܮܯ

ூௌܥܮܰܯ ∩ ூௌܥܮܯ ൌ ∅

ூௌܥܮܰܯ ൌ ூௌܥܯ ∩ ூௌܥܮܰ

ூௌܥܮܯ ൌ ூௌܥܯ ∩ ூௌܥܮ

Definition 5. For each non-lexical concept ௝ܿ , we can define the set of its associated

mandatory lexical concepts as follows:

൫ܥܮܯ ௝ܿ൯ ൌ ቄܿ௜ ∈ ூௌቚܥܮ ቀ∃݈݁ݎ൫ ௝ܿ, ܿ௜൯ ∈ ܴ݈݁௜௦ ቚݐ݈ݑܯ ቀ݈݁ݎ൫ ௝ܿ, ܿ௜൯ቁ ∈ ሼ1,1. .∗ሽቁቅ

Definition 6. For each non-lexical concept ௝ܿ , we can define the set of its associated

mandatory non-lexical concepts as follows:

൫ܥܮܰܯ ௝ܿ൯ ൌ ቄܿ௜ ∈ ூௌቚܥܮܰ ቀ∃݈݁ݎ൫ ௝ܿ, ܿ௜൯ ∈ ܴ݈݁௜௦ ቚݐ݈ݑܯ ቀ݈݁ݎ൫ ௝ܿ, ܿ௜൯ቁ ∈ ሼ1,1. .∗ሽቁቅ

If we consider a concept defined in the context of the IS core semantics, we notice that, in

order to be semantically effective in the studied domain, this concept needs to be associated

 34

on the one hand to its mandatory lexical concepts and on the other hand to other non-lexical

concepts. This defines the notion of Semantic Block (SB).

4.3 Semantic blocks identification

1. Definition

Considering a particular non-lexical concept ܿ௜ from ܰܥܮூௌ , a semantic block, denoted as

 ሺܿ௜ሻ and associated with the concept ܿ௜, represents the set of the concepts necessary forܤܵ

the minimal semantics definition of the non-lexical concept ܿ௜ given by the conceptual

model. Formally, ܵBሺܿ௜ሻ is defined as follows:

ሺܿ௜ሻܤܵ ൌ ቐܿ௜ 	∪ ሺܿ௜ሻܥܮܯ	 ራ ሺܤܵ ௝ܿሻ
௖ೕ∈ெே௅஼ሺ௖೔ሻ

ቑ ሺ1ሻ

This definition, suggests that the notion of semantic block is recursive.

In the following, the meta-model of the semantic block is given and a procedure to compute

all the semantic blocks of a conceptual model is proposed.

2. Semantic block meta-model

Here we propose to formalise the semantic block architecture through the meta-model

represented on Figure	 3. This meta-model is based on the composite pattern (Gamma et al,

1995). This meta-model defines an arborescence of components representing hierarchies of

objects.

 35

Figure 3 - Meta-model of the semantic block structure

A semantic block defines the minimal mandatory semantics of one or several non-lexical

concepts such that these concepts are in the same strongly connected component1. Moreover,

the semantics of one or several concepts can be aggregated into one or several semantic

blocks. As the semantic block is a specialisation of the abstract class “Concept”, its

semantics can be aggregated into one or several semantic blocks of higher levels. The Block

System represents the last level of aggregation and contains the minimal mandatory

semantics of the studied IS conceptual model.

3. How to build the Semantic blocks?

Let us consider the conceptual model on Figure	 4 and its transformation on Figure	 5

obtained by applying the third step presented in section 3. Let us build the semantic block of

the concept 2ܥ . The intrinsic mandatory semantics of the concept 2ܥ is defined by the

																																																								
1 A strongly connected component of a directed graph is a maximal set of vertices such that for every pair of
vertices u and v, there is a directed path from u to v and a directed path from v to u.

Non Lexica l Concept
(NLC)

Lexica l Concept (LC)

1Is de fined by*

Atomic Concep t
<<Abstract>>

Semantic Block (SB)

1
Defines the minima l manda to ry semantics o f

1..*

}{ All related NLC belong to the same Strongly Connected Component

Concept
<<Abstract>>

Block System (BS)

1..*

Aggregates the semantics of

*

}{ Context Semantic Block (SB)
inv:

self.Lexical Concept (LC) -> forall (c |
c.Is defined by.associationEnd.multiplicity in {"1",

"1..*"} AND
self->includes (c.Non Lexical Concept (NLC)))

 36

semantics of the mandatory lexical concepts that are associated to it, namely 2ܥ1ܣ and

 exists only if it is associated to at least 2ܥ Moreover, a given instance of the concept .2ܥ2ܣ

one instance of the concept 5ܥ . That means that 5ܥ is mandatory for expressing the

semantics of	2ܥ. Moreover, considering the roles of 1ܥ and 3ܥ in their association with 2ܥ,

we can see that the minimal multiplicity is equal to 0. That means that the existence of any

instance of 2ܥ is not stipulated by the existence of one instance of 1ܥ or 3ܥ. Finally, we find

again ܵܤሺ2ܥሻ ൌ ሼ2ܥ ∪ ሼ2ܥ1ܣ, 2ሽܥ2ܣ 	∪ .5ሻሽ as in equation (1)ܥሺܤܵ

Recursively, we can demonstrate that the intrinsic mandatory semantics of the concept 5ܥ is

defined by the semantics 5ܥ1ܣ and that a given instance of the concept 5ܥ exists only if it is

associated to exactly one instance of the concept 8ܥ and exactly one instance of the concept

5ሻܥሺܤܵ That means that .2ܥ ൌ ሼ5ܥ ∪ ሼ5ܥ1ܣሽ 	∪ 2ሻܥሺܤܵ ∪ .8ሻሽܥሺܤܵ

Applying the same reasoning, we can build ܵܤሺ8ܥሻ as follows: ܵܤሺ8ܥሻ ൌ ൛8ܥ ∪ ሼ8ܥ1ܣሽൟ.

Finally we can deduce that: ܵܤሺ2ܥሻ ൌ ൛ሼ2ܥ, ,5ܥ 8ሽܥ ∪ ሼ2ܥ1ܣ, 2ሽܥ2ܣ ∪ ሼ5ܥ1ܣሽ 	∪

ሼ8ܥ1ܣሽൟ.

Figure 4 - An instance of conceptual model

C1

+A1C1[1]
+A2C1[0..1]

C2

+A1C2[1]
+A2C2[1]
+A3C2[0..1]

C3

+A1C3[1]
+A2C3[0..1]

C4

+A1C4[1]
+A2C4[0..1]

1..*

*

1
*

1..*

0..1

C5

+A1C5[1]
+A2C5[0..1]

1..*0..1

1 *

C8

+A1C8[1]
+A2C8[0..1]

1

*

C6

+A1C6[1]
+A2C6[0..1]

1..*1..*

C7

+A1C7[1]
+A2C7[0..1]

11

1..*

*

1

0..1

*

0..1

*

*

11..*

0..1

0..1

*

0..1

 37

Figure 5 - "Fact-oriented modelling" transformation of the model of Figure 4

To simplify the computation of the semantic block of one concept ܿ௜, we propose, first, to

identify the set of non-lexical concepts that are included in the semantic block and, second,

to add the associated mandatory lexical concepts. That means that ܵܤሺܿ௜ሻ is determined as

follows: ܵܤሺܿ௜ሻ ൌ ௖ሺܿ௜ሻܤܵ ∪ ௔ሺܿ௜ሻ withܤܵ

 ܵܤ௖ሺܿ௜ሻ ൌ ൜ሼܿ௜ሽ⋃ ௖൫ܤܵ ௝ܿ൯௖ೕ∈ெே௅஼ሺ௖೔ሻ ൠ and,

 ܵܤ௔ሺܿ௜ሻ ൌ ൛ܥܮܯ൫ ௝ܿ൯ห ௝ܿ ∈ ௖ሺܿ௜ሻൟܤܵ

For instance, ܵܤ௖ሺ2ܥሻ ൌ ሼ2ܥ, ,5ܥ 2ሻܥ௔ሺܤܵ 8ሽ andܥ ൌ ሼ2ܥ1ܣ, ,2ܥ2ܣ ,5ܥ1ܣ .8ሽܥ1ܣ

C1

C2

1..*

*

C3

*

*

1

*

C4

1..*

0..1

C5

1 *

1..*0..1

C6

*

0..1

1..*1..*

C7

11..*

1..*

*
11

C8

0..1

*

0..1

0..1

1

0..1

1

*

A1C1

1

1

A2C1

1

0..1

A1C2

1
1

A2C2

1

1
A3C2

0..1
1

A1C5

1

1

A2C5

0..1

1

A1C8

1

1

A2C8

0..1

1

A1C6

 1

1

A2C6

0..1
1

A1C3

1

1

A2C3

0..1
1

A1C4

1

1

A2C4

0..1

1

A2C7

1

0..1

A1C7

 1

1

 38

4.4 Using graph theory for building ܋۰܁ሺܑ܋ሻ

To facilitate the building of the semantic blocks, we propose, for each ܿ௜ from ܰܮC୍ୗ, to

identify the associated set ܵܤ௖ሺܿ௜ሻ by using graph theory modelling and its associated

mathematical tools.

Let us first define a semantic-dependency graph associated with a conceptual model. This

semantic-dependency graph is a digraph ܩ ൌ ሺܸ, is the ܧ ሻ where ܸ is the set of nodes andܧ

set of edges defined by a pair of nodes. Each node from ܸ represents a non-lexical concept

of the conceptual model. Each edge from ܧ is built from the conceptual model as follows:

the edge ൫ܿ௜, ௝ܿ൯ exists if (i) there is an association between ܿ௜ and ௝ܿ in the conceptual

model, and (ii) if the minimal multiplicity for the role of ௝ܿ is equal to 1 ቀ ௝ܿ ∈ .ሺܿ௜ሻቁܥܮܰܯ

That means that the existence of the edge ൫ܿ௜, ௝ܿ൯ represents the fact that ௝ܿ is mandatory for

expressing the semantics of ܿ௜.

The Figure	 6 shows the semantic-dependency graph associated with the conceptual model of

the Figure	5.

Figure 6 - Semantic-dependency graph associated with the conceptual model of Figure 5

Theorem 1. Given two particular concepts c୧ and c୨ , c୨ belongs to SBୡሺc୧ሻ if and only if

there exists a directed path from c୧ to c୨.

	1ܥ

2ܥ

3ܥ

5ܥ

8ܥ

4ܥ 7ܥ

6ܥ

 39

Proof. Let us consider the conceptual model on Figure 4. To build the semantic block of the

concept c୧ , we consider this concept as the starting point. This concept can thus be

considered as the root in the associated semantic-dependency graph. Now we add in SBୡሺc୧ሻ

all the concepts c୩ that must be instantiated to ensure the existence of a particular instance of

c୧ , i.e. all the concepts cଵ୩ such that there is an association between c୧ and cଵ୩ in the

conceptual model, and the minimal multiplicity for cଵ୩, considering this association, is equal

to 1. This is the exact definition of all the successors of c୧ in the semantic-dependency graph.

Note that, by definition, there is a directed path from the concept c୧ to these concepts cଵ୩.

Iteratively, the only new concepts cଶ୩ that can be added to SBୡሺc୧ሻ are the successors of

those first concepts cଵ୩. As successors of the concepts cଵ୩, there exists also a directed path

from the concept c୧ to the concepts cଶ୩ (the path from c୧ to cଵ୩ plus the edge ሺcଵ୩, cଶ୩ሻ).

Finally the semantic block of c୧ contains exactly all the concepts c୨ such that there exists a

directed path from c୧ to c୨. ∎

Theorem 2. Given two particular concepts cଵ and cଶ, if cଶ belongs to SBୡሺcଵሻ then SBୡሺcଶሻ

is included in SBୡሺcଵሻ.

Proof. cଶ belongs to SBୡሺcଵሻ means that there exists a path from cଵ to cଶ (see theorem 1).

Let us now consider a particular concept from SBୡሺcଶሻ denoted as c . By definition of

SBୡሺcଶሻ, there exists a path from cଶ to c and then a path from cଵ to c (the path from cଵ to cଶ

plus the path from cଶ to c). That means that c is in SBୡሺcଵሻ. Finally SBୡሺcଶሻ ⊆ SBୡሺcଵሻ. ∎

Theorem 3. All the concepts that are in the same cycle in the semantic-dependency graph

are associated with the same unique semantic block.

Proof. A cycle is a closed path. Let us consider two particular concepts, denoted as c୧ and c୨,

which belong to a cycle. In particular there is a path from c୧ to c୨. That means that c୨ is in

SBୡሺc୧ሻ . Following the theorem 2, we can also demonstrate that SBୡ൫c୨൯ ⊆ SBୡሺc୧ሻ .

Moreover, there is a path from c୨ to c୧ . That means that c୧ is in SBୡ൫c୨൯. Following the

theorem 2, that means that SBୡ൫c୨൯ ⊇ SBୡሺc୧ሻ. Finally, SBୡ൫c୨൯ ൌ SBୡሺc୧ሻ. ∎

 40

The theorem 3 implies that there is one semantic block per strongly connected component of

the semantic-dependency graph.

4.5 A procedure to compute the semantic blocks

Applying theorems 1 to 3, we propose the following procedure to compute all the semantic

blocks of a given conceptual model:

i. Building the associated semantic-dependency graph.

ii. Building the graph of the strongly connected components based on the semantic-

dependency graph.

iii. Computing the semantic blocks ܵܤ௖ associated with each strongly connected

component.

iv. Computing, for each ܵܤ௖, the semantic block ܵܤ௔ by adding all the mandatory lexical

concepts associated to each non-lexical concept from ܵܤ௖.

v. Computing ܵܤ ൌ ௖ܤܵ ∪ .௔ܤܵ

These steps are detailed as follows.

4.5.1 Building the associated semantic-dependency graph

By definition of this graph, it can be easily obtained by considering each association between

two concepts c୧ and c୨ and then building an edge from c୧ to c୨ if the minimal multiplicity for

the role of c୨ is equal to 1.

4.5.2 Building the graph of the strongly connected components

Theorem 3 implies that for building the semantic blocks, we can consider only one concept

in a given strongly connected component (the other concepts share the same semantic block).

That is the reason why we can simplify the semantic-dependency graph by considering only

an equivalent graph where the nodes represent each strongly connected component of the

former semantic-dependency graph, and where one of these nodes (e.g. SCC1) is connected

 41

to another node (e.g. SCC2) if there exists at least one edge from a concept from SCC1 to a

concept from SCC2.

Identifying all the strongly connected components of a graph is a well-known problem in

graph theory that can be solved with polynomial effort by using Kosaraju-Sharir’s algorithm

(Sharir, 1981).

The graph of the strongly connected components related to the semantic-dependency graph

of Figure	 6 is given on Figure	 7. On this graph, the strongly connected components are

defined as follows SCC1 ൌ ሼC1ሽ , SCC2 ൌ ሼC2, C5ሽ , SCC3 ൌ ሼC3, C4, C6, C7ሽ and SCC4 ൌ

ሼC8ሽ.

Figure 7 - Graph of the strongly connected components related to the graph of Figure 6

4.5.3 Computing ܵܤ௖ associated with each strongly connected component

We propose now one algorithm for computing all the semantic blocks SBୡ associated with

each strongly connected component (see Algorithm 1 that invokes Algorithm 2). The

algorithm 1 BuildSemBlocks is applied on the graph of the strongly connected components

(denoted as Gୗେେ).

Let us apply the algorithm BuildSemBlocksሺGୗେେሻ on the graph of Figure 7. We obtain the

following semantic blocks:

 ܵܤ௖ሺܵ1ܥܥሻ ൌ 1ܥܥܵ ∪ 2ܥܥܵ ∪ 3ܥܥܵ ∪ ,4ܥܥܵ

 ܵܤ௖ሺܵ2ܥܥሻ ൌ 2ܥܥܵ ∪ ,4ܥܥܵ

 ܵܤ௖ሺܵ3ܥܥሻ ൌ 3ܥܥܵ ∪ and 4ܥܥܵ

1ܥܥܵ

2ܥܥܵ

3ܥܥܵ

4ܥܥܵ

 42

 ܵܤ௖ሺܵ4ܥܥሻ ൌ .4ܥܥܵ

And finally replacing the strongly connected components by their content we obtain the

following semantic blocks:

 ܵܤ௖ሺ1ܥሻ ൌ ሼ1ܥ, ,2ܥ ,3ܥ ,4ܥ ,5ܥ ,6ܥ ,7ܥ ,8ሽܥ

 ܵܤ௖ሺ2ܥ, 5ሻܥ ൌ ሼ2ܥ, ,5ܥ ,8ሽܥ

 ܵܤ௖ሺ3ܥ, ,4ܥ ,6ܥ 7ሻܥ ൌ ሼ3ܥ, ,4ܥ ,6ܥ ,7ܥ 8ሽ andܥ

 ܵܤ௖ሺ8ܥሻ ൌ ሼ8ܥሽ.

Algorithm ݏ݇ܿ݋݈ܤ݈݉݁ܵ݀݅ݑܤሺܩௌ஼஼ሻ

[Initialisation]

 ௌ஼஼ܩ List of the strongly connected components in :ܮ

For each ܵܥܥ ∈ Do ܮ

ሻܥܥሺܵݎ݋݈݋ܿ ൌ െ1

 ܥܥܵ is an indicator that defines if a node ݎ݋݈݋ܿ]

has already been visited or not]

[-1 means not yet visited]

[0 means being visited]

[+1 means already visited]

Next ܵܥܥ

For each ܵܥܥ ∈ Do ܮ

If ܿݎ݋݈݋ሺܵܥܥሻ ൌ െ1 Then

[Building of the semantic block associated with

 [ܥܥܵ

 ሻ[calling Algorithm 2]ܥܥሺܵܤ݈ܵ݀݅ݑܤ

EndIf	

Next ܵܥܥ

Return

Algorithm 1. BuildSemBlocks algorithm

	
	

 43

Algorithm ܤ݈ܵ݀݅ݑܤሺܵܥܥሻ

[Initialisation]

ሻܥܥ௖ሺܵܤܵ ൌ The semantic block associated with] ܥܥܵ

SCC initially contains all the concepts in the SCC]

ሻܥܥሺܵݎ݋݈݋ܿ ൌ 0 [SCC is being visited]	

[Building]

[use of theorem 1]

For each ܵܥܥ’ successor from ܵܥܥ in ܩௌ஼஼ Do

If ܿݎ݋݈݋ሺܵܥܥ’ሻ ൌ െ1 Then

[Building of the semantic block associated with

 [’ܥܥܵ

 ሻ’ܥܥሺܵܤ݈ܵ݀݅ݑܤ

EndIf

[Use of theorem 2]

ሻܥܥ௖ሺܵܤܵ ൌ ሻܥܥ௖ሺܵܤܵ ∪ ሻ’ܥܥ௖ሺܵܤܵ

Next ܵܥܥ’ successor from ܵܥܥ in ܩௌ஼஼

Return ܵܤ௖ሺܵܥܥሻ

Algorithm 2. BuildSB algorithm

4.5.4 Computing, for each ܵܤ௖, the semantic block ܵܤ௔

Each semantic block ܵܤ௔ contains the mandatory lexical concepts associated to the non-

lexical concepts in ܵܤ௖ . By applying the definition of ܵܤ௔ ൫ܵܤ௔ሺܿ௜ሻ ൌ ൛ܥܮܯ൫ ௝ܿ൯ห ௝ܿ ∈

 :5 we obtain	௖ሺܿ௜ሻൟ൯ on the instance of Figureܤܵ

 ܵܤ௔ሺC1ሻ ൌ ሼ1ܥ1ܣ, ,2ܥ1ܣ ,2ܥ2ܣ ,3ܥ1ܣ ,4ܥ1ܣ ,5ܥ1ܣ ,6ܥ1ܣ ,7ܥ1ܣ ,1C8ሽܣ

 ܵܤ௔ሺC2, C5ሻ ൌ ሼ2ܥ1ܣ, ,2ܥ2ܣ ,5ܥ1ܣ ,1C8ሽܣ

 ܵܤ௖ሺC3, C4, C6, C7ሻ ൌ ሼ3ܥ1ܣ, ,4ܥ1ܣ ,6ܥ1ܣ ,7ܥ1ܣ 1C8ሽ andܣ

 ܵܤ௖ሺC8ሻ ൌ ሼ1ܣC8ሽ.

 44

4.5.5 Computing each semantic block ܵܤ

Each semantic block ܵܤ is the union of ܵܤ௖ and ܵܤ௔ . By applying this definition on the

instance of Figure	5 we obtain:

 ܵܤሺ1ܥሻ ൌ

൛ሼ1ܥ, ,2ܥ ,3ܥ ,4ܥ ,5ܥ ,6ܥ ,7ܥ 8ሽܥ ∪ ሼ1ܥ1ܣ, ,2ܥ1ܣ ,2ܥ2ܣ ,3ܥ1ܣ ,4ܥ1ܣ ,5ܥ1ܣ ,6ܥ1ܣ ,7ܥ1ܣ ,8ሽൟܥ1ܣ

 ܵܤሺC2, C5ሻ ൌ ൛ሼ2ܥ, ,5ܥ 8ሽܥ ∪ ሼ2ܥ1ܣ, ,2ܥ2ܣ ,5ܥ1ܣ ,1C8ሽൟܣ

 ܵܤሺC3, C4, C6, C7ሻ ൌ ൛ሼ3ܥ, ,4ܥ ,6ܥ ,7ܥ 8ሽܥ ∪ ሼ3ܥ1ܣ, ,4ܥ1ܣ ,6ܥ1ܣ ,7ܥ1ܣ 1C8ሽൟ andܣ

 ܵܤሺC8ሻ ൌ ሼ8ܥሽ ∪ ሼ1ܣC8ሽ.

For validating our approach, next section will detail an industrial case study involving two

enterprise information systems that need to interoperate: Sage X3 ERP and Flexnet MES.

	
This	section	is	derived	from	the	following	scientific	publication:		
	

Yahia E., Lezoche M., Aubry A., Panetto H., (2011). Semantics enactment in Enterprise

Information Systems, IFAC. 18th IFAC World Congress, IFAC WC'2011, Aug 2011,

Milan, Italy. Elsevier - IFACPapersOnline, 18, 13064-13073

	 	

 45

5 Case Study

	

Interoperability between organisational and manufacturing activities is crucial in

manufacturing enterprises. Production services have to produce, quickly and efficiently, the

right volume of the right product at the right moment. For this reason, they need real time

information coming from others services, which need in return a precise and updated data on

production. We propose here to study and present the first part of such a B2M

interoperability issue by considering Sage X3 as an Enterprise Resource Planning (ERP)

application and Flexnet as a Manufacturing Execution System (MES). Such interoperation

process is based on a deep semantics analysis of their own models. In order to illustrate our

approach, we will detail the conceptualisation process applied to a subset of the ERP

information system model in section 5.1. Section 5.2 will detail the semantics structuration

process (computing semantic blocks) applied to a subset of the MES information system

model. For sake of readability, in the following, we will name each subset of models by the

name of the related enterprise applications.

5.1 Conceptualisation of Sage X3 ERP model

An Enterprise Resource Planning (ERP) system is an integrated computer-based system

which is used to manage internal and external resources including tangible assets, financial

resources, materials, and human resources (Bidgol, 1997). Its purpose is to facilitate the flow

of information between all business functions inside the boundaries of the organization, as

well as to manage the connections to outside stakeholders. Built on a centralised database,

ERP systems integrate all business operations into a uniform system environment. Sage X3

provides different enterprise management functions: finance, commercial, industrial and

services.

The objectives of this case study are (i) to analyse how the manufacturing order process

inside the Sage X3 application is modelled, (ii) to use the proposed modelling process for

making the implicit knowledge explicit in the model structure.

 46

The model depicted on Figure 8 is the output from the first two steps of our approach. This

means that we have already completed the “Reverse Engineering” and the “Expert

knowledge injection” steps. The “Manufacturing Order Heading” concept represents the

management function of production orders and planned activities. This function allows the

generation of a manufacturing order by variation of one or more classifications and a single

production line. For each manufacturing order, the achievement of the material benefits and

sequencing operations is possible. The function captures general information, such as

planning and production facility and the status of the order. It allows entering general

information about the production order. The availability of components is then checked

through the information given by the bill of material related to the launched products. Once

the above initial information is determined, the system updates the list of materials and

operations of the created or modified orders.

Step 1: Reverse Engineering

All this information is stored in the Sage X3 application database. The first step of our

method is to reverse-engineer the database, in order to extract the initial conceptual model by

using standard tools in MEGA Suite. In this particular case, the resulting model is composed

only of a set of classes and attributes without any associations. This is due to the fact that all

relationships between concepts are directly implemented into the application software

instead of in the database. We can note also that the implementation names of the entities

(coming from tables and columns) are quite raw and not expressive. The bottom of Figure 9

shows two classes extracted from the reverse-engineered conceptual model. The objective of

the next step is then to clean and enrich this model.

	

 47

Figure 8 - Enriched Sage X3 manufacturing order process model

Step 2: Expert Knowledge Injection

The model depicted in Figure 8 is the result of the reverse engineering step and is enriched

by a domain expert. In this case, the enrichment process involved a significant human effort

 48

because the architecture of the Sage X3 ERP is built with all the database relationships

implemented directly into the application layer and not in the database. The reverse

engineering step results, as shown in the lower part of the Figure 9, in a model containing

classes with coded names and no associations.

Figure 9 - Sage X3 architecture and expert knowledge injection

The expert work is about cleaning this conceptual model according to the best practices in

the enterprise, modifying the attributes multiplicity (if needed), renaming the concepts, the

attributes and the associations to fit the conceptual model to the “real” use of the Enterprise

Information System. The typical case that requires the domain expert attention is the

mandatory properties in forms’ fields.

Let us consider the same example as in section 3.2. In the studied enterprise, a good practice

is imposed for achieving information update traceability. When a user updates information

concerning one product, the application must store, in dedicated fields, the date of the update

and the name of the logged user. This feature is implemented directly into Sage X3 ERP but

it is not reflected in the data model. Moreover, for the sake of simplifying the

 49

implementation, the developers did not set these attributes as mandatory. In order to consider

this practice in the conceptual model, the expert can conceptualise this constraint as one

mandatory association between the existing concepts Product and Users and by constraining

the existing attribute UpdateDate in the association class related to the previous association

(as on Figure 9).

Step 3: Fact-Oriented Transformation

Applying the pattern transformation rules, presented in the previous section, classes and

attributes are transformed into NOLOTs and LOTs respectively to increase the granularity of

the knowledge embedded into the model. These rules have been coded by using a Mega

Suite internal version of VBA scripting language and then automatically executed inside

MEGA Suite.

Figure 10 shows the resulting FOM after applying our approach to the Sage X3 work order

process.

At the first glance, it seems that the resulting model is much more complex than the initial

one. This may looks true from a visual point of view, but it is false in terms of

expressiveness of the model’s semantics. Indeed, the finest-grained atoms of semantics are

now made explicit, which helps any automatic computing. An important result is that using

the model with such high level of granularity will facilitate automatic execution for semantic

gap evaluation.

	

 50

Figure 10 - Sage X3 manufacturing order process model - fact-oriented version

5.2 Semantics structuring of Flexnet MES model

Manufacturing Execution Systems (MES) are information technology systems that manage

manufacturing operations in factories. Actually, a specific process implemented in Flexnet

application has been chosen to support our validation process; it consists of the purchase

order process. Figure 11 represents the enriched fact-oriented model of this process. Note

that, in this model, classes with capital letters represent the non-lexical concepts. In order to

 51

compute the semantic blocks for structuring the model semantics of this process, we apply

the procedure presented in section 4.5.

Figure 11 – Enriched fact-oriented model of the purchase order process in Flexnet

application

1) Building the associated semantic-dependency graph

The semantic-dependency graph related to the conceptual model of Flexnet is given on

Figure 12.

PartnerOrderNo

Pa rtnerOrderType

PART NER

ORDER_PARTNER

1

1

1

1

*1
Pa rtne rName

11

PART NER_ADDRESS

0..1

*

AdressDeta il

1 1

*

1

OrderLineNo

Crea tedOnOD

ORDER_DET AIL

1

1

1

1

1

*

ORDER_STATUS

1

*

OrderStatus

11

0..1

*

ORDER_HEADER

*

1

*1

Order Date

1

1

OrderNo

11

WIP_ORDER_T YPE

WipOrde rT ype

11

*

1

WIP_ORDER

1..*
1

WipOrderNo

1

1

CreatedOnWO

1

1

OrderQuantity

WIP_ORDER_STATUS

*

1

WipOrderSta tus

1

1

UOMCode

UOM

1

1

0..1

*

PRODUCT

*

1

*

1

1

*

FACILITY

1

*

1*

Lo tT rackingCode

1

1

ProductName

1

1

ProductNo

1

1

Revis ionContro lFlag

1

1

Se ria lT rackingCode

1
1

WAREHOUSE

*

0..1

WarehouseName

1

10..1

*

*

*

*

1

FacilityName

1

1

Div ision

1

1

PROCESS

*

0..1

1

*

0..1

*

ProcessName

1

1

ProcessDescrip tion

1

1

Fuid

1

1

0..1

*

1

1

*

1

WIP_ORDER_TYPE Aggregates: WIP_ORDER

WIP_ORDER_TYPE Aggregates: ORDER_HEADER ORDER_HEADER Aggregates: ORDER_DETAIL

FACILITY Aggregates: WAREHOUSE

PARTNER Aggregates: PARTNER_ADDRESS

 52

Figure 12 - Semantic-dependency graph related to the conceptual model of Flexnet

MES

2) Building the graph of the strongly connected components based on the

semantic-dependency graph

The graph of the strongly connected components related to the semantic-dependency graph

of Flexnet MES is given on Figure 13. We can note that only one merged node has been

built (namely SCC1) representing the strongly connected components of the concepts:

WIP_ORDER, WIP_ORDER_TYPE, ORDER_DETAIL and ORDER_HEADER. All the other

strongly connected components consist of only one concept.

ORDER_STATUS

ORDER_HEADER

ORDER_DETAIL

WIP_ORDER

WIP_ORDER_STATUS

WIP_ORDER_TYPE

PROCESS

FACILITY

WAREHOUSE

UOM

PARTNER_ADRESS

PARTNER

ORDER_PARTNER

PRODUCT

 53

Figure 13 - Graph of the strongly connected components related to the semantic-

dependency graph of Flexnet MES

3) Computing the semantic blocks ࢉ࡮ࡿ associated with each strongly connected

component

Table 2 lists the different semantic blocks ܵܤ௖ related to Flexnet application after applying

algorithm 1 (BuildSemBlocks) to the graph of the strongly connected components on Figure

13.

 ௖ Conceptsܤܵ

 ௖ሺWAREHOUSEሻ WAREHOUSE, FACILITYܤܵ

 ௖ሺORDER_PARTNERሻ ORDER_PARTNER, PARTNERܤܵ

 ௖ሺPARTNER_ADDRESSሻ PARTNER_ADDRESS, PARTNERܤܵ

 ௖ሺPARTNERሻ PARTNERܤܵ

ORDER_STATUS SCC1

WIP_ORDER_STATUS PROCESS

FACILITY

WAREHOUSE

UOM

PARTNER_ADRESS

PARTNER

ORDER_PARTNER

PRODUCT

 54

1ሻܥܥ஼ሺܵܤܵ

ൌ ௖ܤܵ ൮

WIP_ORDER,
ORDER_DETAIL,
ORDER_HEADER,
WIP_ORDER_TYPE

൲

WIP_ORDER,

WIP_ORDER_TYPE,ORDER_DETAIL,

ORDER_HEADER, WIP_ORDER_STATUS,

PROCESS, FACILITY, PRODUCT, UOM,

ORDER_STATUS, PARTNER

 ௖ሺPROCESSሻ PROCESSܤܵ

 ௖ሺPRODUCTሻ PRODUCT, UOM, FACILITYܤܵ

 ௖ሺUOMሻ UOMܤܵ

 ௖ሺWIP_ORDER_STATUSሻ WIP_ORDER_STATUSܤܵ

 ௖ሺFACILITYሻ FACILITYܤܵ

 ௖ሺORDER_STATUSሻ ORDER_STATUSܤܵ

Table 2 - Semantic Blocks ሺࢉ࡮ࡿሻ of Flexnet MES

4) Computing, for each ࢉ࡮ࡿ, the related semantic block ࢇ࡮ࡿ

Table 3 lists the different semantic blocks ܵܤ௔ related to Flexnet application.

 ௔ Conceptsܤܵ

 ௔ሺWAREHOUSEሻ WarehouseName, FacilityName, Divisionܤܵ

 ௔ሺORDER_PARTNERሻܤܵ
PartnerOrderNo, PartnerOrderType,

PartnerName

 ௔ሺPARTNER_ADDRESSሻ AdressDetail, PartnerNameܤܵ

 ௔ሺPARTNERሻ PartnerNameܤܵ

 55

௔ܤܵ ൮

WIP_ORDER,
ORDER_DETAIL,
ORDER_HEADER,
WIP_ORDER_TYPE

൲

WipOrderNo, CreatedOnWO, OrderQuantity,

WipOrderType , OrderLineNo, CreatedOnOD,

OrderDate, OrderNo, WipOrderStatus,

ProcessName, ProcessDescription, Fuid,

FacilityName, Division, LotTrackingCode,

ProductName, ProductNo, RevisionControlFlag,

SerialTrackingCode, UOMCode, OrderStatus,

PartnerName

 ௔ሺPROCESSሻ ProcessName, ProcessDescription, Fuidܤܵ

 ௔ሺPRODUCTሻܤܵ

LotTrackingCode, ProductName, ProductNo,

RevisionControlFlag, SerialTrackingCode ,

UOMCode, FacilityName, Division

 ௔ሺUOMሻ UOMCodeܤܵ

 ௔ሺWIP_ORDER_STATUSሻ WipOrderStatusܤܵ

 ௔ሺFACILITYሻ FacilityName, Divisionܤܵ

 ௔ሺORDER_STATUSሻ OrderStatusܤܵ

Table 3 - Semantic Blocks ሺࢇ࡮ࡿሻ of Flexnet MES

5) Computing ࡮ࡿ ൌ ࢉ࡮ࡿ ∪ ࢇ࡮ࡿ

	
Table	4 lists the different semantic blocks ܵܤ related to Flexnet application.

	ܤܵ Concepts

 ሺWAREHOUSEሻܤܵ
WAREHOUSE, WarehouseName,

FACILITY, FacilityName, Division

 56

 ሺORDER_PARTNERሻܤܵ
ORDER_PARTNER, PartnerOrderNo,

PartnerOrderType, PARTNER, PartnerName

 ሺPARTNER_ADDRESSሻܤܵ
PARTNER_ADDRESS, AdressDetail,

PARTNER, PartnerName

 ሺPARTNERሻ PARTNER, PartnerNameܤܵ

൮ܤܵ

WIP_ORDER,
ORDER_DETAIL,
ORDER_HEADER,
WIP_ORDER_TYPE

൲

WIP_ORDER, WipOrderNo,

CreatedOnWO, OrderQuantity,

WIP_ORDER_TYPE, WipOrderType,

ORDER_DETAIL, OrderLineNo,

CreatedOnOD, ORDER_HEADER,

OrderDate, OrderNo,

WIP_ORDER_STATUS, WipOrderStatus,

PROCESS, ProcessId, ProcessDescription,

Fuid, FACILITY, FacilityName, Division,

PRODUCT, LotTrackingCode,

ProductName, ProductNo,

RevisionControlFlag, SerialTrackingCode,

UOM, UOMCode, ORDER_STATUS,

OrderStatus, PARTNER, PartnerName

 ሺPROCESSሻܤܵ
PROCESS, ProcessName,

ProcessDescription, Fuid

 ሺPRODUCTሻܤܵ

PRODUCT, LotTrackingCode,

ProductName, ProductNo,

RevisionControlFlag, SerialTrackingCode,

UOM, UOMCode, FACILITY,

FacilityName, Division

 ሺUOMሻ UOM, UOMCodeܤܵ

 57

 ሺWIP_ORDER_STATUSሻ WIP_ORDER_STATUS, WipOrderStatusܤܵ

 ሺFACILITYሻ FACILITY, FacilityName, Divisionܤܵ

 ሺORDER_STATUSሻ ORDER_STATUS, OrderStatusܤܵ

Table 4 - Semantic Blocks ሺ࡮ࡿሻ	of Flexnet MES

The procedure presented in section 4.5 has been implemented in the MEGA Suite

environment. MEGA Suite supports UML notations and allows building our own meta-

model based on its ad-hoc MOF2 meta-model. The meta-model presented on Figure 3 has

been implemented in the MEGA Suite. In this implementation, the semantic block is

conceptualised as a UML package and the lexical and non-lexical concepts are

conceptualised as UML classes. The procedure presented in section 4.5 has been

implemented taking advantage of MEGA programming facilities.

Figure 14 provides a model representing all the semantic blocks related to the Flexnet

purchase order process and their inclusion relationships. Figure 15 provides the conceptual

model associated to the semantic block ܵܤሺPRODUCTሻ, and including all the mandatory

concepts required to obtain the full semantics for the concept PRODUCT.

																																																								
2 OMG’s MetaObject Facility: http://www.omg.org/mof/

 58

Figure 14 - The computed semantic blocks related to Flexnet MES

Figure 15 - The conceptual model associated to the semantic block ࡮ࡿሺ܂۱܃۲۽܀۾ሻ

Flexnet SB(WAREHOUSE)

SB(ORDER_PARTNER)

SB(PARTNER_ADDRESS)

SB(PARTNER)

SB(WIP_ORDER,ORDER_DETAIL,ORDER_HEADER,WIP_ORDER_TYPE)

SB(PROCESS) SB(PRODUCT)SB(UOM)
SB(WIP_ORDER_STATUS)

SB(FACILITY)

SB(ORDER_STATUS)

Aggregates the
semantics of

Contains
(in the sense of UML)

SB(PRODUCT)

PRODUCT

FACILITY

*

1

Seria lT rackingCode

1

1

ProductName

1

1

ProductNo

1

1

Lo tT rackingCode

1

1

RevisionContro lFlag

 1

1

UOM

1

*

UOMCode

1
1

FacilityName

1

1

Div ision

1

1

 59

	

This	section	is	derived	from	the	following	scientific	publications:		

Yahia E., Lezoche M., Aubry A., Panetto H., (2011). Semantics enactment in Enterprise

Information Systems, IFAC. 18th IFAC World Congress, IFAC WC'2011, Aug 2011,

Milan, Italy. Elsevier - IFACPapersOnline, 18, 13064-13073

Lezoche M., Panetto H., Aubry A., (2011). Formal Fact-Oriented model transformations for

cooperative information systems semantic conceptualisation, Selected and extended

version of ICEIS 2011. Lecture Notes in Business Information Processing, Proof read

	 	

 60

	

	 	

 61

6 Semantic Annotation Model Definition for Systems

Interoperability

Nowadays, the need of systems collaboration across enterprises and through different

domains has become more and more ubiquitous. But because the lack of standardized

models or schemas, as well as semantic differences and inconsistencies problems, a series of

research for data/model exchange, transformation, discovery and reuse are carried out in

recent years. One of the main challenges in these researches is to overcome the gap among

different data/model structures. Semantic annotation is not only just used for enriching the

data/model’s information, but also it can be one of the useful solutions for helping semi-

automatic or even automatic systems interoperability.

This work is performed by Yongxin LIAO, a Ph.D. student at CRAN laboratory (financed by

Fédération Charles Hermite and Region Lorraine) under the supervision of Pr. Hervé Panetto

(CRAN) and Pr. Nacer Boudjlida (LORIA). I contributed to this work by helping Yongxin

LIAO, during his first year, on the formalisation part of his work.

Our efforts focused on bridging the different knowledge representations through the use of

semantic annotation. It can be widely used in many fields:

 It can be used to discover matching between models elements, which helps

information systems integration (Agt, et al., 2010).

 It can semantically enhance XML-Schemas’ information, which supports XML

documents transformation (Köpke and Eder, 2010).

 It can describe web services in a semantic network, which is used for further

discovery and composition (Talantikite, et al., 2009).

 It can support system modellers in reusing process models, detecting cross-process

relations, facilitating change management and knowledge transfer (Bron, et al., 2007).

 It can link specific resources according to its domain ontologies.

 62

The main contribution of our research work is identifying three main components of

semantic annotation, gives a formal definition of semantic annotation and presenting a

metamodel of the proposed semantic annotation structure model.

6.1 What is semantic annotation?

In Oxford Dictionary Online3 , the word “annotation” is defined as “a note by way of

explanation or comment added to a text or diagram”. It is used to enrich target object’s

information, which can be in the forms of text descriptions, underlines, highlights, images,

links, etc. Annotation has special meanings and usages in different fields. In software

programming, an annotation is represented as text comments embedded in the code to

expand the program, which is being ignored when the program is running. In mechanical

drawing, an annotation is a snippet of text or symbols with specific meanings. In Library

Management, an annotation is written in a set form (numbers, letters, etc.), which helps the

classification of books.

Further, different annotation types are identified by the following papers: Bechhofer, et al.

(2002) and Boudjlida, et al. (2006) distinguished annotation as (i) Textual annotation: adding

notes and comments to objects; (ii) Link annotation: linking objects to a readable content; (iii)

Semantic annotation: that consists of semantic information which is machine-readable.

Similarly, three types of annotation are described in the research of Oren, et al. (2006): (i)

Informal annotation: notes that are not machine-readable; (ii) Formal annotation: notes that

are formally defined and machine-readable (but it does not use ontology terms); (iii)

Ontological annotation: notes that use only formally defined ontological terms that are

commonly accepted and understood.

According to the above classification, semantic annotation can be considered as a kind of

formal metadata, which is machine and human readable. This will be further discussed in the

following sections.

																																																								
3http://oxforddictionaries.com

 63

6.1.1 Semantic annotation

The term “Semantic Annotation” is described as “the action and results of describing (part

of) an electronic knowledge by means of metadata whose meaning is formally specified in an

ontology” (electronic knowledge can be text contents, images, video, services, etc.) by

Fernández (2010). Talantikite, et al. (2009) introduced it as “An annotation assigns to an

entity, which is in the text, a link to its semantic description. A semantic annotation is

referent to an ontology”. In the research of Lin (2008), semantic annotation is concerned as

“an approach to link ontologies to the original information sources”. All above definitions

from different papers show one thing in common: a semantic annotation is the process of

linking electronic knowledge to a specific ontology. Ontology here is only one of the

possible means to provide a formal semantic.

As it can be seen on Figure 16, the left side represents an Electronic Knowledge (EK) and on

the right side, there are the three main components of semantic annotation: (1) Ontology,

which defines the terms used to describe and represent a body of knowledge (Boyce, et al.,

2007). It can be reused from existing ontologies or designed according to different

requirements. (2) Semantic Annotation Structure Model (SASM), which organizes the

structure/schema of an annotation and describes the mappings between electronic

knowledges and an ontology. (3) Application, which is designed to achieve the user’s

purposes (composition, sharing and reuse, integration, etc.) by using SASM. This figure also

shows the three main steps on how to use semantic annotation, which is introduced in section

4: ontology (section 4.1), semantic annotation structure model (section 4.2) and application

(section 4.3).

Figure 16 – Semantic annotation components

 64

The following definition formally defines a semantic annotation: a Semantic Annotation

 .ࣛ is a tuple ሺࣧ,ࣛሻ consisting of the SASM ࣧand an applicationܣܵ

ܣܵ ∶ൌ ൛ࣧ൫ࣟ,࣪ሺࣩሻ൯,ࣛൟ

Where:

ࣩ ൌ 	 ሼ݋ଵ, ,ଶ݋ … , ௜݋ ௡ሽ, is the set of ontology݋ that bring some meaning to any annotated

element.

An Ontology ݋௝߳	ࣩ	is a 4-tuple (ܥ௢௝, is_a, ܴ௢௝, ߪ௢௝), where ܥ௢௝	is a set of concepts, is_a is a

partial order relation on ܥ௢௝, ܴ௢௝is a set of relation names, andߪ௢௝:	ܴ௢௝ → ሺܥାሻis a function

which defines each relation name with its arity (Stumme and Maedche, 2001a).

Formally, ࣧ ൌ ൛݉௫: 〈݁௜, 	ࣟ	߳	݁௜	௝〉|݌ ൈ	݌௝	߳	࣪ሺࣩሻൟ	and represents the set of relationships

between an element ݁௜ of the set of electronic knowledge ࣟ and an element ݌௝ of the

powerset of the ontology set ࣩ.

A mapping ݉௫൫݁௜, :may represent three different kinds of semantic relations	௝൯݌

(1) ݉∼	൫݁௜, ,൫݁௜	௝൯ is a binary equivalence relation. If ݉∼݌ ௝൯ then an electronic knowledge݌

݁௜	is semantically equivalent to ݌௝, an element of the powerset ࣪ሺࣩሻ, in the context of

an application ࣛ.

(2) ݉⊃	൫݁௜, ௝൯ is a binary relation stating that the semantic of an electronic knowledge ݁௜݌

subsumes the semantic of an element ݌௝ of the powerset ࣪ሺࣩሻ, in the context of an

application ࣛ.

(3) ݉⊂	൫݁௜, ௝൯: is a binary relation stating that the semantic of an electronic knowledge ݁௜ is݌

subsumed by the semantic of an element ݌௝	of the powerset ࣪ሺࣩሻ, in the context of an

application ࣛ.

ࣧ can be further extended, including also some additional parameters or constraints ck,

generally expressed using, in the worst case, natural language, or, better, a formal logical

expression. ࣧ is then defined as ࣧ ≔ ሼ݉௫, ܿ௞ሽ.

 65

The main issue, related to mappings such as in (2) and in (3), is being able to measure the

semantic gap (2) or the over semantic (3), brought by the semantic annotation. Such

measures have been studied by researchers in the domain of information retrieval (Ellis,

1996) or in the domain of ontology matching (Maedche and Staab, 2002), mapping (Doan et

al, 2002), merging (Stumme and Maedche, 2001b), alignment (Noy and Musen, 2000).

In addition, Peng, et al. (2004) also gave a very simple definition of semantic annotation in

their paper, which is ܵܣ ∶ൌ ሺܴ, ܱሻ , where ܴ is set of resources and ܱ is an ontology.

Furthermore, Luong and Dieng-Kuntz (2007) defined it as ܵܣ ∶ൌ ሼܴ஺, ,஺ܥ ஺ܲ, ,ܮ ஺ܶሽ. In this

definition, ܴ஺ is a set of resources; ܥ஺ is a set of concept names; ஺ܲ is a set of property names;

L is a set of literal values; and ஺ܶ is a set of triple ሺݏ, ,݌ ሻݒ , where ݏ ∈ ܴ஺, ݌ ∈ ஺ܲ, ݒ ∈

	ሺܴ஺⋃ܮሻ. To the best of our knowledge, ஺ܶ in this definition is duplicated.

6.2 Metamodel of Semantic Annotation Structure Model

After the identification of the three main components of semantic annotation and given its

formal definition, in this section we can briefly present the metamodel of the Semantic

Annotation Structure Model (Figure 17).

Figure 17 – Semantic annotation structure model metamodel

 66

The metamodel presents five entities that represent the core of the structure. The

Identification entity highlights the uniqueness of a semantic annotation, the Properties entity

represents the constraints existing for a given semantic annotation, the Element of

Knowledge entity shows the reference to a resource that has to be annotated and the

powerset of Ontology entity refers to the relation between the semantic annotation and one

or more Ontologies. The relation between the Powerset of Ontology and EK represents our

studied relationship ࣧ that represents the set of relationships between the set of electronic

knowledge and the powerset of the ontology set.

6.3 Conclusions

In this section we identify three main components of semantic annotations that are Ontology,

Semantic Annotation Structure Model and Application. In addition, a formal definition of

semantic annotation is proposed. It contributes to better understand what a semantic

annotation is and then contributes to a common reference model. We presented a Metamodel

explaining the formal links between the identified semantic annotation components.

But how to use semantic annotation? There are still many problems can be further discussed

during the annotation process. For example, how to optimize ontology and an annotated

model? How to solve the inconsistency or conflicts during the mapping? How to add

consistent semantic on models in different levels of a system? How to achieve semi-

automatic or automatic annotation?

We are currently investigating how semantic annotations can help collaborative actors

(organizations, design teams, system developers, etc.) in co-designing, sharing, exchanging,

aligning and transforming models. In particular, this research work will be based on general

systems with several kinds of interactions. We can have interoperation between systems that

with different versions (during many years, systems may have been modified or updated).

We can also have systems with same functions but used by different enterprises. Semantic

annotations can bridge this knowledge gap and identify differences in models, in schemas,

etc. In some case, interoperation is a process between a set of related systems throughout a

product lifecycle (Marketing, Design, Manufacture, Service, etc.), and semantic annotations

 67

can influence the existing foundations and techniques which supports models reuse, semantic

alignment and transformation, etc. Above all, our research work will focus on designing, and

reusing appropriate ontologies in relationship with a formal semantic annotation structure

model.

This section is derived from the following scientific publications:
	

Liao Y., Lezoche M., Panetto H., Boudjlida N., (2011). Why, Where and How to use

Semantic Annotation for Systems Interoperability, 1st UNITE Doctoral

Symposium, Jun 2011, Bucarest, Romania. pp. 71-78

Liao Y., Lezoche M., Panetto H., Boudjlida N., (2011). Semantic Annotation Model

Definition for Systems Interoperability, OTM. OTM 2011 Workshops 2011 - 6th

International Workshop on Enterprise Integration, Interoperability and Networking

(EI2N), Oct 2011, Hersonissos, Crete, Greece. Springer-Verlag, LNCS 7046, pp. 61-

70, Lecture Notes in Computer Science

	 	

 68

	 	

 69

7 Conclusions

In this research manuscript, we proposed a conceptualisation approach for enacting implicit

semantics embedded into Enterprise Information System models by a deep analysis of

existing data models enriched by users’ and experts’ knowledge. This approach is composed

of 3 steps, staging from the traditional database reverse engineering process, through a

knowledge elicitation and model enrichment by domain experts, to the application of formal

fact-oriented modelling rules for externalising tacit semantics. Moreover, in order to

structure the whole semantics into independent aggregates that may emphasize subsystems,

we defined the concept of semantic block (SB) and we developed an automatized procedure

to compute these SBs. The resulting semantics architecture allows the identification of

semantically self-contained subsystems, facilitating further interoperation analysis.

The conceptualisation and structuring processes have been validated on a case study

involving two industrial Enterprise Applications demonstrating the applicability of our

approach.

Further works concern using the resulting semantic conceptual model and architecture for

facilitating the assessment of the (non)-interoperation barriers between Enterprise

Information Systems or some of their subsystems (identified, for instance, by the semantic

blocks) as suggested in (Yahia, 2011). The resulting analysis, based on an interoperability

measures map, can help information technology consulting companies for parameterising

and integrating enterprise applications (ERP, MES…) taking into account interoperability

constraints.

7.1 Scientific Contribution

This manuscript is the scientific product of our study on the applied semantic interoperability

domain. During my Post-Doc period, I produced, with the laboratory team, the following

scientific communications.

	

 70

Peer-reviewed international journals (1 extended selected paper, 1 Under Review)

Lezoche M., Panetto H., Aubry A., (2011). Formal Fact-Oriented model transformations for

cooperative information systems semantic conceptualisation, Lecture Notes in

Business Information Processing (LNBIP), Selected extended version from

ICEIS’2011, Proof read

Lezoche M., Panetto H., Aubry A., (2011). Conceptualising and structuring semantics in

Cooperative Enterprise Information Systems Models, Enterprise Information System

(EIS), Taylor & Francis edition, 2011. Under Review.

Peer-reviewed national journal (1 Under Review)

Yahia E., Lezoche M., Aubry A., Panetto H., (2011). Extraction de la sémantique dans les

modèles de systèmes d'information d'entreprises collaboratives, Ingénierie des

Systèmes d’Information, Hermès. Under Review

Peer-reviewed conference/proceedings (5)

Lezoche M., Panetto H., Aubry A., (2011). Conceptualisation approach for cooperative

information systems interoperability, ACM. 13th International Conference on

Enterprise Information Systems, ICEIS 2011, Jun 2011, Beijing, China. pp. 101-110

Yahia E., Lezoche M., Aubry A., Panetto H., (2011). Semantics enactment in Enterprise

Information Systems, IFAC. 18th IFAC World Congress, IFAC WC'2011, Aug 2011,

Milan, Italy. Elsevier - IFACPapersOnline, 18, 13064-13073, IFACPapersOnline

Liao Y., Lezoche M., Panetto H., Boudjlida N., (2011). Why, Where and How to use

Semantic Annotation for Systems Interoperability, 1st UNITE Doctoral

Symposium, Jun 2011, Bucarest, Romania. pp. 71-78

 71

Zdravković M., Trajanović M., Panetto H., Aubry A., Lezoche M., (2011). Ontology-based

supply chain process configuration, University of Nis. 34th International Conference

on Production Engineering, ICPE 2011, Sep 2011, Nis, Serbia. pp. 399-402

Liao Y., Lezoche M., Panetto H., Boudjlida N., (2011). Semantic Annotation Model

Definition for Systems Interoperability, OTM. OTM 2011 Workshops 2011 - 6th

International Workshop on Enterprise Integration, Interoperability and Networking

(EI2N), Oct 2011, Hersonissos, Crete, Greece. Springer-Verlag, LNCS 7046, pp. 61-

70, Lecture Notes in Computer Science

Présentation without peer reviewing (1)

Yahia E., Lezoche M., Aubry A., Panetto H., (2011). Extraction de la sémantique dans les

modèles de systèmes d'information d'entreprises collaboratifs, Journée Nationale du

GT Easy-DIM, Apr 2011, Lyon, France.

 72

 73

8 References

Agt, H., Bauhoff, G., Kutsche, R., Milanovic, N., Widiker, J. 2010. Semantic Annotation and

Conflict Analysis for Information System Integration. In: Proceedings of the 3rd

Workshop on Model-Driven Tool & Process Integration. 7-18

Aspray, W. F. 1985. The Scientific Conceptualization of Information: A Survey. Annals of

the History of Computing, 7: 117-40. IEEE

Astrova, I., 2004. Reverse Engineering of Relational Databases to Ontologies. In Lecture

Notes in Computer Science, LNCS 3053, pp. 327-341, Springer.

Badia, A., 2002. Conceptual Modeling for Semistructured Data. In Proceedings of the 3rd

International Conference on Web Information Systems Engineering Workshops

(WISE 2002 Workshops), p. 170-177. Singapore.

Barker, R. 1990, CASE* Method: Entity Relationship Modelling, Addison-Wesley,

Wokingham, England.

Bechhofer, S., Carr, L., Goble, C., Kampa, S. and Miles-Board, T. 2002. The Semantics of

Semantic Annotation. In: Proceedings of the 1st International Conference on

Ontologies, Databases, and Applications of Semantics for Large Scale Information

Systems. 1151-1167.

Berardi, D., Calvanese, D., De Giacomo, G. 2005. Reasoning on UML class diagrams,

Artificial Intelligence 168 (1–2) 70–118.

Bézivin, J., Kurtev, I. 2005. Model-based Technology Integration with the Technical Space

Concept. Proceedings of the Metainformatics Symposium, Esbjerg, Denmark,

November 8-11, 2005. Springer-Verlag

Bidgol, H., 2004. The Internet Encyclopedia, Volume 1, John Wiley & Sons, Inc. p. 707.

 74

Born, M., Dorr, F., Weber, I. 2007. User-Friendly Semantic Annotation in Business Process

Modeling. In: Proceedings of the 2007 international conference on Web information

systems engineering.

Boudjlida, N., Dong, C., Baïna, S., Panetto, H., Krogstie, J., Hahn, A., Hausmann, K.,

Tomás, J.V., Poler, R., Abián, M.Á., Núñez, M.J., Zouggar, N., Diamantini, C.,

Tinella, S. 2006. A practical experiment on semantic enrichment of enterprise models

in a homogeneous environment. INTEROP NoE Deliverable DTG4.1. INTEROP

NoE IST 508011. http://www.interop-vlab.eu

Boudjlida, N., Panetto, H. 2007. Enterprise semantic modelling for interoperability. In:

Proceedings of the 12th IEEE conference on emerging technologies and factory

automation, Patras, Greece. 847–854.

Boyce, S., Pahl, C. 2007. Developing Domain Ontologies for Course Content. Educational

Technology & Society 275-288.

Bunge, M. 1977. Treatise on Basic Philosophy (Vol 3): Ontology I: The Furniture of the

World. D. Reidel Publishing Company, first edition

Carney, D., Fisher, D., Morris, E., Place P., 2005. Some current Approaches to

Interoperability. In technical note CMU/SEI-2005-TN-033.

Chen D., Dassisti M., Elvesaeter B., Panetto H., Daclin N., Jaekel F.-W., Knothe T., Solberg

A., Anaya V., Sanchis Gisbert R., Kalampoukas K., Pantelopoulos S., Bertoni M.,

Bordegoni M., Cugini U., Pulli M., Perjons E., Assogna P. 2006. In DI.2: Enterprise

Interoperability Framework and knowledge corpus, Interoperability Research for

Networked Enterprises Applications and Software Network of Excellence, n° IST

508-011.

Chen, R. S., Nadkarni, P., Marenco, L., Levin, F., Erdos, J., Miller, P.,. 2000. Exploring

Performance Issues for a Clinical Database Organized Using an Entity-Attribute-

Value Representation. J Am Med Inform Assoc, 475-487

 75

Chiang Roger, H. L., Barron, T. M., Storey Veda, C., 1994. Reverse engineering of

relational databases: Extraction of an EER model from a relational database. In Data

& Knowledge Engineering. Volume 12, Number 2, pp. 107-142.

Clarke E., Wing J., 1996. Formal methods: state of the art and future directions. In ACM

Computing Surveys (CSUR) - Special ACM 50th-anniversary issue: strategic

directions in computing research. Volume 28, Number 4, pp. 626-643.

Czejdo, B., Elmasri, R., Rusinkiewicz, M. & Embley, D.W. 1990, ‘A graphical data

manipulation language for an extended entity-relationship model’, IEEE Computer,

March 1990, pp. 26-37.

De Bo, J., Spyns, P., and Meersman, R., 2003. Creating a “DOGMAtic” multilingual

ontology infrastructure to support a semantic portal. In proceedings of the OTM

confederated international workshops HCI-SWWA, IPW, JTRES, WORM, WMS,

and MRSM. Catania , Italie: Springer-Verlag New York Inc, pp. 253-266.

Diamantini, C., Potena, D. 2008. Semantic enrichment of strategic datacubes. In:

Proceedings of the ACM 11th International Workshop on Data Warehousing and

OLAP. 81-88.

Ding, G., Xu, N. 2010. Automatic semantic annotation of images based on web data. In:

Proceedings of the 6th international conference of Information Assurance and

Security. 317-322

Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y. 2002. Learning to map between

ontologies on the semantic web. In Proceedings of the World Wide Web conference.

662-673.

Ellis, D. 1996. The Dilemma of Measurement in Information Retrieval Research. Journal of

the American Society for Information. Vol. 47, N° 1. 23-36.

 76

Engelbart, D.C., 1962. Augmenting human intellect: a conceptual framework. In Menlo

Park, CA: Stanford Research Institute.

Euzenat, J., 2001. Towards a principled approach to semantic interoperability. In CEUR

Proceedings of the IJCAI-01 Workshop on Ontologies and Information Sharing,

Seattle, USA, August 4-5, , ISSN 1613-0073, Vol. 47., 19-25.

Fernández, N. 2010. Semantic Annotation Introduction, [online] (Updated 14 Oct 2010)

Available at <http://www.it.uc3m.es/labgimi/teoria/Module2/SA-Intro.pdf>

Fikes, R., Farquhar, A., Rice, J. 1997. Tools for Assembling Modular Ontologies in

Ontolingua. In: Proceedings of the 14th national conference on artificial intelligence

and 9th conference on Innovative applications of artificial intelligence. 436-441.

Fonkam, M.M., Gray, W.A., 1992. An Approach to Eliciting the Semantics of Relational

Databases. In CAiSE 1992, Manchester, UK, May 12-15, 1992. Lecture Notes in

Computer Science 593 Springer, ISBN 3-540-55481-5. 463-480 Manchester, UK.

Frankel D. S. 2003. Model Driven Architecture: Applying MDA to Enterprise Computing.

John Wiley & Sons.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995. Design patterns: elements of

reusable object-oriented software. Vol. 206. Addison-wesley Reading, MA.

Genesereth, M.R., Nilsson, N.J., 1987. Logical Foundation of Artificial Intelligence, Morgan

Kauffman, Los Altos, CA

Guarino, N., 1998. Formal Ontology in Information Systems (Ed.). IOS Press.

Guarino, N. 1997. Understanding, building and using ontologies, International Journal of

Human-Computer Studies 46 (2–3) 293–310.

 77

Guo, J., 2009. Collaborative conceptualisation: towards a conceptual foundation of

interoperable electronic product catalogue system design. Enterprise Information

Systems, 3 (1) 59-94.

Halpin, T.A. 1991, ‘A fact-oriented approach to schema transformation’, Proceedings of

MFDBS-91, Springer Lecture Notes in Computer Science, LNCS 495. Springer

Halpin, T., 1998. Handbook on Architectures of Information Systems Chapter 4, eds P.

Bernus, K. Mertins & G. Schmidt, Springer-Verlag, Berlin.

Henrard, L., Hainaut, J.-L., 2001. Data Dependency Elicitation in Database Reverse

Engineering Software Maintenance and Reengineering. In Fifth European

Conference on Software Maintenance and Reengineering, pp. 11

Hohenstein, U. & Engels, G. 1991, ‘Formal semantics of an entity-relationship-based query

language’, Entity-Relationship Approach: the core of conceptual modelling (Proc.

9th ER conf.), ed. H. Kangassalo, Elsevier Science Pub., Amsterdam

Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V. 2003. From SHIQ and RDF to OWL: the

making of a Web Ontology Language. Journal of Web Semantics. Vol 1, N° 1. 7-26.

IEEE: Standard Computer Dictionary, 1990. A Compilation of IEEE Standard Computer

Glossaries. In NY. 610-1990. ISBN: 1559370793.

International Organization for Standardization, 1999. ISO 14528: Industrial Automation

Systems – Concepts and rules for Enterprise Models, TC 184/SC5/WG1, Geneva,

Switzerland.

International Organization for Standardization, 2002. ISO 16100: Manufacturing Software

Capability Profiling for interoperability. In Part 1: Framework, TC 184/SC5/WG4,

Geneva, Switzerland.

 78

Irfanullah, I., Aslam, N., Loo, J., Loomes, M., Roohullah, R. 2010. In: Proceedings of the

IEEE international symposium on Signal Processing and Information Technology.

491-495

Izza, S., 2009. Integration of industrial information systems: from syntactic to semantic

integration approaches. Enterprise Information Systems. 3(1), pp. 1-57, Taylor &

Francis.

LaOngsri, S. 2009, Semantic Extensions and a Novel Approach to Conceptual Modelling,

Ph.D. Thesis, School of Computer Science, Engineering and Mathematics, The

Flinders University of South Australia

Lezoche M., Panetto H., Aubry A. 2011. Conceptualisation approach for cooperative

information systems interoperability, ACM. 13th International Conference on

Enterprise Information Systems, ICEIS 2011, Jun 2011, Beijing, China. pp. 101-110

Lin, Y. 2008. Semantic Annotation for Process Models: Facilitating Process Knowledge

Management via Semantic Interoperability. PhD thesis, Norwegian University of

Science and Technology, Trondheim, Norway.

Liao, Y., Romain, D., J. Berre, A. 2010. Model-driven Rule-based Mediation in XML Data

Exchange. In: Proceedings of the 1st International Workshop on Model-Driven

Interoperability. 89-97

Luong, P., Dieng-Kuntz, R. 2007. A Rule-based Approach for Semantic Annotation

Evolution. In Computational Intelligence. Vol. 23, Issue 3, 320–338

Kifer, M., Lausen, G., Wu, J. 1995. Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of the ACM. Vol.42, N°4. 741-843.

Kopecký, J., Vitvar, T., Bournez, C., Farrell, J. 2007. SAWSDL: Semantic Annotations for

WSDL and XML Schema. IEEE Internet Computing. Vol.11, N° 6. 60-67

 79

Köpke, J., Eder, J. 2010. Semantic Annotation of XML-Schema for Document

Transformations. In: Proceedings of the OTM Workshops. 5th International

Workshop on Enterprise Integration, Interoperability and Networking. Lecture Notes

in Computer Science, LNCS 6428. 219-228.

Maedche, A., Staab, S. 2002. Measuring Similarity between Ontologies. In: Proceeding of

the 13th International Conference on Knowledge Engineering and Knowledge

Management. Ontologies and the Semantic Web. 251-263.

Mellor, S.J., Scott, K., Uhl, A., Weise, D. 2002. Model-Driven Architecture. In: Proceedings

of the Workshop at the 8th International Conference on Object-Oriented Information

Systems. 290-297.

Mellor S.J., Kendall S., Uhl A. and Weise D. 2004. Model Driven Architecture, Addison-

Wesley Pub Co.

Martin, D., Paolucci M., Wagner, M. 2007. Towards Semantic Annotations of Web Services:

OWL-S from the SAWSDL Perspective. In: Proceedings of the OWL-S Experiences

and Future Developments Workshop at ESWC 2007.

Mizoguchi, R. 2003. Tutorial on Ontological Engineering: Part 2: Ontology Development,

Tools and Languages. New Generation Comput.

Mani, M.: EReX, 2004. A Conceptual Model for XML. In Proceedings of the Second

International XML Database Symposium (XSym 2004), p. 128-142. Toronto,

Canada.

Manola, F., Miller, E., 2004. RDF Primer. In World Wide Web Consortium,

Recommendation REC-rdf-primer-20040210.

Melville, N., Kraemer, K., Gurbaxani, V., 2004. Information Technology and Organizational

Performance: an Integrative Model of IT Business Value. In MIS Quarterly, Volume

28 Number 2, pp. 283-322.

 80

Nijssen, G.M. & Halpin, T.A., 1989. Conceptual Schema and Relational Database Design,

Prentice Hall, Sydney.

Noy, N.F., Musen, M.A. 2000. PROMPT: Algorithm and Tool for Automated Ontology

Merging and Alignment. In: Proceedings of the 17th National Conference on

Artificial Intelligence and Twelfth Conference on Innovative Applications of

Artificial Intelligence. 450-455.

Obrst, L., 2003 Ontologies for semantically interoperable systems. In Proceedings of the

12th International Conference on Information and Knowledge Management. New

Orleans, USA

OMG, 2003. Object Management Group. Architecture-Driven Modernization specification

http://adm.omg.org

OMG, 2004. Object Management Group. UML 2.0 Superstructure Specification

http://uml.omg.org

Oren, E., Hinnerk Möller, K., Scerri, S., Handschuh, S., Sintek, M. 2006. What are

Semantic Annotations?. Technical report, DERI Galway

Patil, A., Oundhakar, S., Sheth, A., Verma, K. (2004). Meteor-S Web Service annotation

framework. In: Proceedings of the 13th International Conference on the World Wide

Web. 553-562.

Peng, W., Baowen, X., Jianjiang, L., Dazhou, K., Yanhui, L. 2004. A Novel Approach to

Semantic Annotation Based on Multi-ontologies. In: Proceedings of the third

International Conference on Machine Learning and Cybernetics. Vol. 3. 1452 - 1457

Reeve, L.H., Han, H. 2005. Survey of semantic annotation platforms. In: Proceedings of the

ACM Symposium on Applied Computing. 1634-1638

Russel, S., Norvig, P. Artificial Intelligence, A Modern Approach'', Prentice-Hall. Inc. 1995

 81

Seeley, R. S., 1997. Manufacturing execution systems in MED DEVICE DIAGN IND. Vol.

19, no. 11, pp. 64-68.

Sharir, M., 1981. A strong-connectivity algorithm and its applications in data flow analysis.

In Computers and Mathematics with Applications. Volume 7, pp. 67-72.

Sheth, A., 1998. Changing Focus on Interoperability in Information Systems: From System,

Syntax, Structure to Semantics. In M. Goodchild, M. Egenhofer, R. Fegeas, and C.

Kottman, editors. In Interoperating Geographic Information Systems, pp. 5– 30.

Kluwer.

Smith, M.K., Welty, Ch., McGuinness, D.L., 2004. OWL Web Ontology Language Guide.

In World Wide Web Consortium, Recommendation REC-owl-guide-20040210.

Störrle H., 2005. Semantics and Verification of Data Flow in UML 2.0 Activities. In

Electronic Notes in Theoretical Computer Science, volume 276, pp. 35-52.

Stumme, G., Maedche, A. 2001a. Ontology Merging for Federated Ontologies on the

Semantic Web. In: Proceedings of the International Workshop for Foundations of

Models for Information Integration.

Stumme, G., Maedche, A. 2001b. FCA-MERGE: Bottom-Up Merging of Ontologies. In:

Proceedings of the 7th International Joint Conference on Artificial Intelligence.

Seattle, Washington, USA. 225-234.

Talantikite, H.N., Aïssani, D., Boudjlida, N. (2009). Semantic annotations for web services

discovery and composition. Computer Standards & Interfaces. Vol. 31, N°6. 1108-

1117.

Tolk, A., Diallo, S. Y., Turnitsa, C. D., 2007. Applying the Levels of Conceptual

Interoperability Modelling Support of Integrability, Interoperability, and

Composability for System-of-Systems Engineering. In Journal of Systemics,

Cybernetics and Informatics, Volume 5 Number 5, pp. 65-74.

 82

Tursi, A., Panetto, H., Morel, G., Dassisti, M., 2009 Ontological approach for Products-

Centric Information System Interoperability in Networked Manufacturing

Enterprises. In IFAC Annual Reviews in Control. 33/2, 238-245, Elsevier, ISSN:

1367-5788.

Vyvyan, E., 2006. Lexical Concepts, Cognitive Models and Meaning-Construction. In

Cognitive Linguistics 17 (4): 491-534.

Wand, Y., Weber, R. 1993. On the ontological expressiveness of information systems

analysis and design grammars. Information System Journal Vol 3. N°4. 217-237.

Yahia E., Lezoche M., Aubry A., Panetto H. 2011. Semantics enactment in Enterprise

Information Systems, IFAC. 18th IFAC World Congress, IFAC WC'2011, Aug 2011,

Milan, Italy. Elsevier - IFACPapersOnline, 18, 13064-13073, IFACPapersOnline

Yahia, E., 2011. Contribution à l’Evaluation de l’Interopérabilité Sémantique entre Systèmes

d’Information d’Entreprises : Application aux Systèmes d’Information de Pilotage de

la Production. PhD Thesis, Université Henri Poincaré, Nancy I (in French).

Zdravković. M., Panetto, H., Trajanović, M., Aubry, A. 2011. An approach for formalising

the supply chain operations, Enterprise Information Systems, 5/4, 401-421, Taylor &

Francis, ISSN 1751-7575. DOI:10.1080/17517575.2011.593104.

	
	 	

 83

Appendix

In the appendix will be presented a selection of the published papers.

Appendix A:

Lezoche M., Panetto H., Aubry A., (2011). Conceptualisation approach for cooperative

information systems interoperability, ACM. 13th International Conference on

Enterprise Information Systems, ICEIS 2011, Jun 2011, Beijing, China. pp. 101-110

Appendix B:

Lezoche M., Panetto H., Aubry A., (2011). Formal Fact-Oriented model transformations for

cooperative information systems semantic conceptualisation, Selected extended

version of ICEIS 2011. Lecture Notes in Business Information Processing (LNBIP),

Proof read

Appendix C:

Yahia E., Lezoche M., Aubry A., Panetto H., (2011). Semantics enactment in Enterprise

Information Systems, IFAC. 18th IFAC World Congress, IFAC WC'2011, Aug 2011,

Milan, Italy. Elsevier - IFACPapersOnline, 18, 13064-13073, IFACPapersOnline

Appendix D:

Liao Y., Lezoche M., Panetto H., Boudjlida N., (2011). Why, Where and How to use

Semantic Annotation for Systems Interoperability, 1st UNITE Doctoral

Symposium, Jun 2011, Bucarest, Romania. pp. 71-78

 84

9 Appendix A

	
Conceptualisation approach for Cooperative

Information Systems interoperability

Mario Lezoche, Hervé Panetto, Alexis Aubry
Research Centre for Automatic Control (CRAN), Nancy-University, CNRS, Campus

Scientifique, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
{mario.lezoche, herve.panetto, alexis.aubry}@cran.uhp-nancy.fr

Keywords: Conceptual modelling, cooperative information systems, semantic interoperability, data model
conceptualisation

Abstract: In order to increase enterprise performance, economics paradigms focus, now more than ever, on
how to better manage information. The modern architecture of information systems is based on
distributed networks with a grand challenge representing and sharing knowledge managed by those
ISs. One of the main issues in making such heterogeneous Cooperative Information Systems (CIS)
working together is to remove semantics interoperability barriers. This paper firstly analyses
interoperability issues between CISs and then proposes patterns for data models conceptualisation for
knowledge explicitation, based on expert knowledge injection rules and a fact-oriented approach. A
case study is proposed related to a work order process in Sage X3, an Enterprise Resource Planning
application.

1 Introduction

The actual archetype for the Information
Systems (ISs) involves large number of ISs
distributed over large, complex computer/
communication networks. Such cooperative
information systems (CIS) have access to
large amount of information and have to
interoperate to achieve their purpose. The
cooperative information systems architects
and developers have to face a hard problem:
interoperability.
Interoperability can be defined as the ability
for two or more systems to share, to
understand and to consume information
(IEEE, 1990). Some work (Chen et al.,
2006) in the INTEROP NoE project has

identified three different levels of barriers
for interoperability: technical, conceptual
and organisational. Organisational barriers
are still an important issue but out of scope
of this paper. The technological barriers are
strongly studied by researchers in computer
science and are generally based on models
transformation (Frankel, 2003).
Our research focuses on the conceptual
level of interoperability that is the ability to
understand the exchanged information. A
concept is a cognition unit of meaning
(Vyvyan, 2006), an abstract idea, a mental
symbol. It is created through the action of
conceptualisation, that is, a general and
abstract mental representation of an object.
During the history of human effort to model
knowledge, different conceptualisation

approaches regarding different application
domains were developed (Aspray, 1985).
This paper is dealing with a first step from a
more general work focusing on the study of
the semantic loss during the exchange of
information representing business concepts.
Quantifying the semantic gap between
interoperating ISs implies enacting their
semantics through their normalized
conceptual models. Indeed, in this context,
the starting point for semantics
interoperability is related to models
conceptualisation.

We will present a conceptualisation
approach to make explicit the finest-grained
semantics embedded into conceptual
models for finally enabling two different
information systems seamlessly
interoperating.

Next section presents the general
context of our work. Then, the following
section details the fundamental pillars of
our conceptualisation process. Then, we
will propose a knowledge explicitation
process starting from an implemented
relational model to a fact-oriented
conceptual one. This process allows us
emphasizing the finest-grained semantics
that must be enacted to study semantics
interoperability between collaborating ISs.

Finally, to validate our proposal, a
practical case study is presented based on
an Enterprise Resource Planning
application involved in a B2M (Business to
Manufacturing) interoperation process.

2 Cooperative Information
systems

Information Systems are systems whose
activities are devoted to capture and to store
data, to process them and produce
knowledge, used by any stakeholders
within an enterprise or among different
networked enterprises. It is commonly

agreed that Cooperative Information
Systems provide a backbone for the
Integrated Information Infrastructure
(Sheth, 1998). Fully understanding and
exploiting the advances in computing is the
only way to encompass the complexity of
constructing and maintaining such systems.

Although the progress made in
information technology considerably
improved the efficiency of applications
development, its drawbacks and limitations
are obvious and serious. In fact, the
application models involved in a single
application are numerous and different,
each coping only with particular and partial
aspects of the overall task. Moreover, the
components technologies are
heterogeneous, platform- and machine-
dependant. The above-mentioned
limitations and barriers measurably hinder
the development and the maintenance
process.

There is a growing demand to integrate
such systems tightly with organizational
work so that these information systems can
be directly and immediately used by the
business activity.
Here, the need of interoperation clearly
appears. In fact, to achieve the purpose of
the cooperation between the different
Information Systems, information must be
physically exchanged (technical
interoperability), must be understood
(conceptual interoperability) and must be
used for the purpose that they have been
produced (conceptual and organisational
interoperability). When trying to assess the
understanding of an expression coming
from a system to another system, there are
several possible levels of interoperability
(Euzenat, 2001):
 encoding: being able to segment the

representation in characters;
 lexical: being able to segment the

representation in words (or symbols);

 syntactic: being able to structure the
representation in structured sentences
(or formulas or assertions);

 semantic: being able to construct the
propositional meaning of the
representation;

 semiotic: being able to construct the
pragmatic meaning of the representation
(or its meaning in context).

This tiered structure is arguable in
general; it is not as strict as it seems. It
makes sense because each level cannot be
achieved if the previous levels have not
been completed (Euzenat, 2001).

The encoding, lexical and syntactic
levels are the most effective solutions for
removing technical barriers for
interoperability, but not sufficient, to
achieve a practical interoperability between
computerised systems. Dealing with trying
to enable a seamless data and model
exchange at the semantic level is still a big
issue that needs conceptual representation
of the intended exchanged information and
the definition of the pragmatic meaning of
that exchanged information in the context
of the source and destination applications.

Different cooperation types have been
investigated in ISO 14528 (ISO, 1999). In
fact, this standard considers that models
could be related in three ways:
(1) integration when there exists a

standard or pivotal format to
represent these models;

(2) unification when there exists a
common meta-level structure
establishing semantic equivalence
between these models; and

(3) federation when each model exists
per se, but mapping between
concepts could be done at an
ontology level to formalise the
interoperability semantics.

Integration is generally considered to go
beyond mere interoperability to involve
some degree of functional dependence
(Panetto, 2007). Classifying interoperability
problems (Tursi, et al. 2009) may help in

understanding the degree of development
needed to solve, at least partially, these
problems but conceptualisation and
semantics extraction is still an important
issue because of the various contextual
understanding of tacit knowledge
embedded into those applications. The main
prerequisite for achievement of
interoperability of information systems is to
maximise the amount of semantics which
can be used and make it increasingly
explicit (Obrst, 2003), and consequently, to
make the systems semantically
interoperable. To highlight this issue, the
paper is based on a referenced scenario
involving enterprise systems applications.
Most of reverse engineering approaches
(Fonkam, 1992) (Chiang, 1994) return the
information structure but present a model
with tacit semantics. The ADM
(Architecture-Driven Modernization)
initiative (OMG, 2003) from OMG
(Bézivin et al., 2005) is tackling this
problem by promoting a common
Knowledge Discovery Meta-model to
facilitate discovering tacit knowledge
embedded inside existing software. In our
scenario, those applications are still
implemented and running using databases.
We can extract, from them, by using
reverse engineering approaches, some
knowledge in a form of a conceptual model.
We have then to enrich that model with
enterprise applications best practices
(knowledge coming from users). Finally,
we make explicit all disclosed knowledge
hidden in the resulting model.

3 Our approach for
Semantics Enactment In
Conceptual Models

In order to cooperate, two (or more)
Information Systems have to interoperate.
As previously discussed, we focus our
interest on the conceptual level of
interoperability letting different information
systems to share and use knowledge models
that they represent. Our principal issues are,
therefore, first to understand the conceptual
relationships between those models in the
context of their use and secondly how,
through conceptualisation, to unhide the
tacit knowledge buried inside them. A usual
approach for making explicit the tacit
knowledge, concealed in attributes and
classes, is the relationships-oriented
perspective composed of a set of
transformation rules. In that transformation
method, an attribute a1 of type T1
pertaining to class C1 is modelled as a
relationship between the class C1 and a
standard type T1. This approach does not
resolve entirely the semantics elicitation
problem because it focuses its point of view
on the values instead of on the concepts.
The attribute semantics is somewhat yet
hidden in the relationship just created.
In literature, (Meersman, 2003) presented
the definition of two different objects types,
a lexical object (LOT), a term, is an object
in a certain reality that can be written
down. LOTs always consist of letters,
numbers, symbols or other characters. They
can be used as names for or references to
other objects. A non-lexical object
(NOLOT), a concept, is an object in a
certain reality that cannot be written down.

Non-lexical objects must be named by
lexical objects or referred to by means of
lexical objects.
Applying these definitions, we can flatten
the nested knowledge embedded in a model
to simplify semantic enactment resulting
from a set of modelling transformations.
Our contribution is to have at our disposal
an approach letting us to fragment
knowledge through the transformation of
attributes into entities and relationships, and
thus to emphasize some fine-grained
knowledge atoms. In the proposed
approach, that is the first part (Figure 1) of
our general methodology, the starting point
can be various: an application, a data
model, a logical view, a model. We have
already mentioned that there are several
reverse engineering methods, such as in
(Fonkam, 1992) and in (Chiang, 1994),
through which a model from the application
or schema level can be derived (Step 1).
Then, the resulted initial model is enriched
and corrected through an Expert
Knowledge Injection step (Step 2). In fact,
the model is examined with the help of a
domain expert or an end-user, who are the
most qualified persons to describe the
context of the peculiar domain and to put in
evidence the contextual knowledge.
According to the enterprise best practices
and its data, they would clean and better
organise the knowledge represented in the
derived model. However, the obtained
initial conceptual model, in the form of a
UML class diagram, has yet a major limit.
In fact, its semantics is in a tacit form
because all the attributes are buried inside
single classes and it is then difficult to
make their semantics explicit.

Figure 1 – Conceptualisation approach
Thus, the next step of our approach (Step 3)
is a Fact-Oriented Transformation (Halpin,
1991) through the application of a set of
patterns rules for transforming the enriched
conceptual model to a fact-oriented model
(FOM) with its semantics completely
displayed. The consequence is that all the
classes and their attributes are transformed
into respectively LOTs and NOLOTs
objects. The resulting fact-oriented model,
displaying the finest-grained semantic
atoms, is then used as an input for the
second part of our methodology for
semantic loss evaluation (not presented in
this paper).
In the following sub-sections, we will
discuss, in detail, the proposed 3 steps.

3.1 Step 1: Reverse Engineering

Conceptualisation is a decision process
(Guarino, 1998), a view, in which studied
part of reality knowledge, usually in an
implicit and complex form, is reorganised
in different aggregates usually simpler to be
represented.
According to (Engelbart, 1962), developing
conceptual models means specifying the
essential objects or components of the
system to be studied, the relationships of
the objects that are recognised and what
kinds of changes in the objects or their

relationships affect the functioning of the
system and in which ways.
Conceptual models range in type from the
more precise, such as the mental image of a
familiar physical object, to the abstractness
of mathematical models that do not appear
to the mind as an image. Conceptual
models also range in terms of the scope of
the subject matter that they are taken to
represent. The variety and scope of
conceptual models is due to the variety of
purposes that people had while using them.
Conceptualisation approaches are numerous
and have been developed in different
knowledge domains (LaOnsgri, 2009).
Our scenario assumes that we start from
enterprise application database. So, the first
studied approach is the Reverse
engineering. It is, in database (DB)
community, an approach to extract the
domain semantics from the existing
database structures. Typically, it concerns
making the reverse transformation from
logical to conceptual schema. In (Fonkam,
1992), the authors propose a general
algorithm based on several old attempts to
make explicit the logical structure buried
into DB schemas, application programs and
in the minds of designers and developers.
(Chiang, 1994) presents a methodology for
extracting an extended Entity-Relationship
model from a relational database, through a

combination of data schema and data
instance analysis. In our study we will
consider at profit the reverse engineering
experiences developed in the past. These
methods are, by now, acquired by the
software industry that produces countless
tools. We choose MEGA Suite
(http://www.mega.com), a modelling
management environment to transform
relational models into conceptual ones.

3.2 Step 2: Expert Knowledge Injection

After the reverse engineering process has
created a conceptual model, the current step
concerns enriching it by injecting the
enterprise knowledge, expressed by users’
best practices or experts. These
stakeholders know the domain peculiarities
and they are capable to embed specific
constraints into the new conceptual model.
The first stage is the renaming process.
Usually the database tables, and the derived
concepts, have not standard names. The
renaming process is essential to bring
coherence and semantics in concepts that
otherwise would be of very difficult
comprehension. The following stage is the
redefinition of the attributes and of the
associations’ roles multiplicities according
to the enterprise users’ best practices. This
step is fundamental to define the real
constraints that are not always made
explicit into the implementation model. As
an example, considering a particular
attribute a1, two cases can be considered:
1) a1 is a non-mandatory attribute in the
conceptual model but, as users are
requested to always fill it with a specific
value, the enriched model must formalise
that this attribute a1 is to be treated as
mandatory;
2) a1 is defined as mandatory in the
conceptual model but, by practice, the users
never care about its value and fill it with
some dummy one. In such case, the

enriched model may formalise that this
attribute is not mandatory.
Note that the same cases may happen also
to the roles of associations.
The last stage concerns of making explicit
some implicit associations. Those implicit
associations relate some concepts but they
are defined only by enterprise practices
even if they are not expressed in the model
itself.
At this time, the enriched conceptual model
formalises the whole application semantics
(both the explicit one and the users’ implicit
one).

3.3 Step 3: Fact-Oriented
Transformation

The quality of a conceptual model is often
influenced by the conceptual language used
for its specification. Most conceptual
languages for data modelling are based on a
version of Entity-Relationship modelling
(E-R) (Barke, 1990) (Czejdo et al., 1990)
(Hohenstein et al., 1991). However, these
modelling languages are making a
distinction between entities, attributes and
relationships. On the contrary, in order to
normalise the way that knowledge is
represented, NIAM (Natural-language
Information Analysis Method) (Nijssen &
Halpin 1989) proposed to model the world
in term of facts (either presenting terms
(real things), or representing characteristics
(attributes) of these real things), and
relationships between facts. NIAM is
attribute-free, it does not use explicitly the
notion of attribute, treating all elementary
facts as relationships. Some authors have
extended the concepts and notations
developed by NIAM with object
orientation. It is the case of ORM (Object
Role Modelling) (Halpin, 1998). Our
purpose is to adapt this fact-oriented
modelling approach to enriched conceptual
models represented using the UML (OMG,

2004) class notation. Thus, we developed a
set of transformation modelling rules, to be
applied to selected UML patterns (Table 1).
Let us refer to the definitions of LOT and
NOLOT facts given in the beginning of
section 3. Transforming a particular
conceptual model in a fact-oriented model
must follow these rules:

1. all classes are transformed into LOT
facts. Using UML Class notation, a
LOT fact is represented by a UML
Class.

2. all attributes are transformed into
NOLOT facts. Using the UML Class
notation, a NOLOT fact is
represented as a UML Class.

3. for each attribute a belonging to a
UML Class C, an association is
created between the corresponding
LOT a and the corresponding
NOLOT C, created by the two
previous rules.

4. the multiplicity associated to each
attribute a is copied as the
multiplicity of the role of the
previous (rule 3) association attached
to the NOLOT a. The opposite role
of the same association must have a
constraint multiplicity equal to one.

5. all “simple” associations between
classes are transformed into “simple”
associations between NOLOTs.

6. all generalisation relationships
between classes are transformed into
“simple” associations with a
constraint multiplicity equal to one
on the role attached to generalised
NOLOT and a non constraint
multiplicity equal to * on the
opposite role.
In order to trace the fact that this
association was coming from a
generalisation, we annotate
semantically the new corresponding
association with a logical rule using

OCL (Object Contraint Language)
notation.
Moreover, the inheritance feature of
the generalisation association is
mapped as new associations between
LOTs representing the attributes of
the generalised NOLOT, and all the
specialised NOLOTs (sub-classes).

7. composition and aggregation
relationships are transformed into
simple association (rule 3) that keep
unchanged the existing roles’
multiplicities but trace their specific
semantics through an attached
semantic annotation formalised with
an OCL logical rule.

8. association classes are transformed
into a LOT fact with two
associations linked to the
corresponding initial LOT facts. The
multiplicities of the roles of these
two associations are determined
inverting the ones initially
formalised on the roles of the
previous association.

9. any other specific constraints
(generally modelled using OCL
logical rules) are kept during the
transformation process.

10. we did not take into account special
cases of constraints in
generalisations because they are not
usually used in data conceptual
modelling.

One of the conceptual modelling

requirements is that a conceptual model
must have formal foundations, which allow
comparing that model with other conceptual
models in a formal and exact way.

3.4 Patterns represented in FOL

(Berardi et al, 2005) and (Tursi, 2009)
formalise UML class constructs semantics
in First Order Language (FOL) axioms. We

propose to adapt these works to formalise
the fact-oriented model patterns (presented
previously) in FOL axioms.
Due to the lack of space we will present
only one pattern rule formalisation in FOL:
the “Class and Attributes” as reported in
Table	5.

A class in UML designates a set of
object with common features. Formally a
class C corresponds to a FOL unary
predicate C.

An attribute a of type T for a class C
associates to each instance of C a set of

instance of T, its multiplicity [i..j] specifies
that a associates to each instance of C at
least i and at most j instances of T.
Formally, an attribute a of type T for class
C corresponds to a binary predicate.

An association in UML is a relation
between the instances of two or more
classes. The multiplicity [m..n] attached to
the role of a binary association specifies
that each instance of the class C can
participate at least m times and at most n
times to the

Class and Attributes Composite aggregation
UML FOM UML FOM

Aggregation
UML FOM

Generalisation Association Class
UML FOM UML FOM

Table 5 - Fact-Oriented modelling patterns using UML notation

related association. An association A
between two classes can be formalised as a
binary predicate. In the studied pattern, we
formalise a class C1 containing two
attributes A1 and A2 with respectively a
multiplicity of 1 and [0..1], and with

associated types respectively, A1Type and
A2Type.

Its formalisation in FOL assertions is the
following:

,ݔ∀ ,ݕ ൫ܥଵሺݔሻ ∧ ,ݔଵሺܣ ሻ൯ݕ ⊃ ሻݕሺ݁݌ݕଵܶܣ
,ݔ∀ ,ݖ ൫ܥଵሺݔሻ ∧ ,ݔଶሺܣ ሻ൯ݖ ⊃ ሻݖሺ݁݌ݕଶܶܣ

,ݔ∀ ሻݔଵሺܥ ⊃ ሺ1	ሼܣ|ݕଵሺݔ, ሻሽሻݖ
,ݔ∀ ሻݔଵሺܥ ⊃ ሺ0 ൑ 1	ሼܣ|ݕଵሺݔ, ሻሽሻݕ

Applying the transformation rule, presented
in 3.3, to the class C1, and to the two
attributes A1 and A2, we will obtain the
Fact-Oriented Model (FOM) in UML
notation as shown in Table	 5 “Class and
Attributes”.

Its formalisation in FOL assertions is the
following:
,ଵݔ∀ ,ଶݔ ,ଵݔଵሺܿ݋ݏݏܣ ଶሻݔ ⊃ ଵሻݔଵሺܥ ∧ ଶሻݔଵሺܣ
,ଵݔ∀ ଵሻݔଵሺܥ ⊃ ሺ1	ሼܿ݋ݏݏܣ|ݕଵሺݔଵ, ሻሽሻݕ
,ଶݔ∀ ଶሻݔଵሺܣ ⊃ ሺ1	ሼܿ݋ݏݏܣ|ݕଵሺݔଶ, ሻሽሻݕ

,ଵݔ∀ ,ଶݔ ,ଵݔଶሺܿ݋ݏݏܣ ଶሻݔ ⊃ ଵሻݔଵሺܥ ∧ ଶሻݔଶሺܣ
,ଵݔ∀ ଵሻݔଵሺܥ ⊃ ሺ0 ൑ 1	ሼܿ݋ݏݏܣ|ݕଶሺݔଵ, ሻሽሻݕ
,ଶݔ∀ ଶሻݔଶሺܣ ⊃ ሺ1	ሼܿ݋ݏݏܣ|ݕଶሺݔଶ, ሻሽሻݕ
Using a FOL engine such as the Haskel

engine
(http://www.cs.yale.edu/homes/cc392/node
1.html), based on Russel and Norvig
algorithms (Russel and al, 1995), we are
able to demonstrate that the semantics
formalised in the initial conceptual model is
equivalent or included into the one
transformed in FOM.

4 Case study

Interoperability between organisational and
manufacturing activities is crucial in
manufacturing enterprises. Production
services have to produce, quickly and
efficiently, the good product at the right
moment. For this reason, they need at time
information coming from others services,

which need in return precise and update
data on production.
We propose here to study and present the
first part of such a B2M interoperability
issue by considering a particular IS
implemented in a real manufacturing
environment: Sage X3 as an Enterprise
Resource Planning (ERP) application.

4.1 Specific analysed Enterprise
Information System: Sage X3 ERP

An Enterprise Resource Planning (ERP) is
an integrated computer-based system used
to manage internal and external resources
including tangible assets, financial
resources, materials, and human resources
(Bidgol, 1997). Its purpose is to facilitate
the flow of information between all
business functions inside the boundaries of
the organization and manage the
connections to outside stakeholders. Built
on a centralized database, ERP systems
centralise all business operations into a
uniform system environment. Sage X3
presents different enterprise management
functions: finance, commercial, industrial
and services.
The focus for this case study is (i) to
analyse how the work order process inside
the Sage X3 application is modelled, (ii) to
use the proposed modelling process to
externalise the implicit knowledge in the
model structure.

Figure 2 – Sage X3 work order enriched process model

The model depicted in figure 2 is already
the result from the two first steps of our
approach. This means that we have already
passed the “Reverse Engineering” and the
“Expert knowledge injection” stages. The
“Manufacturing Order Heading” concept is
the management function of production
orders and planned activities. It allows the
generation of a production order by
variation of one or more classifications and
a single production line. For each
production order, the achievement of the
material benefits and sequencing operations

is possible. This block captures general
information about the work order, such as,
planning facility and facility of production,
status of the order (manufacturing order
product). It allows entering general
information about the production order. The
availability of components is checked
through the information given by the bill of
material related with the launched products.
Once that initial information is determined,
the system updates the list of materials and
operations of the created or modified
orders.

Step 1: Reverse Engineering
All these information are coded in the Sage
application database. The first step of our
method is the reverse engineering to extract
the initial conceptual model.

Step 2: Expert Knowledge Injection
Currently the model depicted in Figure 2 is
the result of the reverse engineering step
enriched by a domain expert because the
architecture of the Sage X3 ERP is built
with all the database relationships
implemented directly into the application
layer and not in the database. The reverse
engineering result, as shown in the lower
part of the Figure 3, creates a model
containing unlinked classes with coded
names.

Figure 3 – Sage X3 architecture and expert
knowledge injection

The expert work was about cleaning this
conceptual model according to the best
practices in the enterprise, modifying the
attributes multiplicity, adding explicit
names to the concepts, the attributes and the
associations and others operations to fit the
conceptual model to the “real” use of the
Enterprise Information System. A usual
case that requests the domain expert
attention is about the mandatory properties
in forms’ attributes.

Step 3: Fact-Oriented Transformation
Applying the pattern transformation rules,

presented in the previous section, class
attributes are transformed into NOLOTs to
increase the atomic representation of the
knowledge embedded into the model. These
rules have been coded using a programming
language and then automatically executed
inside MEGA Suite.

Figure 4 shows an extract of the resulting
FOM after applying our approach to the
Sage X3 work order process. The resulting
full FOM is composed of 23 NOLOTs, 56
LOTs and 46 associations.
It seems then that the resulting model is
much more complex than the initial one,
which it is true in a visual point of view but
it is false in term of expressiveness of its
semantics. Indeed, the fine-grained atoms
of semantics are now made explicit, which
helps any automatic computing. An
important result is that such semantically
detailed model will help automating the
next part of our methodology for semantic
gap evaluation, as explained in section 3.

5 Conclusions

In this article, a conceptualisation approach
for enacting implicit semantics from
Enterprise Information Systems is
proposed. Our approach if divided into 3
steps from the traditional reverse
engineering process, through a knowledge
elicitation and model enrichment by domain
experts, till making use of fact-oriented
modelling patterns to externalise tacit
knowledge. These patterns have been
formalised in FOL axioms to verify their
semantic coherence. Our contribution can
be assimilated to a reverse engineering
methodology. However, the main objective
is to formalize the whole semantics of such
models in order to help automatic
knowledge computing. An industrial case

study, related to an enterprise information
system implemented into an ERP system
demonstrates the applicability of our
approach.

Our current work concerns applying this
approach for evaluating the (non)-
interoperation through the measurement of
the semantic gap occurring between CISs
interoperability (Yahia, 2011).

Figure 4 – Sage X3 work order process model part transformed with fact-oriented approach

REFERENCES

Aspray, W. F. 1985. The Scientific Conceptualization of Information: A
Survey. Annals of the History of Computing, 7: 117-40. IEEE

Badia, A., 2002. Conceptual Modeling for Semistructured Data. In Proceedings
of the 3rd International Conference on Web Information Systems
Engineering Workshops (WISE 2002 Workshops), p. 170-177. Singapore.

Barker, R. 1990, CASE* Method: Entity Relationship Modelling, Addison-
Wesley, Wokingham, England.

Berardi, D., Calvanese, D., De Giacomo, G. (2005). Reasoning on UML class
diagrams, Artificial Intelligence 168 (1–2) 70–118.

Bézivin, J., Kurtev, I. 2005. Model-based Technology Integration with the
Technical Space Concept. Proceedings of the Metainformatics Symposium,
Esbjerg, Denmark, November 8-11, 2005. Springer-Verlag

Bidgol, H., 2004. The Internet Encyclopedia, Volume 1, John Wiley & Sons,
Inc. p. 707.

Carney, D., Fisher, D., Morris, E., Place P., 2005. Some current Approaches to
Interoperability. In technical note CMU/SEI-2005-TN-033.

Chen, D., Dassisti, M., Elvesaeter, B., Panetto, H., et al., 2006. In DI.2:
Enterprise Interoperability Framework and knowledge corpus,
Interoperability Research for Networked Enterprises Applications and
Software Network of Excellence, n° IST 508-011.

Chiang Roger, H. L., Barron, T. M., Storey Veda, C., 1994. Reverse
engineering of relational databases: Extraction of an EER model from a
relational database. In Data & Knowledge Engineering. Vol. 12, Issue 2, 107-
142.

Czejdo, B., Elmasri, R., Rusinkiewicz, M. & Embley, D.W. 1990, ‘A graphical
data manipulation language for an extended entity-relationship model’, IEEE
Computer, March 1990, pp. 26-37.

Engelbart, D.C., 1962. Augmenting human intellect: a conceptual framework.
In Menlo Park, CA: Stanford Research Institute.

Euzenat, J., 2001. Towards a principled approach to semantic interoperability.
In CEUR Proceedings of the IJCAI-01 Workshop on Ontologies and
Information Sharing, Seattle, USA, August 4-5, , ISSN 1613-0073, Vol. 47.,
19-25.

Fonkam, M.M., Gray, W.A., 1992. An Approach to Eliciting the Semantics of
Relational Databases. In CAiSE 1992, Manchester, UK, May 12-15, 1992.
Lecture Notes in Computer Science 593 Springer, ISBN 3-540-55481-5. 463-
480 Manchester, UK.

97

Frankel D. S. 2003. Model Driven Architecture: Applying MDA to Enterprise

Computing. John Wiley & Sons.
Guarino, N., 1998. Formal Ontology in Information Systems (Ed.) IOS Press.
Halpin, T.A. 1991, ‘A fact-oriented approach to schema transformation’, Proc.

MFDBS-91, Springer Lecture Notes in Computer Science, no. 495, Rostock.
Halpin, T., 1998. Handbook on Architectures of Information Systems Chapter 4,

eds P. Bernus, K. Mertins & G. Schmidt, Springer-Verlag, Berlin.
Henrard, L., Hainaut, J.-L., 2001. Data Dependency Elicitation in Database

Reverse Engineering Software Maintenance and Reengineering. In Fifth
European Conference on Software Maintenance and Reengineering, pp. 11

Hohenstein, U. & Engels, G. 1991, ‘Formal semantics of an entity-relationship-
based query language’, Entity-Relationship Approach: the core of conceptual
modelling (Proc. 9th ER conf.), ed. H. Kangassalo, Elsevier Science Pub.,
Amsterdam

IEEE: Standard Computer Dictionary, 1990. A Compilation of IEEE Standard
Computer Glossaries. In NY. 610-1990. ISBN: 1559370793.

International Organization for Standardization, 1999. ISO 14528: Industrial
Automation Systems – Concepts and rules for Enterprise Models, TC
184/SC5/WG1, Geneva, Switzerland.

International Organization for Standardization, 2002. ISO 16100:
Manufacturing Software Capability Profiling for interoperability. In Part 1:
Framework, TC 184/SC5/WG4, Geneva, Switzerland.

LaOngsri, S. 2009, Semantic Extensions and a Novel Approach to Conceptual
Modelling, Ph.D. Thesis, School of Computer Science, Engineering and
Mathematics, The Flinders University of South Australia

Mani, M.: EReX, 2004. A Conceptual Model for XML. In Proceedings of the
Second International XML Database Symposium (XSym 2004), p. 128-142.
Toronto, Canada.

Manola, F., Miller, E., 2004. RDF Primer. In World Wide Web Consortium,
Recommendation REC-rdf-primer-20040210.

Meersman, R., Tari, Z., 2003. On The Move to Meaningful Internet Systems
2003. In OTM 2003 Workshops OTM Confederated International Workshops,
Lecture Notes in Computer Science, Vol. 2889. ISBN: 978-3-540-20494-7,
Catania, Italy.

Nijssen, G.M. & Halpin, T.A. 1989, Conceptual Schema and Relational
Database Design, Prentice Hall, Sydney.

Obrst, L., 2003 Ontologies for semantically interoperable systems. In
Proceedings of the 12th International Conference on Information and
Knowledge Management. New Orleans, USA

98

OMG, 2003. Object Management Group. Architecture-Driven Modernization

specification http://adm.omg.org
OMG, 2004. Object Management Group. UML 2.0 Superstructure Specification

http://uml.omg.org
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen W., 1991. Object

Oriented Modeling and Design. Prentice Hall, Book Distribution Center,
New York, USA.

Russel, S., Norvig, P. Artificial Intelligence, A Modern Approach'', Prentice-
Hall. Inc. 1995

Seeley, R. S., 1997. Manufacturing execution systems in MED DEVICE
DIAGN IND. Vol. 19, no. 11, pp. 64-68.

Sheth, A., 1998. Changing Focus on Interoperability in Information Systems:
From System, Syntax, Structure to Semantics. In M. Goodchild, M.
Egenhofer, R. Fegeas, and C. Kottman, editors. In Interoperating Geographic
Information Systems, pp. 5– 30. Kluwer.

Smith, M.K., Welty, Ch., McGuinness, D.L., 2004. OWL Web Ontology
Language Guide. In World Wide Web Consortium, Recommendation REC-
owl-guide-20040210.

Tolk, A., Diallo, S. Y., Turnitsa, C. D., 2007. Applying the Levels of
Conceptual Interoperability Modelling Support of Integrability,
Interoperability, and Composability for System-of-Systems Engineering. In
Journal of Systemics, Cybernetics and Informatics, Volume 5 Number 5, pp.
65-74.

Tursi, A., Panetto, H., Morel, G., Dassisti, M., 2009 Ontological approach for
Products-Centric Information System Interoperability in Networked
Manufacturing Enterprises. In IFAC Annual Reviews in Control. 33/2, 238-
245, Elsevier, ISSN: 1367-5788.

Vyvyan, E., 2006. Lexical Concepts, Cognitive Models and Meaning-
Construction. In Cognitive Linguistics 17 (4): 491-534.

Yahia E., Yang J., Aubry A., Panetto H., 2009. On the use of Description Logic
for Semantic Interoperability of Enterprise Systems. In On the Move to
Meaningful Internet Systems: OTM 2009 Workshops (Meersman R., Tari Z.,
Henerro P. (Eds)), 4th IFAC/IFIP Workshop on Enterprise Integration,
Interoperability and Networking (EI2N’2009), Vilamoura, Portugal, Springer
Verlag, Lecture Notes in Computer Science, LNCS 5872, ISBN 978-3-540-
88874-1.

Yahia E., Lezoche M., Aubry A., Panetto H. 2011. Semantics enactment in
Enterprise Information Systems. 18th IFAC World Congress. Milan, Italy

99

10 Appendix B

Formal Fact-Oriented model transformations for cooperative

information systems semantic conceptualisation

Mario Lezoche, Alexis Aubry, Hervé Panetto

Research Centre for Automatic Control (CRAN), Nancy-University, CNRS, Campus
Scientifique, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex,

France
{mario.lezoche, alexis.aubry, herve.panetto}@cran.uhp-nancy.fr

Abstract: Information in enterprise is, now more than ever, a fundamental resource. In order
to increase enterprise performance, economics paradigms focus on how to better
manage it. Information Systems (IS) are systems whose activities are devoted to
capture and to store data, to process them and produce knowledge, used by any
stakeholders within an enterprise or among different networked enterprises. The
modern architecture of information systems is based on distributed networks. An
important challenge, to reach higher performance, is to represent and share
knowledge managed by those ISs. One of the main issues in making such
heterogeneous Cooperative Information Systems (CIS) working together is to remove
semantics interoperability barriers. This paper firstly analyses interoperability issues
between CISs and then proposes a systematic approach for data models
conceptualisation for knowledge explicitation, based on initial conceptual model
cleaning rules, expert knowledge injection rules and finally fact-oriented
transformation rules. A case study is proposed, related to a work order process in an
Enterprise Resource Planning application, Sage X3.

Keywords: Conceptual modelling, cooperative information systems, formal verification, data
model conceptualisation

100

1 Introduction

The actual archetype for the Information Systems (ISs) involves large number
of ISs distributed over large, complex computer/ communication networks.
Such cooperative information systems (CIS) have access to large amount of
information and have to interoperate to achieve their purpose. The
cooperative information systems architects and developers have to face a hard
problem: interoperability.
Interoperability can be defined as the ability for two or more systems to share,
to understand and to consume information [20]. Some work [8] in the
INTEROP NoE project has identified three different levels of barriers for
interoperability: technical, conceptual and organisational. Organisational
barriers are still an important issue but out of scope of this paper. The
technological barriers are strongly studied by researchers in computer science
and the solution is generally based on models transformation [14].
Our research [24] focuses on the conceptual level of interoperability that is
the ability to understand the exchanged information. A concept is a cognition
unit of meaning [39], an abstract idea, a mental symbol. It is created through
the action of conceptualisation, that is, a general and abstract mental
representation of an object. During the history of human effort to model
knowledge, different conceptualisation approaches regarding different
application domains were developed [1].
This paper is dealing with a first step from a more general work focusing on
the study of the semantic loss during the exchange of information
representing business concepts. Quantifying the semantic gap between
interoperating ISs implies enacting their semantics through their normalized
conceptual models. Indeed, in this context, the starting point for semantics
interoperability is related to models conceptualisation.

We will present a conceptualisation approach to make explicit the finest-
grained semantics embedded into conceptual models for finally enabling two
different information systems seamlessly interoperating.

Next section presents the general context of our work. Then, the
following section details the fundamental pillars of our conceptualisation
process. Then, we will propose a knowledge explicitation process starting
from an implemented relational model to a fact-oriented conceptual one. This
process allows us emphasizing the finest-grained semantics that must be
enacted to study semantics interoperability between collaborating ISs.

Finally, to validate our proposal, a practical case study is presented based
on an Enterprise Resource Planning application involved in a B2M (Business
to Manufacturing) interoperation process.

2 Cooperative Information systems

Information Systems are systems whose activities are devoted to capture
and to store data, to process them and produce knowledge, used by any
stakeholders within an enterprise or among different networked enterprises. It
is commonly agreed that Cooperative Information Systems provide a
backbone for the Integrated Information Infrastructure [35]. Fully

101

understanding and exploiting the advances in computing is the only way to
encompass the complexity of constructing and maintaining such systems.

Although the progress made in information technology considerably
improved the efficiency of applications development, its drawbacks and
limitations are obvious and serious. In fact, the application models involved
in a single application are numerous and different, each coping only with
particular and partial aspects of the overall task. Moreover, the components
technologies are heterogeneous, platform- and machine-dependant. The
above-mentioned limitations and barriers measurably hinder the development
and the maintenance process.

There is a growing demand to integrate such systems tightly with
organizational work so that these information systems can be directly and
immediately used by the business activity.
Here, the need of interoperation clearly appears. In fact, to achieve the
purpose of the cooperation between the different Information Systems,
information must be physically exchanged (technical interoperability), must
be understood (conceptual interoperability) and must be used for the purpose
that they have been produced (conceptual and organisational interoperability).
When trying to assess the understanding of an expression coming from a
system to another system, there are several possible levels of interoperability
[12]:
 encoding: being able to segment the representation in characters;

 lexical: being able to segment the representation in words (or symbols);

 syntactic: being able to structure the representation in structured sentences

(or formulas or assertions);

 semantic: being able to construct the propositional meaning of the

representation;

 semiotic: being able to construct the pragmatic meaning of the

representation (or its meaning in context).

This tiered structure is arguable in general; it is not as strict as it seems. It
makes sense because each level cannot be achieved if the previous levels
have not been completed [12].

The encoding, lexical and syntactic levels are the most effective solutions
for removing technical barriers for interoperability, but not sufficient, to
achieve a practical interoperability between computerised systems. Dealing
with trying to enable a seamless data and model exchange at the semantic
level is still a big issue that needs conceptual representation of the intended
exchanged information and the definition of the pragmatic meaning of that
exchanged information in the context of the source and destination
applications.

Different cooperation types have been investigated in ISO 14528 [21]. In
fact, this standard considers that models could be related in three ways:

102

(4) integration when there exists a standard or pivotal format to represent

these models;

(5) unification when there exists a common meta-level structure

establishing semantic equivalence between these models; and

(6) federation when each model exists per se, but mapping between

concepts could be done at an ontology level to formalise the

interoperability semantics.

Integration is generally considered to go beyond mere interoperability to
involve some degree of functional dependence. Classifying interoperability
problems [38] may help in understanding the degree of development needed
to solve, at least partially, these problems but conceptualisation and semantics
extraction is still an important issue because of the various contextual
understanding of tacit knowledge embedded into those applications. The main
prerequisite for achievement of interoperability of information systems is to
maximise the amount of semantics which can be used and make it
increasingly explicit [29], and consequently, to make the systems
semantically interoperable. To highlight this issue, the paper is based on a
referenced scenario involving enterprise systems applications.
Most of reverse engineering approaches [13] [9] return the information
structure but present a model with tacit semantics. The ADM (Architecture-
Driven Modernization) initiative [30] from OMG [5] is tackling this problem
by promoting a common Knowledge Discovery Meta-model to facilitate
discovering tacit knowledge embedded inside existing software. In our
scenario, those applications are still implemented and running using
databases. We can extract, from them, by using reverse engineering
approaches, some knowledge in a form of a conceptual model. We have then
to enrich that model with enterprise applications best practices (knowledge
coming from users). Finally, we make explicit all disclosed knowledge
hidden in the resulting model.

3 Our approach for Semantics Enactment In
Conceptual Models

In order to cooperate, two (or more) Information Systems have to
interoperate. As previously discussed, we focus our interest on the conceptual
level of interoperability letting different information systems to share and use
knowledge models that they represent. Our principal issues are, therefore,
first to understand the conceptual relationships between those models in the
context of their use and secondly how, through conceptualisation, to unhide
the tacit knowledge buried inside them. A usual approach for making explicit
the tacit knowledge, concealed in attributes and classes, is the relationships-
oriented perspective composed of a set of transformation rules. In that
transformation method, an attribute a1 of type T1 pertaining to a class C1 is

103

modelled as a relationship between the class C1 and a standard type T1. This
approach does not resolve entirely the semantics elicitation problem because
it focuses its point of view on the values instead of on the concepts. The
attribute semantics is somewhat yet hidden in the relationship just created.
In literature, [27] presented the definition of two different objects types, a
lexical object (LOT), a term, is an object in a certain reality that can be
written down. LOTs always consist of letters, numbers, symbols or other
characters. They can be used as names for or references to other objects. A
non-lexical object (NOLOT), a concept, is an object in a certain reality that
cannot be written down. Non-lexical objects must be named by lexical objects
or referred to by means of lexical objects.
Applying these definitions, we can flatten the nested knowledge embedded in
a model to simplify semantic enactment resulting from a set of modelling
transformations. Our contribution is to have at our disposal an approach
letting us to fragment knowledge through the transformation of attributes into
entities and relationships, and thus to emphasize some fine-grained
knowledge atoms. In the proposed approach, that is the first part (Figure 1) of
our general methodology, the starting point can be various: an application, a
data model, a logical view, a model. We have already mentioned that there
are several reverse engineering methods, such as in [13] and in [9], through
which a model from the application or schema level can be derived (Step 1).
Then, the resulted initial model is enriched and corrected through an Expert
Knowledge Injection step (Step 2). In fact, the model is examined with the
help of a domain expert or an end-user, who are the most qualified persons to
describe the context of the peculiar domain and to put in evidence the
contextual knowledge. According to the enterprise best practices and its data,
they would clean and better organise the knowledge represented in the
derived model. However, the obtained initial conceptual model, in the form of
a UML class diagram, has yet a major limit. In fact, its semantics is in a tacit
form because all the attributes are buried inside single classes and it is then
difficult to make their semantics explicit.

Figure 18 - Conceptualisation approach

Thus, the next step of our approach (Step 3) is a Fact-Oriented
Transformation [16] through the application of a set of rules for transforming
the enriched conceptual model to a fact-oriented model (FOM) with its

104

semantics completely displayed. The consequence is that all the classes and
their attributes are transformed into respectively LOTs and NOLOTs objects.
The resulting fact-oriented model, displaying the finest-grained semantic
atoms, is then used as an input for the second part of our methodology for
semantic loss evaluation (not presented in this paper).
In the following sub-sections, we will discuss, in detail, the proposed 3 steps.

3.1 Step 1: Reverse Engineering

Conceptualisation is a decision process [15], a view, in which studied part of
reality knowledge, usually in an implicit and complex form, is reorganised in
different aggregates usually simpler to be represented.
According to [11], developing conceptual models means specifying the
essential objects or components of the system to be studied, the relationships
of the objects that are recognised and what kinds of changes in the objects or
their relationships affect the functioning of the system and in which ways.
Conceptual models range in type from the more precise, such as the mental
image of a familiar physical object, to the abstractness of mathematical
models that do not appear to the mind as an image. Conceptual models also
range in terms of the scope of the subject matter that they are taken to
represent. The variety and scope of conceptual models is due to the variety of
purposes that people had while using them.
Conceptualisation approaches are numerous and have been developed in
different knowledge domains [23].
Our scenario assumes that we start from enterprise application database. So,
the first studied approach is the Reverse engineering. It is, in database (DB)
community, an approach to extract the domain semantics from the existing
database structures. Typically, it concerns making the reverse transformation
from logical to conceptual schema. In [13], the authors propose a general
algorithm based on several old attempts to make explicit the logical structure
buried into DB schemas, application programs and in the minds of designers
and developers. [9] presents a methodology for extracting an extended Entity-
Relationship model from a relational database, through a combination of data
schema and data instance analysis. In our study we will consider at profit the
reverse engineering experiences developed in the past. These methods are, by
now, acquired by the software industry that produces countless tools. We
choose MEGA Suite (http://www.mega.com), a modelling management
environment to transform relational models into conceptual ones. MEGA
Suite implements a parameterised reverse engineering method coping with
major existing approaches from direct database metadata analysis to a semi-
automatic conceptual models building from existing database schemas.

3.2 Step 2: Expert Knowledge Injection

After the reverse engineering process has created a conceptual model, the
current step concerns enriching it by injecting the enterprise knowledge,
expressed by users’ best practices or experts. These stakeholders know the
domain peculiarities and they are capable to embed specific constraints into
the new conceptual model. The first stage is the renaming process. Usually

105

the database tables, and the derived concepts, have not standard names. The
renaming process is essential to bring coherence and semantics in concepts
that otherwise would be of very difficult comprehension. The following stage
is the redefinition of the attributes and of the associations’ roles multiplicities
according to the enterprise users’ best practices. This step is fundamental to
define the real constraints that are not always made explicit into the
implementation model. As an example, considering a particular attribute a1,
two cases can be considered:
1) a1 is a non-mandatory attribute in the conceptual model but, as users are
requested to always fill it with a specific value, the enriched model must
formalise that this attribute a1 is to be treated as mandatory;
2) a1 is defined as mandatory in the conceptual model but, by practice, the
users never care about its value and fill it with some dummy one. In such
case, the enriched model may formalise that this attribute is not mandatory.
Note that the same cases may happen also to the roles of associations.
The last stage concerns of making explicit some implicit associations. Those
implicit associations relate some concepts but they are defined only by
enterprise practices even if they are not expressed in the model itself.
At this time, the enriched conceptual model formalises the whole application
semantics (both the explicit one and the users’ implicit one).

3.3 Step 3: Fact-Oriented Transformation

The quality of a conceptual model is often influenced by the conceptual
language used for its specification. Most conceptual languages for data
modelling are based on a version of Entity-Relationship modelling (E-R) [3]
[10] [19]. However, these modelling languages are making a distinction
between entities, attributes and relationships. On the contrary, in order to
normalise the way that knowledge is represented, NIAM (Natural-language
Information Analysis Method) [28] proposed to model the world in term of
facts (either presenting terms (real things), or representing characteristics
(attributes) of these real things), and relationships between facts. NIAM is
attribute-free, it does not use explicitly the notion of attribute, treating all
elementary facts as relationships. Some authors have extended the concepts
and notations developed by NIAM with object orientation. It is the case of
ORM (Object Role Modelling) [17]. Our purpose is to adapt this fact-oriented
modelling approach to enriched conceptual models represented using the
UML [31] class notation. Thus, we developed a set of transformation
modelling rules, to be applied to selected UML patterns (Table 1).
Let us refer to the definitions of LOT and NOLOT facts given in the
beginning of section 3. Transforming a particular conceptual model in a fact-
oriented model must follow these rules:

1. all classes are transformed into LOT facts. Using UML Class notation, a

LOT fact is represented by a UML Class.

2. all attributes are transformed into NOLOT facts. Using the UML Class

notation, a NOLOT fact is represented as a UML Class.

3. for each attribute a belonging to a UML Class C, an association is

106

created between the corresponding LOT a and the corresponding

NOLOT C, created by the two previous rules.

4. the multiplicity associated to each attribute a is copied as the

multiplicity of the role of the previous (rule 3) association attached to

the NOLOT a. The opposite role of the same association must have a

constraint multiplicity equal to one.

5. all “simple” associations between classes are transformed into “simple”

associations between NOLOTs.

6. all generalisation relationships between classes are transformed into

“simple” associations with a constraint multiplicity equal to one on the

role attached to generalised NOLOT and a non constraint multiplicity

equal to * on the opposite role. In order to trace the fact that this

association was coming from a generalisation, we annotate

semantically the new corresponding association with a logical rule

using OCL (Object Constraint Language) notation. Moreover, the

inheritance feature of the generalisation association is mapped as new

associations between LOTs representing the attributes of the

generalised NOLOT, and all the specialised NOLOTs (sub-classes).

7. composition and aggregation relationships are transformed into simple

association (rule 3) that keep unchanged the existing roles’

multiplicities but trace their specific semantics through an attached

semantic annotation formalised with an OCL logical rule.

8. association classes are transformed into a LOT fact with two

associations linked to the corresponding initial LOT facts. The

multiplicities of the roles of these two associations are determined

inverting the ones initially formalised on the roles of the previous

association.

9. any other specific constraints (generally modelled using OCL logical

rules) are kept during the transformation process.

10. we did not take into account special cases of constraints in

generalisations because they are not usually used in data conceptual

modelling.

107

One of the conceptual modelling requirements is that a conceptual model
must have formal foundations, which allow comparing that model with other
conceptual models in a formal and exact way.

3.4 Patterns represented in FOL

[4] and [38] formalise UML class constructs semantics in First Order
Language (FOL) axioms. We propose to adapt these works to formalise the
fact-oriented model patterns (presented previously) in FOL axioms.

We will present only one pattern rule formalisation in FOL: the “Class
and Attributes” rule as presented in Table 1.

A class in UML designates a set of object with common features. Formally
a class C corresponds to a FOL unary predicate C.

An attribute a of type T for a class C associates to each instance of C a set
of instance of T, its multiplicity [i..j] specifies that a associates to each
instance of C at least i and at most j instances of T. Formally, an attribute a of
type T for class C corresponds to a binary predicate.

An association in UML is a relation between the instances of two or more
classes. The multiplicity [m..n] attached to the role of a binary association
specifies that each instance of the class C can participate at least m times and
at most n times to the

Class and Attributes Composite aggregation
UML FOM UML FOM

Aggregation
UML FOM

Generalisation Association Class
UML FOM UML FOM

108

Table 6 - Fact-Oriented modelling patterns using UML notation

related association. An association A between two classes can be formalised
as a binary predicate. In the studied pattern, we formalise a class C1
containing two attributes A1 and A2 with respectively a multiplicity of 1 and
[0..1], and with associated types respectively, A1Type and A2Type.

Its formalisation in FOL assertions is the following:

,ݔ∀ ,ݕ ൫ܥଵሺݔሻ ∧ ,ݔଵሺܣ ሻ൯ݕ ⊃ ሻݕሺ݁݌ݕଵܶܣ

,ݔ∀ ,ݖ ൫ܥଵሺݔሻ ∧ ,ݔଶሺܣ ሻ൯ݖ ⊃ ሻݖሺ݁݌ݕଶܶܣ

,ݔ∀ ሻݔଵሺܥ ⊃ ሺ1	ሼܣ|ݕଵሺݔ, ሻሽሻݖ

,ݔ∀ ሻݔଵሺܥ ⊃ ሺ0 ൑ 1	ሼܣ|ݕଵሺݔ, ሻሽሻݕ

Applying the transformation rule, presented in section 3.3, to the class C1, and
to the two attributes A1 and A2, we will obtain the Fact-Oriented Model
(FOM) in UML notation as shown in Table 1 “Class and Attributes”.

Its formalisation in FOL assertions is the following:

,ଵݔ∀ ,ଶݔ ,ଵݔଵሺܿ݋ݏݏܣ ଶሻݔ ⊃ ଵሻݔଵሺܥ ∧ ଶሻݔଵሺܣ

,ଵݔ∀ ଵሻݔଵሺܥ ⊃ ሺ1	ሼܿ݋ݏݏܣ|ݕଵሺݔଵ, ሻሽሻݕ

,ଶݔ∀ ଶሻݔଵሺܣ ⊃ ሺ1	ሼܿ݋ݏݏܣ|ݕଵሺݔଶ, ሻሽሻݕ

,ଵݔ∀ ,ଶݔ ,ଵݔଶሺܿ݋ݏݏܣ ଶሻݔ ⊃ ଵሻݔଵሺܥ ∧ ଶሻݔଶሺܣ

,ଵݔ∀ ଵሻݔଵሺܥ ⊃ ሺ0 ൑ 1	ሼܿ݋ݏݏܣ|ݕଶሺݔଵ, ሻሽሻݕ

,ଶݔ∀ ଶሻݔଶሺܣ ⊃ ሺ1	ሼܿ݋ݏݏܣ|ݕଶሺݔଶ, ሻሽሻݕ

We used as demonstration tools Prover9, an automated theorem prover for

first-order and equational logic, and Mace4 searcher for finite models and
counterexamples. We implemented our models in prover9 syntax to verify
them in FOL formalised transformation models rules.

These artefacts are the constituent basis to represent the transformation
rules in First Order Logic. After the translation, we own two sets of FOL
expression facts. We named them A and B. They represent the formalised
semantics of UML and FOM models. They can be used to verify the models
semantic equality. We will use a standard verification algorithm based on set
theory. The verification algorithm takes as input assumptions the two
expression sets, A and B.

The goal of the verification task is to demonstrate ∀x	Aሺxሻ ∧ ൓Bሺxሻ → ∅.

109

With this evaluation method we are able to demonstrate that the semantics
formalised in the initial conceptual model is equivalent or included into the
one transformed in FOM and so it is sufficient for our verification purpose.

4 Case study

Interoperability between organisational and manufacturing activities is crucial
in manufacturing enterprises. Production services have to produce, quickly
and efficiently, the good product at the right moment. For this reason, they
need at time information coming from others services, which need in return
precise and update data on production.
We propose here to study and present the first part of such a B2M
interoperability issue by considering a particular IS implemented in a real
manufacturing environment: Sage X3 as an Enterprise Resource Planning
(ERP) application.

Figure 19 - Sage X3 work order enriched process model

110

4.1 Specific analysed Enterprise Information System: Sage X3 ERP

An Enterprise Resource Planning (ERP) is an integrated computer-based
system used to manage internal and external resources including tangible
assets, financial resources, materials, and human resources [6]. Its purpose is
to facilitate the flow of information between all business functions inside the
boundaries of the organization and manage the connections to outside
stakeholders. Built on a centralized database, ERP systems centralise all
business operations into a uniform system environment. Sage X3 presents
different enterprise management functions: finance, commercial, industrial
and services.
The focus for this case study is (i) to analyse how the work order process
inside the Sage X3 application is modelled, (ii) to use the proposed modelling
process to externalise the implicit knowledge in the model structure.

The model depicted in figure 2 is already the result from the two first steps of
our approach. This means that we have already passed the “Reverse
Engineering” and the “Expert knowledge injection” stages. The
“Manufacturing Order Heading” concept is the management function of
production orders and planned activities. It allows the generation of a
production order by variation of one or more classifications and a single
production line. For each production order, the achievement of the material
benefits and sequencing operations is possible. This block captures general
information about the work order, such as, planning facility and facility of
production, status of the order (manufacturing order product). It allows
entering general information about the production order. The availability of
components is checked through the information given by the bill of material
related with the launched products.
Once that initial information is determined, the system updates the list of
materials and operations of the created or modified orders.

Step 1: Reverse Engineering
All these information are coded in the Sage application database. The first
step of our method is the reverse engineering to extract the initial conceptual
model.

Step 2: Expert Knowledge Injection
Currently the model depicted in Figure 2 is the result of the reverse
engineering step enriched by a domain expert because the architecture of the
Sage X3 ERP is built with all the database relationships implemented directly
into the application layer and not in the database. The reverse engineering
result, as shown in the lower part of the Figure 3, creates a model containing
unlinked classes with coded names.

The expert work was about cleaning this conceptual model according to the
best practices in the enterprise, modifying the attributes multiplicity, adding
explicit names to the concepts, the attributes and the associations and others
operations to fit the conceptual model to the “real” use of the Enterprise

111

Information System. A usual case that requests the domain expert attention is
about the mandatory properties in forms’ attributes.

Step 3: Fact-Oriented Transformation
Applying the pattern transformation rules, presented in the previous section,
class attributes are transformed into NOLOTs to increase the atomic
representation of the knowledge embedded into the model. These rules have
been coded using a programming language and then automatically executed
inside MEGA Suite.
Figure 4 shows an extract of the resulting FOM after applying our approach
to the Sage X3 work order process. The resulting full FOM is composed of 23
NOLOTs, 56 LOTs and 46 associations. It seems then that the resulting
model is much more complex than the initial one, which it is true in a visual
point of view but it is false in term of expressiveness of its semantics. Indeed,
the fine-grained atoms of semantics are now made explicit, which helps any
automatic computing. An important result is that such semantically detailed
model will help automating the next part of our methodology for semantic
gap evaluation, as presented in [41].

5 Conclusions

In this article, a conceptualisation approach for enacting implicit semantics
from Enterprise Information Systems is proposed. Our approach if divided
into 3 steps from the traditional reverse engineering process, through a
knowledge elicitation and model enrichment by domain experts, till making
use of fact-oriented modelling patterns to externalise tacit knowledge. These
patterns have been formalised in FOL axioms to verify their semantic
coherence. Our contribution can be assimilated to a reverse engineering
methodology. However, the main objective is to formalize the whole
semantics of such models in order to help automatic knowledge computing.
An industrial case study, related to an enterprise information system
implemented into an ERP system demonstrates the applicability of our
approach.
Our current work concerns applying this approach for evaluating the (non)-
interoperation through the measurement of the semantic gap occurring
between CISs interoperability [40] and [41].

112

Figure 3 – Sage X3 architecture and expert knowledge injection

113

Figure 4 – Sage X3 work order process model part transformed with fact-
oriented approach

114

REFERENCES

[1] Aspray, W. F. 1985. The Scientific Conceptualization of

Information: A Survey. Annals of the History of Computing, 7: 117-40.

IEEE

[2] Badia, A., 2002. Conceptual Modeling for Semistructured

Data. In Proceedings of the 3rd International Conference on Web

Information Systems Engineering Workshops (WISE 2002 Workshops), p.

170-177. Singapore.

[3] Barker, R. 1990, CASE* Method: Entity Relationship

Modelling, Addison-Wesley, Wokingham, England.

[4] Berardi, D., Calvanese, D., De Giacomo, G. (2005). Reasoning

on UML class diagrams, Artificial Intelligence 168 (1–2) 70–118.

[5] Bézivin, J., Kurtev, I. 2005. Model-based Technology

Integration with the Technical Space Concept. Proceedings of the

Metainformatics Symposium, Esbjerg, Denmark, November 8-11, 2005.

Springer-Verlag

[6] Bidgol, H., 2004. The Internet Encyclopedia, Volume 1, John

Wiley & Sons, Inc. p. 707.

[7] Carney, D., Fisher, D., Morris, E., Place P., 2005. Some

current Approaches to Interoperability. In technical note CMU/SEI-2005-

TN-033.

[8] Chen, D., Dassisti, M., Elvesaeter, B., Panetto, H., et al., 2006.

In DI.2: Enterprise Interoperability Framework and knowledge corpus,

Interoperability Research for Networked Enterprises Applications and

Software Network of Excellence, n° IST 508-011.

[9] Chiang Roger, H. L., Barron, T. M., Storey Veda, C., 1994. Reverse

engineering of relational databases: Extraction of an EER model from a

relational database. In Data & Knowledge Engineering. Vol. 12, Issue 2,

107-142.

[10] Czejdo, B., Elmasri, R., Rusinkiewicz, M. & Embley, D.W. 1990, ‘A

graphical data manipulation language for an extended entity-relationship

model’, IEEE Computer, March 1990, pp. 26-37.

115

[11] Engelbart, D.C., 1962. Augmenting human intellect: a conceptual

framework. In Menlo Park, CA: Stanford Research Institute.

[12] Euzenat, J., 2001. Towards a principled approach to semantic

interoperability. In CEUR Proceedings of the IJCAI-01 Workshop on

Ontologies and Information Sharing, Seattle, USA, August 4-5, , ISSN

1613-0073, Vol. 47., 19-25.

[13] Fonkam, M.M., Gray, W.A., 1992. An Approach to Eliciting the

Semantics of Relational Databases. In CAiSE 1992, Manchester, UK, May

12-15, 1992. Lecture Notes in Computer Science 593 Springer, ISBN 3-

540-55481-5. 463-480 Manchester, UK.

[14] Frankel D. S. 2003. Model Driven Architecture: Applying MDA to

Enterprise Computing. John Wiley & Sons.

[15] Guarino, N., 1998. Formal Ontology in Information Systems (Ed.) IOS

Press.

[16] Halpin, T.A. 1991, ‘A fact-oriented approach to schema

transformation’, Proc. MFDBS-91, Springer Lecture Notes in Computer

Science, no. 495, Rostock.

[17] Halpin, T., 1998. Handbook on Architectures of Information Systems

Chapter 4, eds P. Bernus, K. Mertins & G. Schmidt, Springer-Verlag,

Berlin.

[18] Henrard, L., Hainaut, J.-L., 2001. Data Dependency Elicitation in

Database Reverse Engineering Software Maintenance and Reengineering.

In Fifth European Conference on Software Maintenance and

Reengineering, pp. 11

[19] Hohenstein, U. & Engels, G. 1991, ‘Formal semantics of an entity-

relationship-based query language’, Entity-Relationship Approach: the core

of conceptual modelling (Proc. 9th ER conf.), ed. H. Kangassalo, Elsevier

Science Pub., Amsterdam

[20] IEEE: Standard Computer Dictionary, 1990. A Compilation of IEEE

Standard Computer Glossaries. In NY. 610-1990. ISBN: 1559370793.

116

[21] International Organization for Standardization, 1999. ISO 14528:

Industrial Automation Systems – Concepts and rules for Enterprise Models,

TC 184/SC5/WG1, Geneva, Switzerland.

[22] International Organization for Standardization, 2002. ISO 16100:

Manufacturing Software Capability Profiling for interoperability. In Part 1:

Framework, TC 184/SC5/WG4, Geneva, Switzerland.

[23] LaOngsri, S. 2009, Semantic Extensions and a Novel Approach to

Conceptual Modelling, Ph.D. Thesis, School of Computer Science,

Engineering and Mathematics, The Flinders University of South Australia

[24] Lezoche M., Panetto H., Aubry A., 2011, Conceptualisation approach

for Cooperative Information Systems interoperability. 13th International

Conference on Enterprise Information Systems ICEIS 101-110, Beijing, P.

R. China, DOI: 10.5220/0003508401010110.

[25] Mani, M.: EReX, 2004. A Conceptual Model for XML. In

Proceedings of the Second International XML Database Symposium

(XSym 2004), 128-142. Toronto, Canada.

[26] Manola, F., Miller, E., 2004. RDF Primer. In World Wide Web

Consortium, Recommendation REC-rdf-primer-20040210.

[27] Meersman, R., Tari, Z., 2003. Creating a “DOGMAtic” Multilingual

Ontology Infrastructure to Support a Semantic Portal On The Move to

Meaningful Internet Systems 2003. In OTM 2003 Workshops OTM

Confederated International Workshops, Lecture Notes in Computer

Science, Vol. 2889. ISBN: 978-3-540-20494-7, Catania, Italy.

[28] Nijssen, G.M. & Halpin, T.A. 1989, Conceptual Schema and

Relational Database Design, Prentice Hall, Sydney.

[29] Obrst, L., 2003 Ontologies for semantically interoperable systems. In

Proceedings of the 12th International Conference on Information and

Knowledge Management. New Orleans, USA

[30] OMG, 2003. Object Management Group. Architecture-Driven

Modernization specification http://adm.omg.org

[31] OMG, 2004. Object Management Group. UML 2.0 Superstructure

Specification http://uml.omg.org

117

[32] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen W.,

1991. Object Oriented Modeling and Design. Prentice Hall, Book

Distribution Center, New York, USA.

[33] Russel, S., Norvig, P. Artificial Intelligence, A Modern Approach'',

Prentice-Hall. Inc. 1995

[34] Seeley, R. S., 1997. Manufacturing execution systems in MED

DEVICE DIAGN IND. Vol. 19, no. 11, pp. 64-68.

[35] Sheth, A., 1998. Changing Focus on Interoperability in Information

Systems: From System, Syntax, Structure to Semantics. In M. Goodchild,

M. Egenhofer, R. Fegeas, and C. Kottman, editors. In Interoperating

Geographic Information Systems, pp. 5– 30. Kluwer.

[36] Smith, M.K., Welty, Ch., McGuinness, D.L., 2004. OWL Web

Ontology Language Guide. In World Wide Web Consortium,

Recommendation REC-owl-guide-20040210.

[37] Tolk, A., Diallo, S. Y., Turnitsa, C. D., 2007. Applying the Levels of

Conceptual Interoperability Modelling Support of Integrability,

Interoperability, and Composability for System-of-Systems Engineering. In

Journal of Systemics, Cybernetics and Informatics, Volume 5 Number 5,

pp. 65-74.

[38] Tursi, A., Panetto, H., Morel, G., Dassisti, M., 2009 Ontological

approach for Products-Centric Information System Interoperability in

Networked Manufacturing Enterprises. In IFAC Annual Reviews in

Control. 33/2, 238-245, Elsevier, ISSN: 1367-5788.

[39] Vyvyan, E., 2006. Lexical Concepts, Cognitive Models and Meaning-

Construction. In Cognitive Linguistics 17 (4): 491-534.

[40] Yahia E., Lezoche M., Aubry A., Panetto H. 2011. Semantics

enactment in Enterprise Information Systems. 18th IFAC World Congress.

Milan, Italy. IFAC PapersOnline.

[41] Yahia E., 2011. Contribution à l’Evaluation de l’Interopérabilité

Sémantique entre Systèmes d’Information d’Entreprises : Application aux

Systèmes d’Information de Pilotage de la Production. PhD Thesis,

Université Henri Poincaré, Nancy I (in French).

118

11 Appendix C

Semantics enactment in Enterprise Information Systems

Esma Yahia, Mario Lezoche, Alexis Aubry, Hervé Panetto

Research Centre for Automatic Control (CRAN), Nancy-University, CNRS, Campus
Scientifique, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-lès-Nancy

Cedex, France
(e-mail: {Esma.Yahia, Mario.Lezoche, Alexis.Aubry, Herve.Panetto}@cran.uhp-nancy.fr)

Abstract: The grown complexity of the modern enterprise poses a series
of challenges, among them keeping competitiveness in the fast
changing environment in which the enterprise evolves. Addressing
Enterprise Integration is considered as a key to achieve the goal of any
enterprise either it is a single or a networked enterprise. Enterprise
Modelling is a prerequisite to enable the common understanding of the
enterprises and its various interactions in order to “provide the right
information, at the right time, at the right place”. However, problems
often emerge from a lack of understanding of the semantics of the
elaborated models resulting from various modelling experience based
on different methods and tools. In this paper, we describe the challenges
associated to semantics enactment in Information Systems models. To
facilitate this enactment, we propose an approach based on a fact-
oriented modelling perspective. Then, we also provide an algorithm to
automatically build semantic aggregates that help in highlighting
Enterprise Models core embedded semantics. A case study on the field
of B2M interoperability is performed in order to illustrate the
application of the presented approach.

Keywords: Enterprise Models, Information Systems, Semantics
Enactment

1. INTRODUCTION

When evolving in a competitive global market, enterprises
are forced to become increasingly agile and flexible in order
to manage the fast changing business conditions. Today’s
challenges mainly concern Enterprise Integration (EI).
Indeed, EI deals with removing organisational barriers
and/or improving interactions among people, systems,
applications, departments, and companies (in terms of
material, informational, decision and workflows) (Vernadat,
2009)

Enterprise Modelling (EM) plays a critical role in this
integration, enabling the capture of all the information and
knowledge relevant for the enterprise operations and
organisation (Vernadat, 1996; Panetto and Molina, 2004)

The produced Enterprise Models are mainly related to
artefacts such as processes, behaviours, activities,
information, resources, objects/material flows, goals, systems
infrastructure and architectures... Those Enterprise Models
must contain the necessary and sufficient semantics in order

to be intelligible and then enabling the global Enterprise
Integration.

For instance, if we consider the process model, its business
semantics is mainly brought along by languages such as the
Business Process Modelling Notation (BPMN4). Moreover,
enriching this semantics is still an open issue; we can for
example quote those researches made by (Boudjlida and
Panetto, 2008) in terms of process models annotations.

Among all Enterprise Models, Information Systems (IS)
models are considered as the core models of the enterprise.
Concretely, the complexity of EI relies on the fact that an
enterprise (a single or a networked enterprise) comprises
numerous and heterogeneous Information Systems either at
the business or manufacturing level such as ERP (Enterprise
Resource Planning), MES (Manufacturing Execution
System), SCM (Supply Chain Management), PDM (Product
Data Management) and CRM (Customer Relationship
Management). Those ISs need i) to share specified
information and ii) to operate on that information according

																																																								
4 http://www.bpmn.org

	 	

to a shared operational semantics iii) in order to realise a
specified purpose in a given context. Achieving these actions
is commonly called interoperation (Whitman et al., 2006).

While studying an Information System (IS) model, we
observe that its semantics is tacit as it is scrambled due to the
implementation requirements.

The intent of this paper is to define a method for semantics
enactment in IS. This allows bringing out the tacit semantics
in order to get explicit semantics required when studying and
using Enterprise Models.

In section 2, we present a modelling approach called fact-
oriented modelling that allows releasing all the entities within
the ISs conceptual models.

A recursive approach is thus proposed, in section 3, to
analyse the detailed semantics of those ISs conceptual model.
This approach starts by representing the basic concepts and
ends by building semantic aggregates (so-called semantic
blocks) according to predefined rules.

In order to illustrate the proposed approach, a case study is
presented in the section 4. This case study deals with B2M
(Business to Manufacturing) interoperability requirements
between an Enterprise Resource Planning (ERP) system and
a Manufacturing Execution System (MES) applications and
consists in applying our approach in order to extract the
semantics embedded into those ISs.

Finally, we conclude this paper with some remarks and
perspectives for ongoing research.

2. FACT-ORIENTED PERSPECTIVE FOR
SEMANTICS MODELLING

2.1 Fact-oriented modelling

The difficulty of operating with the various
Enterprise Models comes out from the fact that the
majority of those models have been made by
different experts with several modelling
experiences. That has led, for instance, to various
conceptual representations for the same semantics.
Since the majority of conceptual models have been
fulfilled a posteriori and not a priori,
implementation-based functionalities and
constraints can cause interferences in the semantics
understanding of those models. Let us consider, for
instance, the extract of two different conceptual
models in figure 1. Intuitively, those classes carry
the same semantics, but are modelled differently.
For instance, the WEIGHT of a PRODUCT on the
right side of the figure is represented by a class due
to an implementation constraint; when other
classes are related to it, this facilitates querying for
specific values related to the weight for example.
While, on the left side of the figure, the WEIGHT

of a PRODUCT is modelled by two attributes (its
value and its unit).

Fig. 1. Two extracts of conceptual models.

Fact-oriented modelling is a conceptual, natural
language based approach avoiding such conflicting
conceptual representations. It queries the
information semantics of business domains in
terms of the underlying facts of interest, where all
facts and rules may be verbalised in a language
readily understandable by users of those business
domains (Halpin, 2007). Fact-oriented models are
attribute-free, treating all elementary facts as
relationships.

Object-Role Modelling (ORM) is the most popular
fact-oriented approach. In fact, ORM makes no
explicit use of attributes; instead it pictures the
world in terms of lexical and non-lexical concepts
that play roles (take part in relationships) (Halpin,
1998). This leads to a greater semantics stability
and populatability, as well as facilitates natural
verbalisation (Halpin, 2007).

In our work, we could use ORM as a modelling
language. However, the existing conceptual
models, in industrial context, are mainly
represented with the UML notation. Hence getting
a spread out of an attribute-free conceptualisation
could be made using the UML notation but based
on the ORM approach. Taking into account the
ORM definitions, we will use the UML class
diagram notation and we then call the UML
concepts and the UML attributes as respectively
non-lexical concepts and lexical concepts.

When applying the fact-oriented modelling on the
examples of the figure 1, we obtain the following
models (figure 2) that eases the semantics
enactment.

PRODUCT

Weig ht-un

Weight-va l

0..1

Has
1

0..1
Has

1

PRODUCT

+Weight-val[0..1]:int
+Weight-un[0..1]:UNIT

PRODUCT

WEIGHT

+val[1]:int
+un[1]:UNIT

0..11

IS1	
IS2	

PRODUCT

WEIGHT

va l

un

1Has 1 1 Has
1

1 0..1

IS1	 IS2	

	 	

Fig. 2. The conceptual models of Fig. 1 using the fact-
oriented modelling perspective.

2.2 Core and extended knowledge

When considering an available fact-oriented
conceptual model from one IS, we can distinguish
the mandatory and non-mandatory “relationships”,
which represent mandatory and non-mandatory
concepts expressing semantics.

In fact, the mandatory concepts contain all the
necessary and sufficient elements to make the IS
conceptual model semantically coherent and
understandable. It comprises all the non-lexical and
lexical concepts linked to constraint association
roles with a multiplicity of 1 or 1..*. On the
contrary, the non-mandatory concepts correspond
to the non-mandatory roles (constraints 0..1 or *)
and are only enriching the semantics of those IS
conceptual models.

Somehow, the mandatory knowledge corresponds
to the minimal semantics that should be contained
in a given IS conceptual model. It could eventually
represent the essence of the IS that is the core
knowledge of the conceptual model. The extended
knowledge includes the core and the non-
mandatory knowledge.

Let us note that we consider that these models have
made correct and that the implicit constraints are
all represented explicitly in those models, that
means that any constraint implemented into the
software by developers have been reported in the
models, themselves through roles multiplicities.

2.3 Some mathematical definitions

We define, for each IS conceptual model, the following
notations.

Definition 1. ܣூௌ is the set of the identified attributes or
lexical concepts, formally defined by
ூௌܣ ൌ ሼܽ௜|ܽ௜	is an attribute from the IS conceptual modelሽ

Definition 2. ܥூௌ is the set of the identified concepts or non-
lexical concepts, formally defined by

ூௌܥ ൌ ሼܿ௜|ܿ௜	is	a	concept	from	the	IS	conceptual	modelሽ

Definition 3. RelIS is the set of the identified binary
relationships between concepts such as hierarchy relationship
and also between concepts and their related attributes.
Formally, it is defined by

RelIS= ൝
൛rela൫cj,ܽ௜൯ห൫cj,ܽ௜൯∈	ܥூௌ×	ܣூௌ ∧cj is related to	ܽ௜ ൟ

∪ ቄrelc ቀcj,cj'ቁ ቚ ቀcj,cj'ቁ∈	ܥூௌ
ଶ ∧ cj is related to ௝ܿᇲ ቅ

ൡ

Definition 4. Multiplicity is defined as Multiplicity = {*,
0..1, 1, 1..*} and serves to count the minimum and maximum
number of instances when linking two given entities from the
IS conceptual model. For each	൫݁௜, ௝݁൯ ∈ ሼሺܥூௌ ൈ ,ூௌሻܣ ሺܥூௌ

ଶ ሻሽ,
we have ,൫݁௜ݐ݈ݑܯ	 ௝݁൯ ∈ ሼ∗ ,0. .1,1,1. .∗ሽ and it is read 	݁௜ is
related to	 ௝݁ with a multiplicity	∈ ሼ∗ ,0. .1,1,1. .∗ሽ.

If we consider a concept defined in the context of the IS core
knowledge, we notice that in order to be semantically
effective in the studied domain, this concept needs to be
related on the one hand to its mandatory attributes and on the
other hand to other concepts. This defines the notion of
Semantic Block.

3. SEMANTIC BLOCK IDENTIFICATION

3.1 Definition of a semantic block

Considering a particular concept ܿ from ܥூௌ , a
semantic block, denoted as ܤሺܿሻ and associated
with the concept ܿ, represents the minimal set of
non-lexical concepts necessary for the minimal
semantics definition of the concept ܿ given by the
conceptual model.

Let us consider the conceptual model on figure 3.

Fig. 3. A conceptual model

A given instance of the concept 1ܥ exists only if it
is associated with exactly one instance of the
concept 3ܥ and at least one instance of the
concept 2ܥ	 . That means that 2ܥ	 and 3ܥ	 are
mandatory for expressing the semantics of 1ܥ	 .
Moreover an instance of 3ܥ exists only if it is
associated with at least one instance of 4ܥ and at
least one instance of	6ܥ. On the contrary, as the

C1

C2

C3

C4

1..*

C1C2

*

1C1C3
*

1..*

C3C4
0..1

C5

1..*C2C5_20..1

1 C2C5_1 *

C8

1

C5C8

*

C6

1..*

C3C6
1..*

C7

1C4C7_21

1..*

C6C7

*

1

C6C80..1

*

C5C6

0..1

*

C2C3

*

1

C4C7_1
1..*

0..1

C1C8

0..1

*

C8C8

1

	 	

minimal multiplicity is 0 for role 5ܥ when
considering the association between 6ܥ and	5ܥ, the
existence of any instance of 6ܥ is not conditioned
by the existence of one instance of 	5ܥ.

Finally, continuing the same reasoning step by
step, we can demonstrate that all the concepts are
mandatory for expressing the semantics of 1ܥ .
That means
that	ܤሺ1ܥሻ ൌ ሼ1ܥ, ,2ܥ ,3ܥ ,4ܥ ,5ܥ ,6ܥ ,7ܥ 8ሽ. Theܥ
semantic block of a concept ܿ	finally contains all
the concepts that must be instantiated for ensuring
the existence of one instance of	ܿ.

3.2 A semantic-relationships graph

To facilitate the building of the semantic blocks,
we propose to use graph theory modelling.

Let us define a semantic-relationships graph
associated with a conceptual model. This semantic-
relationships graph is a digraph ܩ ൌ ሺܸ, ሻ whereܧ
ܸ is the set of nodes and ܧ is the set of edges
defined by a pair of nodes. Each node from ܸ
represents a non-lexical concept of the conceptual
model. Each edge from ܧ is built from the
conceptual model as follows: the edge ൫ܿ௜, ௝ܿ൯
exists if (i) there is an association between ܿ௜ and ௝ܿ
in the conceptual model, and (ii) if the minimal
multiplicity for the role	 ௝ܿ, considering the existing
association between ܿ௜ and ௝ܿ , is equal to 1. That
means that the existence of the edge ൫ܿ௜, ௝ܿ൯
represents the fact that ௝ܿ is mandatory for
expressing the semantics of ܿ௜.

For each ݁ ∈ ܧ , we define the function ܫ: ܧ → ܸ
that gives the initial node of the edge ݁ and we
define the function ܶ: ܧ → ܸ that gives the
terminal node of the edge ݁.

The figure 4 shows the semantic-relationships
graph associated with the conceptual model of the
figure 3.

Fig. 4. Semantic-relationships graph associated with the
conceptual model of figure 3.

3.3 Some Properties

Theorem 1. Given two particular concepts ܿ௜ and
௝ܿ, ௝ܿ belongs to ܤሺܿ௜ሻ if and only if there exists a

directed path from ܿ௜ to ௝ܿ.

Proof. Let us consider the conceptual model on
figure 3. To build the semantic block of the
concept ܿ௜, we consider this concept as the starting
point. This concept can thus be considered as the
root in the associated semantic-relationships graph.
Now we add in ܤሺܿ௜ሻ all the concepts ܿ௞ that must
be instantiated to ensure the existence of a
particular instance of ܿ௜ , i.e. all the concepts ܿଵ௞
such that there is an association between ܿ௜ and ܿଵ௞
in the conceptual model, and the minimal
multiplicity for ܿଵ௞, considering this association, is
equal to 1. This is the exact definition of all the
successors of ܿ௜ in the semantic-relationships
graph. Note that, by definition, there is a directed
path from the concept ܿ௜ to these concepts ܿଵ௞ .
Iteratively, the only new concepts ܿଶ௞ that can be
added to ܤሺܿ௜ሻ are the successors of those first
concepts ܿଵ௞ . As successors of the concepts ܿଵ௞ ,
there exists also a directed path from the concept ܿ௜
to the concepts ܿଶ௞ (the path from ܿ௜ to ܿଵ௞ plus the
edge ሺܿଵ௞, ܿଶ௞ሻ). Finally the semantic block of ܿ௜
contains exactly all the concepts ௝ܿ such that there
exists a directed path from ܿ௜ to ௝ܿ. ∎

Theorem 2. Given two particular concepts ܿଵ and
ܿଶ, if ܿଶ belongs to ܤሺܿଵሻ then ܤሺܿଶሻ is included in
 .ሺܿଵሻܤ

Proof. ܿଶ belongs to ܤሺܿଵሻ means that there exists
a path from ܿଵ to ܿଶ (see theorem 1). Let us now
consider a particular concept from ܤሺܿଶሻ denoted
as ܿ . By definition of ܤሺܿଶሻ, there exists a path
from ܿଶ to ܿ and then a path from ܿଵ to ܿ (the path
from ܿଵ to ܿଶ plus the path from ܿଶ to ܿ). That
means that ܿ is in ܤሺܿଵሻ. Finally ܤሺܿଶሻ ⊆ ∎ .ሺܿଵሻܤ

Theorem 3. All the concepts that are in the same
cycle in the semantic-relationships graph are
associated with the same unique semantic block.

Proof. A cycle is a closed path. Let us consider
two particular concepts, denoted as ܿ௜ and ௝ܿ ,
which belong to a cycle. In particular there is a

	1ܥ

	2ܥ

	3ܥ

	5ܥ

	8ܥ

	4ܥ 	7ܥ

	6ܥ

	 	

path from ܿ௜ to ௝ܿ . That means that ௝ܿ is in ܤሺܿ௜ሻ.
Following the theorem 2, we can also demonstrate
that ܤ൫ ௝ܿ൯ ⊆ ሺܿ௜ሻ. Moreover, there is a path fromܤ

௝ܿ to ܿ௜ . That means that ܿ௜ is in ܤ൫ ௝ܿ൯. Following
the theorem 2, that means that ܤ൫ ௝ܿ൯ ⊇ ሺܿ௜ሻܤ .
Finally, ܤ൫ ௝ܿ൯ ൌ ∎ .ሺܿ௜ሻܤ

For each cycle of the semantic-relationships graph,
the theorem 3 implies that there is one shared
semantic block associated with all the concepts that
are in the same cycle, i.e. a strongly connected
component of the semantic-relationships graph.
Thus there is one semantic block per strongly
connected component of the semantic-relationships
graph.

3.4 Building the semantic blocks

Applying the theorems 1 to 3, we propose the
following procedure to build all the semantic
blocks of a given conceptual model:

Building the associated semantic-relationships
graph, based on this associated semantic-
relationships graph, building the graph of the
strongly connected components,

And finally, building the semantic block associated
with each strongly connected component.

3.4.1 Building the associated semantic-
relationships graph

Following theorem 1, the semantic block of a
concept ܿ contains all the concepts ܿ′ such that it
exists a directed path from ܿ to ܿ′ in the associated
semantic-relationships graph. This graph can be
easily obtained by considering each association
between two concepts ܿ௜ and ௝ܿ and then building
an edge from ܿ௜ to ௝ܿ if the minimal multiplicity for

௝ܿ is equal to 1.

3.4.2 Building the graph of the strongly connected
components

Theorem 3 implies that for building the semantic
blocks, we can consider only one concept in a
given strongly connected component (the other
concepts have the same semantic block), that is the
reason why we can simplify the semantic-
relationships graph by considering only a graph
where the nodes are the strongly connected

components of the semantic-relationships graph
and where an edge from one strongly connected
component ܵ1ܥܥ to a second strongly connected
component ܵ2ܥܥ exists if there exists at least one
edge from a concept from ܵ1ܥܥ to a concept from
 .2ܥܥܵ

Identifying all the strongly connected components
of a graph is an easy problem that can be solved
with polynomial effort by using Kosaraju-Sharir’s
algorithm (Sharir, 1981).

The graph of the strongly connected components
associated with the semantic-relationships graph of
figure 4 is given on figure 5. On this graph, the
strongly connected components are defined as
follows 1ܥܥܵ	 ൌ ሼ1ܥሽ 2ܥܥܵ , ൌ ሼ2ܥ, 5ሽܥ 3ܥܥܵ , ൌ
ሼ3ܥ, ,4ܥ ,6ܥ 4ܥܥܵ 7ሽ andܥ ൌ ሼ8ܥሽ.

Fig. 5. Graph of the strongly connected components

associated with the Semantic-relationships graph of figure 4.

3.4.3 Building the semantic block associated with
each strongly connected component

We propose now a set of 2 algorithms to build all
the semantic blocks associated with each strongly
connected component (see Algo 1 and 2). The
algorithm BuildSemBlocks is applied on the graph
of the strongly connected components (denoted as
 .(ௌ஼஼ܩ

Let us apply the algorithm
 .ௌ஼஼ሻ on the graph of figure 4ܩሺݏ݇ܿ݋݈ܤ݈݉݁ܵ݀݅ݑܤ
We obtain the following semantic
blocks: ܤሺܵ1ܥܥሻ ൌ 1ܥܥܵ ∪ 2ܥܥܵ ∪ 3ܥܥܵ ∪
 ,4ܥܥܵ

2ሻܥܥሺܵܤ ൌ 2ܥܥܵ ∪ ,4ܥܥܵ

3ሻܥܥሺܵܤ ൌ 3ܥܥܵ ∪ and 4ܥܥܵ

4ሻܥܥሺܵܤ ൌ .4ܥܥܵ

And finally replacing the strongly connected
components by their content we obtain the
following semantic blocks:

1ሻܥሺܤ ൌ ሼ1ܥ, ,2ܥ ,3ܥ ,4ܥ ,5ܥ ,6ܥ ,7ܥ ,8ሽܥ

1ܥܥܵ

	2ܥܥܵ

	3ܥܥܵ

4ܥܥܵ

	 	

,2ܥሺܤ 5ሻܥ ൌ ሼ2ܥ, ,5ܥ ,8ሽܥ

,3ܥሺܤ ,4ܥ ,6ܥ 7ሻܥ ൌ ሼ3ܥ, ,4ܥ ,6ܥ ,7ܥ 8ሽ andܥ

8ሻܥሺܤ ൌ ሼ8ܥሽ.

Algorithm ݏ݇ܿ݋݈ܤ݈݉݁ܵ݀݅ݑܤሺܩௌ஼஼ሻ

[Initialisation]
 ௌ஼஼ܩ List of the strongly connected components in :ܮ
For each ܵܥܥ ∈ Do ܮ

ሻܥܥሺܵݎ݋݈݋ܿ ൌ െ1
 ܥܥܵ is an indicator that defines if a node ݎ݋݈݋ܿ]
has already been visited or not]
[-1 means not yet visited]
[0 means being visited]
[+1 means already visited]

Next ܵܥܥ
For each ܵܥܥ ∈ Do ܮ

If ܿݎ݋݈݋ሺܵܥܥሻ ൌ െ1 Then
[Building of the semantic block associated with
 [ܥܥܵ
 ሻܥܥሺܵܤ݈ܵ݀݅ݑܤ

EndIf	

Next ܵܥܥ
Return

Algo. 1. BuildSemBlocks algorithm

Algorithm ܤ݈ܵ݀݅ݑܤሺܵܥܥሻ

[Initialisation]
ሻܥܥሺܵܤ ൌ ܥܥܵ [The semantic block associated with
SCC initially contains all the concepts in the SCC]
ሻܥܥሺܵݎ݋݈݋ܿ ൌ 0 [SCC is being visited]	

[Building]
[use of theorem 1]
For each ܵܥܥ’ successor from ܵܥܥ in ܩௌ஼஼ Do

If ܿݎ݋݈݋ሺܵܥܥ’ሻ ൌ െ1 Then
[Building of the semantic block associated with
 [’ܥܥܵ
 ሻ’ܥܥሺܵܤ݈ܵ݀݅ݑܤ

EndIf
[Use of theorem 2]
ሻܥܥሺܵܤ ൌ ሻܥܥሺܵܤ ∪ ሻ’ܥܥሺܵܤ

Next ܵܥܥ’ successor from ܵܥܥ in ܩௌ஼஼

Return B(SCC)

Algo. 2. BuildSB algorithm

3.4.4 The semantic block architecture Meta-model

In this section, we propose to formalise the
semantic block architecture by the meta-model
represented on the figure 6. This meta-model uses
the pattern composite (Gamma et al., 1995). The
intent of this pattern is to compose the elements of
the model into tree structures to represent part-
whole hierarchies. In fact, each concept defined in
a given context details its semantics and can be
afterwards subsumed by a Semantic Block.
Besides, the semantics of a set of aggregated
concepts could be defined by a Semantic Block.
Thus the Semantic Block properties emerge from
the fact that those concepts are related to each
others. Moreover, a Semantic Block could contain
other blocks; this means that a given semantics
could be subsumed by low level semantics. The
“Block System” represents the last level of the
Semantic Block aggregation, it could be interpreted
as the semantics of the IS itself.

Fig. 6. The semantic block architecture meta-model

3.4.5 The automatic elaboration of semantic
blocks

In this part, we present the tool prototype that
automatically computes the semantic blocks for a
given IS conceptual model. In fact the procedure
presented in section 3.4 has been implemented into
the MEGA EA Suite. The MEGA EA Suite
provides repository-based modelling tools to
support projects ranging from capability mapping,
to process analysis and application analysis and
design. Covering all layers and phases of
Enterprise Architecture, all modules are integrated

	 	

into a consistent end to end solution5. Moreover
the MEGA EA Suite supports UML notations and
allows building our own meta-model based on its
ad-hoc meta-model. The meta-model presented on
figure 6 has been implemented into the MEGA EA
Suite. In this implementation, the semantic block is
conceptualised as an UML package and the lexical
and non-lexical concepts are conceptualised as
UML classes.

The procedure presented in section 3.4 has been
implemented taking advantage of MEGA
programming facilities.

Figure 7 shows an extract of the result after
computing the implemented algorithm on the
conceptual model presented in figure 3. This figure
shows the semantic block ܤሺ2ܥ, 5ሻܥ denoted as
SB(2) (represented as an UML package) associated
with 2ܥ and 5ܥ	 , and including the concept 8ܥ	 .
Figure 8 shows the sub-model formalising the
semantics of ܤሺ2ܥ, 5ሻܥ . This sub-model is the
extract of the complete conceptual model given on
figure 3 by conserving only the concepts contained
in ܤሺ2ܥ, 5ሻ and the associations concerning theseܥ
concepts.

Fig. 7. The semantic block ܤሺ2ܥ, 5ሻ for the conceptualܥ
model of figure 3

Fig. 8. The conceptual model of SB(2) = ܤሺ2ܥ, 5ሻܥ

																																																								
5 http://www.mega.com/uk/p/product/p2/enterprise-
architecture

4. CASE STUDY: RAW MATERIAL
PURCHASE

In order to illustrate the proposed approach of ISs
semantics enactment, we choose the following case
study that consists of two ISs dealing with B2M
interoperability requirement. These ISs have been
provided by a local technical centre: the AIPL-
PRIMECA 6 (Atelier Inter-établissements de
Productique Lorrain) in which the ERP Sage X3
application is cooperating with the MES Flexnet
application in order to insure the manufacturing of
a certain family of products. In such industrial
large scale Enterprise Information Systems,
applications comprise a multitude of tables and
relations. Flexnet (a MES application) has around
800 tables with 300 relations, once we
conceptualise its model, we get about 600 concepts
and 500 associations. SAGE X3 has around 1600
tables with 900 relations, and when it is
conceptualised, 1200 concepts and 1000
associations can be highlighted.

Actually, a specified process has been chosen to
support our research; it consists of the Raw
Material Purchase. For instance, Figure 9
represents the conceptual model for the purchase
order process related to Flexnet.

When considering the long term planning, the ERP
computes, for a given period, its needs in term of
raw materials and then launches some purchase
orders. Hence, those purchase orders have to be
exported from the ERP to the MES that have to
bring backward the ERP with the stock state and
the purchase order status.

Once we apply the fact-oriented modelling with the
UML notation, the tool generates the normalised
conceptual models of Flexnet on figure 10 and the
conceptual model of Sage X3 on the figure 11.

In order to extract the semantics from MES and
ERP conceptual models, we compute the
implemented algorithm for Flexnet and Sage X3
conceptual model.

Table 1 and 2 lists the different semantic blocks
related to respectively Sage X3 and Flexnet
applications, for purchase order process.

																																																								
6 AIPL-PRIMECA, www.aip-primeca.net/lorraine/

SB(2)

C2

C5

C8

Is associated with

Belongs to

C2

C5

C8

1

C8C8

*

1

C5C8

*

1

C2C5_1

*

1..*

C2C5_2
0..1

	 	

Figure 12 shows all the semantic blocks related to
the Flexnet Purchase order.

Figure 13 shows the conceptual model associated
to the semantic block ሻܶܥܷܦሺܴܱܲܤ	 , and
including all the mandatory concepts required to
obtain the full semantics for the
concept	ܴܱܲܶܥܷܦ.

Table 7. Sage X3 semantic blocks

Semantic Block Concepts

Block system 1=
B1(Purchase order) =
B1(Purchase order
quantity)=
B1(PurchaseRequestDetail)
= B1(PurchaseRequest)=

Purchase order,
Purchase order
quantity,
PurchaseRequestDet
ail,
PurchaseRequest,
Supplier,
BusinessPartner,
Facility, Units,
Product,
ProductFacility,
Command number,
Command Date,
Command Line,
Command Type,
Stock Unit, Total
Included Taxes,
QuantityOrdred,
PurchaseRequestQu
antity,
PurchaseRequestLin
e, Customer,
RequestNo,
RequestDate

B1(Supplier) Supplier,
BusinessPartner,
CorporateName,
SupplierDescription,
Tiers, Interfacility

B1 (Facility) Facility, Adress,
SIRETNumber,
FacitityType,
Country, GeoCode,
FacilityID,
NAFcode

B1(Units) Units,
UnitDescription,

Unit, Symbol

B1(Product) =
B1(ProductFacility)

Product,
ProductFacility,
Supplier,
BusinessPartner,
Facility, Units,
ProductNo,
ProductDescription,
Article Code,
CreationDate

Table 2. Flexnet semantic blocks

Semantic Block Concepts

Block system 2 All the concepts

B2 (WAREHOUSE) WAREHOUSE,
WarehouseID,
FACILITY, FacilityID,
Division

B2(ORDER_PARTNER) ORDER_PARTNER,
PartnerOrderNo,
PartnerOrderType,
PARTNER, PartnerID

B2(PARTNER_ADDRESS) PARTNER_ADDRESS,
AdressID, PARTNER,
PartnerID

B2(PARTNER) PARTNER, PartnerID

B2(WIP_ORDER,
ORDER_DETAIL,
ORDER_HEADER,
WIP_ORDER_TYPE)

WIP_ORDER,
WipOrderNo,
CreatedOn,
OrderQuantity,
WIP_ORDER_TYPE,
WipOrderType,
ORDER_DETAIL,
OrderLineNo,
CreatedOn,
ORDER_HEADER,
OrderDate, OrderNo,
WIP_ORDER_STATUS
, WipOrderStatus,
PROCESS, ProcessId,
ProcessDescription,
FUID, FACILITY,
FacilityId, Division,
PRODUCT,
LotTrackingCode,
ProductId, ProductNo,
RevisionControlFlag,
SerialTrackingCode,
UOM, UOMCode,
ORDER_STATUS,

	 	

OrderStatus

B2 (PROCESS) PROCESS, ProcessId,
ProcessDescription,
FUID

B2 (PRODUCT) PRODUCT,
LotTrackingCode,
ProductId, ProductNo,
RevisionControlFlag,
SerialTrackingCode,
UOM, UOMCode,
FACILITY, FacilityId,
Division,

B2 (UOM) UOM, UOMCode

B2(WIP_ORDER_STATUS) WIP_ORDER_STATUS
, WipOrderStatus

B2 (FACILITY) FACILITY, FacilityId,
Division,

B2(ORDER_STATUS) ORDER_STATUS,
OrderStatus

Fig. 9. Conceptual model for the purchase order process from Flexnet

FACILIT Y

Facility:P-Varchar
Active:P-Byte

W IP_ORDER

WipOrderNo:P-Varchar
Active:P-Byte

0..1

*

ORDER_DET AIL

OrderLineNo:P-Integer
Active:P-Byte

0..1

*

0..1

*

ORDER_HEADER

OrderNo:P-Varchar
Active:P-Byte

1 *
IsDetailed

PRODUCT

ID:P-Integer
ProductNo:P-Varchar
LotTrackingCode:P-Tinyint
SerialTrackingCode:P-Tinyint
FractionAllowed:P-Byte
RevisionControlFlag:P-Byte
Active:P-Byte

0..1

*

1

*

W IP_ORDER_T YPE

WipOrderType:P-Smallint
Active:P-Byte 11..*

1

*ListedIn

ORDER_ST ATUS

OrderStatus:P-Smallint
Active:P-Byte

1HasStatus

*

1

HasStatus

*

ORDER_PART NER

ID:P-Timestamp
Active:P-Byte

PARTNER

ID
Active

1 *

0..1

HasPartner*

W IP_ORDER_ST AT US

WipOrderStatus:P-Smallint
Active:P-Byte

0..1

*

PROCESS

ID:P-Integer
FUID:P-Varchar
Process:P-Varchar
Active:P-Byte

0..1

*

0..1

*

0..1

*

UOM

UomCode:P-Varchar
Active:P-Byte

0..1

*

1

*

0..1

*

W AREHOUSE

Warehouse:P-Varchar
Active:P-Byte

0..1*

0..1

*

1

*

0..1
*

0..1
*

	 	

Fig. 10. The conceptual model of a purchase order in Flexnet application: fact-oriented model

FACILIT Y

W IP_ORDER

ORDER_DETAIL

0..1

*

ORDER_HEAD ER

 1 *

IsDetailed

PRODUCT

1

*

W IP_ORDER_T YPE

1 1..*

1

*ListedIn

ORDER_ST AT US

1
HasStatus

*

1
HasStatus

*

W IP_ORDER_ST ATUS

PROCESS

0..1

*

0..1

*

U OM

1

*

0..1

*

OrderNo

11

W ipOrderT ype

1 1

OrderSta tus

11
OrderL ineN o

1

1

W ipOrderNo

1

1

W ipOrderStatus

1

1

Fac ilityID

 1 1

Produc tID

Produc tNo

LotT rac k ingCode

SerialT rac k ingCode

Rev isionContro lFlag

1

1

1

1

1

1

1
1

1

1

Proc essId

FUID

Proc essDesc ript ion

1 1

1

11

1

*

1

1
HasStatus

*

1

IsRelated

*

1
IsRelated

*

1

IsRelated

*

1

HasUnit

*

OrderDate

 1
1

CreatedOn

OrderQuant ity

1

1

Crea tedOn

1

1

Div ision

1 1

PART NER_ADDRESS

PARTN ER

1

*

HasAdress

0..1
HasPartner

*

ORDER_PART NER

0..1

*
1

*

PartnerID

11

AdressID

UOMCode

1

1

PartnerOrderNo

PartnerOrderT ype

11

1

1

W AREHOUSE

0..1

*

0..1

*

1

*

0..1

*

0..1

*

W arehouseID

1

1

1

1

1

1

	
	

	

Fig. 11. The conceptual model of a purchase order in SAGE X3 application: fact-oriented model

Fig. 12. The computed semantic blocks related to the Flexnet Purchase order

Fig. 13. The conceptual model associated to the semantic block B(PRODUCT)

FACILIT YPRODUCT

1*

LotT rac k ingCode

11

Rev isionContro lFlag

1
1

Fac ilityID

1

1

D iv ision

1

1

SerialT rac
k ingCode

11

Produc tNo

1

1

Produc tID

1

1

UOM

1

*

UOMCode

 11

UNITE, 2011 Printed in Romania

6. CONCLUSION

Semantics enactment among ISs conceptual models is a critical issue in the context of Enterprise Models. Indeed, extracting
these semantics has the advantage to ease the understanding and then the use of the exchanged information among
heterogeneous information systems (In single or distributed Enterprises)

We proposed in this paper the fact-oriented modelling to get a spread out representation for ISs conceptual models. This has
allowed us to identify the Core and the extended Knowledge for a given IS, respectively composed by the mandatory and non
mandatory concepts.

The originality of this paper lies on the elaboration of the semantic blocs for enacting Enterprise Models semantics embedded
and, often hidden, in complex Information Systems models. Moreover, each semantic block identifies and emphasises the border
of one sub-system model with its own core semantics. It focuses on “what is important” in the system without taking care on
implementation artefacts.

We illustrate the semantics blocks identification in a use case based on existing B2M applications: the ERP Sage X3 and the
MES Flexnet enterprise software applications, which have to interoperate in order to achieve a global process performance.

Future work aims at using the semantic blocks formalisation in order to facilitate models matching and concepts mapping when
formalise and evaluate the interoperability process between enterprise applications in a virtual networked enterprises
environment.

REFERENCES

Boudjlida N., and Panetto, H. (2008). Annotation of enterprise models for interoperability purposes. In Proceedings of the
IWAISE 2008.

Gamma E., Helm R., Johnson R., and Vlissides J. (1995). Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, Reading, Springer, Heidelberg.

Halpin T. (1998). Object-Role Modeling (ORM/NIAM), Handbook on Architectures of Information.
Halpin, T. (2007). Fact-oriented modeling: Past, present and future. In J. Krogstie, A. Opdahl & S. Brinkkemper (eds),

Conceptual Modelling in Information Systems Engineering, pages 19–38. Berlin: Springer-Verlag,
Panetto H., Molina A. (2008). Enterprise Integration and Interoperability in Manufacturing Systems: trends and issues. In A.

Molina and H. Panetto (Eds), Special issue on Enterprise Integration and Interoperability in Manufacturing Systems.
Computers In Industry, 59(5), May, Elsevier, ISSN: 0166-3615

Sharir, M. (1981). A Strong-Connectivity Algorithm and its Applications in Data Flow Analysis. Computers and Mathematics
with Applications, 7, 67-72.

Vernadat, F.B. (2009). Enterprise Integration and Interoperability. In Springer Handbook of Automation, pages 1529-1538.
Vernadat, F.B. (1996). Enterprise Modelling and Integration: principles and applications. Chapman and Hall, ISBN: 0 412

60550 3

Whitman, L., Santanu, D. and Panetto, H. (2006). An Enterprise Model of Interoperability. In: Proceeding of the 12th IFAC
Symposium on Information Control Problems, in Manufacturing (INCOM'2006). Elsevier, Saint Etienne, France

CONTROL ENGINEERING AND APPLIED INFORMATICS 130

12 Appendix D

Why, Where and How to use Semantic Annotation

for Systems Interoperability

Yongxin Liao1, Mario Lezoche1, 2, Hervé Panetto1, Nacer Boudjlida2
1Research Centre for Automatic Control (CRAN), Nancy-University, CNRS, BP 70239,

54506 Vandoeuvre-lès-Nancy Cedex, France
{Yongxin.Liao, Mario.Lezoche, Herve.Panetto }@cran.uhp-nancy.fr

2LORIA, Nancy-University, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex,France,
Nacer.Boudjlida@loria.fr

Abstract: Semantic annotation is one of the useful solutions to enrich target’s (systems, models, meta-
models, etc.) information. There are some papers which use semantic enrichment for different purposes
(integration, composition, sharing and reuse, etc.) in several domains, but none of them provides a
complete process of how to use semantic annotations. This paper identifies three main components of
semantic annotation, gives a formal definition of semantic annotation method and presents a survey of
current semantic annotation methods which include: languages and tools that can be used to develop
ontology, the design of semantic annotation structure models and the corresponding applications. The
survey presented in this paper will be the basis of our future research on models, semantics and
architecture for systems interoperability.

Keywords: Semantic Annotation, Models, Ontology, Systems Interoperability.

CONTROL ENGINEERING AND APPLIED INFORMATICS 131

1. INTRODUCTION

Nowadays, the need of systems collaboration across enterprises and through different domains has become more
and more ubiquitous. But because the lack of standardized models or schemas, as well as semantic differences
and inconsistencies problems, a series of research for data/model exchange, transformation, discovery and reuse
are carried out in recent years. One of the main challenges in these researches is to overcome the gap among
different data/model structures. Semantic annotation is not only just used for enriching the data/model’s
information, but also it can be one of the useful solutions for helping semi-automatic or even automatic systems
interoperability.

Semantically annotating data/models can help to bridge the different knowledge representations. It can be used
to discover matching between models elements, which helps information systems integration (Agt, et al., 2010).
It can semantically enhance XML-Schemas’ information, which supports XML documents transformation
(Köpke and Eder, 2010). It can describe web services in a semantic network, which is used for further discovery
and composition (Talantikite, et al., 2009). It can support system modellers in reusing process models, detecting
cross-process relations, facilitating change management and knowledge transfer (Bron, et al., 2007). Semantic
annotation can be widely used in many fields. It can link specific resources according to its domain ontologies.

The main contribution of this paper is identifying three main components of semantic annotation, gives a formal
definition of semantic annotation and presenting a survey, based on the literature, of current semantic annotation
methods that are applied for different purposes and domains. These annotation methods vary in their ontology
(languages, tools and design), models and corresponding applications.

The remaining of this paper is organized as follows: Section 2 describes the definition of annotation and gives a
formal definition of semantic annotations. Section 3 provides the answers to why and where to use semantic
annotation. Section 4 first presents an introduction to ontologies and semantic annoation structure models, and
then discusses the usage of semantic annotations. Section 5 concludes this paper, together with some related
work and potential extensions.

2. WHAT IS SEMANTIC ANNOTATION?

In this section, we first illustrate the types of annotations from different papers (section 2.1), and then propose a
formal definition of semantic annotation together with its three main components (section 2.2).

2.1 Definition and Types of annotation

In Oxford Dictionary Online7, the word “annotation” is defined as “a note by way of explanation or comment
added to a text or diagram”. It is used to enrich target object’s information, which can be in the forms of text
descriptions, underlines, highlights, images, links, etc. Annotation has special meanings and usages in different
fields. In software programming, an annotation is represented as text comments embedded in the code to expand
the program, which is being ignored when the program is running. In mechanical drawing, an annotation is a
snippet of text or symbols with specific meanings. In Library Management, an annotation is written in a set form
(numbers, letters, etc.), which helps the classification of books.

Further, different annotation types are identified by the following papers: Bechhofer, et al. (2002) and Boudjlida,
et al. (2006) distinguished annotation as (i) Textual annotation: adding notes and comments to objects; (ii) Link
annotation: linking objects to a readable content; (iii) Semantic annotation: that consists of semantic information
which is machine-readable. Similarly, three types of annotation are described in the research of Oren, et al.
(2006): (i) Informal annotation: notes that are not machine-readable; (ii) Formal annotation: notes that are
formally defined and machine-readable (but it does not use ontology terms); (iii) Ontological annotation: notes
that use only formally defined ontological terms that are commonly accepted and understood.

Bechhofer, et al. (2002) further classified the annotation according to six possible uses that are not always clear
and disjoint: (a) Decoration, comments on an object; (b) Linking, link anchors; (c) Instances Identification,
strong assert that an object is an instance of a particular class. It may use a URI; (d) Instance Reference, less
clear than instance identification, reference depending on background and world knowledge; (e) Aboutness,
loose association of the object with a concept; (f) Pertinence, assertions about the concepts within an ontology
without encoding that information.

																																																								
7http://oxforddictionaries.com

CONTROL ENGINEERING AND APPLIED INFORMATICS 132

According to the above classification, semantic annotation can be considered as a kind of formal metadata,
which is machine and human readable. This will be further discussed in the following sections.

2.2 Semantic annotation

The term “Semantic Annotation” is described as “the action and results of describing (part of) an electronic
resource by means of metadata whose meaning is formally specified in an ontology” (electronic resource can be
text contents, images, video, services, etc.) by Fernández (2010). Talantikite, et al. (2009) introduced it as “An
annotation assigns to an entity, which is in the text, a link to its semantic description. A semantic annotation is
referent to an ontology”. In the research of Lin (2008), semantic annotation is concerned as “an approach to link
ontologies to the original information sources”. All above definitions from different papers show one thing in
common: a semantic annotation is the process of linking electronic resource to a specific ontology. Ontology
here is only one of the possible means to provide a formal semantic.

As it can be seen on Figure 1, the left side represents an Electronic Resource (ER) and on the right side, there are
the three main components of semantic annotation: (1) Ontology, which defines the terms used to describe and
represent a body of knowledge (Boyce, et al., 2007). It can be reused from existing ontologies or designed
according to different requirements. (2) Semantic Annotation Structure Model (SASM), which organizes the
structure/schema of an annotation and describes the mappings between electronic resources and an ontology. (3)
Application, which is designed to achieve the user’s purposes (composition, sharing and reuse, integration, etc.)
by using SASM. This figure also shows the three main steps on how to use semantic annotation, which is
introduced in section 4: ontology (section 4.1), semantic annotation structure model (section 4.2) and application
(section 4.3).

Fig. 1. Semantic Annotation components

The following definition formally defines a semantic annotation: a Semantic Annotation ܵܣis a tuple ሺࣧ,ࣛሻ
consisting of the SASM ࣧand an application ࣛ.

ܣܵ ∶ൌ ൛ࣧ൫ࣟ,࣪ሺࣩሻ൯,ࣛൟ
Where:	
ࣩ ൌ 	 ሼ݋ଵ, ,ଶ݋ … , .௜ that bring some meaning to any annotated element݋ ௡ሽ, is the set of ontology݋

An Ontology ݋௝߳	ࣩ	is a 4-tuple (ܥ௢௝, is_a, ܴ௢௝, ߪ௢௝), where ܥ௢௝	is a set of concepts, is_a is a partial order relation

on ܥ௢௝, ܴ௢௝is a set of relation names, andߪ௢௝:	ܴ௢௝ → ሺܥାሻis a function which defines each relation name with its

arity (Stumme and Maedche, 2001a).

Formally, ࣧ ൌ ൛݉௫: 〈݁௜, 	ࣟ	߳	݁௜	௝〉|݌ ൈ and represents the set of relationships between an element ݁௜	࣪ሺࣩሻൟ	߳	௝݌	
of the set of electronic resources ࣟ and an element ݌௝ of the powerset of the ontology set ࣩ.

A mapping ݉௫൫݁௜, :may represent three different kinds of semantic relations	௝൯݌
(4) ݉∼	൫݁௜, ,൫݁௜	௝൯ is a binary equivalence relation. If ݉∼݌ is semantically	௝൯ then an electronic resource ݁௜݌

equivalent to ݌௝, an element of the powerset ࣪ሺࣩሻ, in the context of an application ࣛ.
(5) ݉⊃	൫݁௜, ௝൯ is a binary relation stating that the semantic of an electronic resource ݁௜subsumes the semantic of݌

an element ݌௝ of the powerset ࣪ሺࣩሻ, in the context of an application ࣛ.
(6) ݉⊂	൫݁௜, ௝൯: is a binary relation stating that the semantic of an electronic resource ݁௜is subsumed by the݌

semantic of an element ݌௝	of the powerset ࣪ሺࣩሻ, in the context of an application ࣛ.

CONTROL ENGINEERING AND APPLIED INFORMATICS 133

ࣧ can be further extended, including also some additional parameters or constraints ck, generally expressed
using, in the worst case, natural language, or, better, a formal logical expression. ࣧ is then defined as ࣧ ≔
ሼ݉௫, ܿ௞ሽ.

The main issue, related to mappings such as in (2) and in (3), is being able to measure the semantic gap (2) or the
over semantic (3), brought by the semantic annotation. Such measures have been studied by researchers in the
domain of information retrieval (Ellis, 1996) or in the domain of ontology matching (Maedche and Staab, 2002),
mapping (Doan et al, 2002), merging (Stumme and Maedche, 2001b), alignment (Noy and Musen, 2000).

In addition, Peng, et al. (2004) also gave a very simple definition of semantic annotation in their paper, which is
ܣܵ ∶ൌ ሺܴ, ܱሻ, where ܴ is set of resources and ܱ is an ontology. Furthermore, Luong and Dieng-Kuntz (2007)
defined it as ܵܣ ∶ൌ ሼܴ஺, ,஺ܥ ஺ܲ, ,ܮ ஺ܶሽ. In this definition, ܴ஺ is a set of resources; ܥ஺ is a set of concept names; ஺ܲ
is a set of property names; L is a set of literal values; and ஺ܶ is a set of triple ሺݏ, ,݌ ݏ ሻ, whereݒ ∈ ܴ஺, ݌ ∈ ஺ܲ, ݒ ∈
	ሺܴ஺⋃ܮሻ. To the best of our knowledge, ஺ܶ in this definition is duplicated.

3. WHY, WHERE TO USE SEMANTIC ANNOTATION

A semantic annotation uses ontology objects for enriching resource’s information that tells a computer the
meanings and relations of the data terms. It can be used in many areas, such as Business Process Models, Web
services, XML Schema, Strategic Data Models, Information Systems, etc. Several usages of semantic annotation
are introduced:

Business Process Models: In the research of Lin (2008), a semantic annotation framework is designed to
manage the semantic heterogeneity of process model, to solve the discovery and sharing of process models
problems in/between enterprise(s). Born, et al. (2007) used semantic description of process artefacts to help a
modeller in graphical modelling of business processes.

Web Services: Talantikite, et al. (2009) used a semantic annotation to represent web services as a semantic
network. Based on the network and submitted requests, the composition algorithm produces the best composition
plan. Patil, et al. (2004) proposed an annotation framework for semi-automatically marking up web service
descriptions (WSDL files) with domain ontologies to help web services discovery and composition.

XML Schema: In the research of Köpke and Eder (2010), a path expression method is used to add annotation to
XML-Schemas. Then they transform paths to ontology concepts and use them to create XML-Schema mappings
that help XML document transformation.

Strategic Data Models: Diamantini and Potena (2008) presented a novel model that uses a mathematical
ontology in semantic annotation to describe mathematical formulas in Data Warehouse schemas.

Information System: Agt, et al. (2010) used semantic annotations to help information system integration. They
annotate the model/object at CIM (Computation Independent Model), PIM (Platform Independent Model) and
PSM (Platform Specific Model) levels of the MDA approach (Mellor, et al. 2002; 2004), and then they discover
some matching between model elements with respect to semantic process requirements.

In short, semantic annotation can be considered as a semantically enrichment of models or data, which may be
widely used for many purposes. In business process models and Information system, it can be used to bridge the
gap between two models. In Web service and Strategic Date Models, it can be used as additional information
that helps description, discovery and composition. To the best of our knowledge, the path expression method in
XML Schema will lead to lose information in Schema (e.g. restrictions of max-occur/min-occur, sequence or
choice of elements, etc.), which still needs to be improved.

4. HOW TO USE SEMANTIC ANNOTATION

In this section, we present an introduction to the three main components of semantic annotation: the languages
and tools which can be used in designing ontology; semantic annotation model’s structure and mappings; and the
applications of semantic annotation.

4.1 Introduction to Ontology

Designing an appropriate ontology for semantic annotations is the first step of the annotation process. Ontology
has been actively studied for a long period of time, and there are many research works proposing ontology

CONTROL ENGINEERING AND APPLIED INFORMATICS 134

engineering techniques. We are not going to give, here, a complete overview of every ontology languages, but
we provide a brief introduction to the three more representative languages. We will show also some simple
examples and typical development tools.

Ontolingua was developed by KSL (Knowledge Systems Lab, Stanford University) (Fikes, et al, 1997). It is an
extension of KIF8 (Knowledge Interchange Format) through adding frame-based representation and translation
functionalities. But because of the newly development of semantic web ontology, Ontolingua is not frequently
used recently. Figure 2-a) shows a simple Ontolingua example from Mizoguchi (2003). Ontolingua Server9
provides an editor, which can be used to browse, create, edit, modify, and use Ontolingua ontologies.

F-Logic was presented by Michael Kifer (Stony Brook University) and Georg Lausen (University of Mannheim)
(Kifer and Lausen, 1995). It is an object-oriented language that is frequently used for Semantic Web. It also can
map straightforward to most frequent ontological constructs. Figure 2-b) shows a simple F-logic example from
Liao, et al. (2010). Flora210 is an F-logic ontology development application, which extends F-logic with HiLog
and Transaction Logic.

OWL (Web Ontology Language) was developed by World Wide Web Consortium, which shares many
characteristics with RDF11 (Resource Description Framework) and RDF Schema (Horrocks, et al., 2003). It is
written using the XML syntax, and contains three sublanguages: OWL Lite, OWL DL and OWL Full. OWL is
considered as a standard language for ontology representation for semantic web. Figure 2-c) shows a simple
OWL example from OWL Guide12. Protégé13 ontology editor is a Java-based tool that can export ontology into
formats such as OWL, RDF and XML Schema. OntoStudio14supports the modelling of RDF(S), OWL and
Object-Logic with possible transformation between them.

																																																								
8http://www-ksl.stanford.edu/knowledge-sharing/kif/
9http://www.ksl.stanford.edu/software/ontolingua/
10http://flora.sourceforge.net/
11http://www.w3.org/RDF/
12http://www.w3.org/TR/2004/REC-owl-guide-20040210/
13http://protege.stanford.edu/
14http://www.ontoprise.de/en/products/ontostudio/

CONTROL ENGINEERING AND APPLIED INFORMATICS 135

Fig.	2.	Examples	of	Ontolingua	(a),	F‐logic	(b)	and	OWL	(c).	

The design methods of ontology for annotations have their own purposes and structures.

Lin (2008) used Protégé OWL editor to design the ontology. In order to separately annotate meta-models
(modelling language) and their process models, the author designs two ontologies: General Process Ontology
(GPO) and Domain Ontology. The design of GPO is based on Bunge-Wand-Weber (BWW) Ontology (Bunge
1977; Wand and Weber, 1993). GPO contains nine main concepts: Activity, Artifact, Actor-role, Input, Output,
Precondition, Postcondition, Exception and WorkflowPattern. Relations between above concepts are has_actor-
role, has_artifact, has_subActiviy, has_input, has_output, related_to, has_precondition, has_postcondition,
has_exception, handled_by (e.g. Activity uses has_actor-role relation to link Actor-role). The Domain ontology
is formalized according to SCOR15 specifications (Supply Chain Operations Reference-model).

Agt, et al. (2010) designed a semantic meta-model (SMM) to describe domain ontologies. Artefacts in ontology
are castigated as DomainFunction and DomainObject. The relations (predicates) among Objects and Functions
are defined as: IsA, IsInputOf, IsOutputOf, Has, IsListOf, IsEquivalentTo, etc. A RDF-like triple (e.g., Tax Has
TaxNumber) is used as the statement in SMM.

Born, et al. (2007) used two kinds of ontologies: sBPMN16 ontology and a domain ontology. The first ontology
is used to represent BPMN process models. The second ontology defines domain objects, states and actions
according to objects lifecycle, which is used to provide the user advices during the modelling process. More
details of above ontologies can be found in references.

4.2 Introduction to Semantic Annotation Structure Model

																																																								
15http://supply-chain.org/
16http://www.ip-super.org

b)	F‐logic	
General	class	information:			

person[name*=>string,	children*=>person].	
Database	facts:											

John:person[name‐>’John	Doe’,	children‐>	{Bob,	Mary}].	
Mary:person[name‐>’Mary	Doe’,	ciildren‐>{Alice}]	
Deductive	rule:											

?X:human:‐	?X:person	
Query:																			

?X:person[name‐>?Y,	children‐>Mary]	

a)	Ontolingua	
(define‐class	Tutoring‐objective	(?t‐obj)	
“Attributes	are	also	represented	as	slots”	
:def	(and	(individual	?t‐obj)	

(value‐type	?t‐objTuroring.policy	Policy))	
:axiom‐def	(subclass‐partition	Tutoring‐objective		

(setof	Transfer‐ofknowledge	Remedy)))				

c)	OWL	
Class	and	Individuals:						

<owl:Classrdf:ID="Wine">	
<rdfs:subClassOfrdf:resource="&food;PotableLiquid"/>	
<rdfs:labelxml:lang="en">wine</rdfs:label>	
<rdfs:labelxml:lang="fr">vin</rdfs:label>	
</owl:Class>	
Properties:		
<owl:ObjectPropertyrdf:ID="hasWineDescriptor">	
<rdfs:domainrdf:resource="#Wine"	/>	
<rdfs:rangerdf:resource="#WineDescriptor"	/>	

</owl:ObjectProperty>

CONTROL ENGINEERING AND APPLIED INFORMATICS 136

The second component of a semantic annotation is SASM. It is the connection between electronic resources and
ontology concepts. A study in this direction is pursued by SAWSDL Working Group17 that developed SAWSDL
(Semantic Annotation for Web Services Definition Language) which provides two kinds of extension attributes
as follow: (i) modelReference, to describe the association between a WSDL or XML Schema component and a
semantic model concept; (ii) liftingSchemaMapping and loweringSchema- Mapping, to specify the mappings
between semantic data and XML (Martin, et al., 2007; Kopecký, et al. 2007).

To be more specific, we analyse four SASMs that are designed for different requirements. Figure 3 below gives
an overview of these four SASMs: Model A is the annotation schema for enterprise models from Boudjlida and
Panetto (2007); Model B is designed to annotate the business process model from Born, et al. (2007); Model C is
proposed to conceptually represent a web service from Talantikite, et al. (2009); and Model D is the annotation
model for an activity element which is part of the Process Semantic Annotation Model (PSAM) from Lin (2008).

In order to compare above semantic annotation structure models, we identify five types for classifying the
contents in SASM:

(1) identity of annotation (e.g. id, name, etc.);
(2) reference to ontology concept (e.g. element Customer has a reference “same_as” which is referenced to

ontology concept Buyer);
(3) reference to element (represent the relationship between element themselves. e.g. element manufacture has

a reference “has_input” which is referenced to element material);
(4) text description, the natural language definitions of annotation contents;
(5) others (extinction contents, such as: execution time, restriction, annotation types, etc.). The classification

results of each SASM are described by linking model contents to type numbers

We can easily find that the basic components of SASMs are: identity of annotation and reference to ontology
concepts; reference to element, text description and others are added for different usages. As an example, Lin
(2008) adds “has_Actor−role” to denote the relationship between activity element and actor-role element;
Boudjlida and Panetto (2007) added “Informal Content” for explaining the intent of the annotation; Talantikite,
et al. (2009) added “exec-time” into SASM to record the execution time of a web service request. In the rest of
this section, the discussion is focused on the design of reference to ontology concepts.

																																																								
17http://www.w3.org/2002/ws/sawsdl/#Introduction

①Identity	
②Reference	to	ontology	
concept	
③Reference	to	element	
④Text	Description	

SASM	D	
Id	
name																																							
model_fragment	
alternative_name	
has_Actor−role																		
has_Artifacthas_	
Input/Output																		 									
has_Precondition	
has_Postcondition	
has_Exception	
has_subActivity	
is_in_WorkflowPattern_of	
same_as	
different_from	
kind_ofsuper	
Concept_of	
phase_of	
instance_of	
compositionConcept of

SASM	C	
Sid	
Sname	
Inputs	
Outputs	
Bindings	
Resource	
Exec‐time	
Service

SASM	B	
Name/	Type	
Current	State	
Before	State	
After	State	
Precondition	
Postcondition

SASM	A	
Annotation‐Id	
Informal	Content	
Ref2Ontology	
Annotation	Type	
Constraints

①

③

②

①

②

④

②

⑤

①

⑤

②

①
④

CONTROL ENGINEERING AND APPLIED INFORMATICS 137

Fig.	3.	Semantic	Annotation	Structure	Model	Examples.	

As can be seen from above figure, reference to ontology concepts in model A is just a conceptual reference
without meanings. Model B describes the references with meaning of states of objects (current, before and after).
Model C uses inputs and outputs to represent the relationships. Model D gives more meanings to references like
same_as, kind_of, phase_of, etc. Further, one to one mapping is not the only mapping type in SASM. For
example, in Model C, there can be more than one input, which means the mapping between model content and
ontology concept is one to many. Here, we analyses “reference to ontology concepts” according to mapping
types and definitions of mappings.

Mappings are separated into two levels in the research of Lin (2008): meta-model level and model level. In the
meta-model level, mapping direction is from ontology to model contents. The mappings are defined as: Atomic
Construct (one to one. e.g. Activity is mapped to Task), Enumerated Construct (one to many. e.g. Artifact is
mapped to Information or Material) and Composed Construct (one to combination. e.g. Workflow Pattern is
mapped to a combination of Flow and Decision Point). In model level, semantic relationships are: Synonym
(same_as, alternative_name), Polysemy (different_from), Instance (instance_of), Hyponym (superConcept_of),
Meronym (part_of, member_of, phase_of and partial Effect_of), Holonym (composition Concept_of) and
Hypernym (kind_of). (e.g. Meronym: Airline member_of Air Alliance). Agt, et al. (2010) described five
mapping types in their work: single representation (one model element to one ontology concept), containment
(one model element to multiple ontology concepts), compositions (multiple model elements to one ontology
concepts), multiple and alternative representation (the mappings with AND and OR/XOR operators). Table 2
shows the comparison and classification of the mappings from Agt, et al. (2010) and Lin (2008). In order to
classify those mappings, we assume the mapping direction in the table is from a model element to an ontology
concept.

Table.1. Mappings from Model to Ontology

Types	 Lin	(2008) Lin	(2008) Agt,	et	al.(2010)	
1 to	1	 Atomic	Construct Instance

Synonym	
Polysemy	
Hyponym	
Hypernym	

Single	represent	

1 to	n	 	 Containment,
Multiple		
Alternative	

n	to	1	 Enumerated	
Construct	
Composed	Construct	

Meronym
Holonym	

Composition

In our opinions, there are three high level mapping types: 1 to 1 mapping, 1 to n mapping and n to 1 mapping (n
to n is a combination of 1 to n and n to 1). For each of the mapping, we can design different semantic
relationships for further usages. Figure 4 shows the mapping types and semantic relationships for each kind of
mapping. 1 to 1 means one element is annotated by one ontology concept. Semantic relationships can be:
equal_to, similar_to, etc. 1 to n means one element is annotated by the composition/aggregation of several
ontology concepts. Semantic relationships can be: contains, has, etc. n to 1 means the composition/aggregation
of several elements are annotated by one ontology concept. Semantic relationships can be: part_of, member_of,
etc. One element can have several semantic relationships, but for each relationship, they belong to one mapping
type.

CONTROL ENGINEERING AND APPLIED INFORMATICS 138

Fig.	4.	Mapping	types	and	semantic	relationships	

Since the structure and semantic relationships of SASM are designed, we should consider how to implement the
annotation process. The annotation process can be performed manually, semi-automatically or automatically
(Reeve and Han, 2005). In the research of Lin (2008), mapping is manually linking the process models to
ontology. In the work of Patil, et al. (2004), mapping is semi-automatically computed. They developed
algorithms to match and annotate WSDL files with relevant ontologies. Automatic mapping is, for the moment,
restricted to some simple cases because of the impossibility to completely explicit knowledge from the different
models.

4.3 Introduction to Application

Once the semantic annotation structure model is defined, designers can begin to design the application to achieve
their purpose (composition, sharing and reuse, integration, etc.). Several applications of semantic annotation are
introduced as follow:
Talantikite, et al. (2008) designed an application, which uses a matching algorithm to process the “input” and
“output” (SASM model C, Figure 3) of elements, and builds a semantic network for web services. This semantic
network is explored by a composition algorithm, which automatically finds a composite service to satisfy the
request. Authors implement a prototype in java, which includes: Pellet18Reasoner (matching algorithm), RSsw
(Réseau Sémantique des Services Web), Request and Composor (returns an optimal composite service for
requesters).

Lin (2008) developed a prototype Process Semantic Annotation tool (Pro-SEAT) to describe the relationship
between process models and ontologies. They use Metis19 as a modelling environment integrating Protégé OWL
API to provide the OWL ontology browser. Ontologies (GPO, Domain ontology, etc.) are stored on an ontology
server, which can be loaded by annotators. The output of the annotation is an OWL instance file, which is used
by a knowledge repository service to support the process knowledge query, discovery and navigation from users.

Born, et al. (2007) used Tensegrity Graph Framework20 as environment to support graphical design functions.
Name-base and Process Context-base matchmaking functionalities are designed to help user annotating process
models. Name-base matching uses string distance metrics method for the matching between business process
models and domain ontology, and it supports the user for specifying or refining the process. Process Context-
base matching uses the lifecycle (state before, state after, etc.) in domain ontology for suggesting the next
activity during modelling.

Indeed, there are many tools and technologies that enable designing applications in semantic annotation. The
selections of tools are always depending on the design of semantic annotation structure models and ontologies.
In any case, all three components of semantic annotation are closely related

5. CONCLUSIONS

In this paper, a brief survey of semantic annotation in different domains is presented. We identify three main
components of semantic annotations that are Ontology, Semantic Annotation Structure Model and Application.
In addition, a formal definition of semantic annotation is proposed. It contributes to better understand what a

																																																								
18http://clarkparsia.com/pellet/
19http://www.troux.com/
20http://www.tensegrity-software.com/

Identity	 ID FirstName	

LastName	

Address	

Name

City	

Stree

1	to	n	

n	to	1

①

②

③

③

②

1	to	1	

Semantic	Relationships
①equal_to	
②contains	
③part_of	

CONTROL ENGINEERING AND APPLIED INFORMATICS 139

semantic annotation is and then contributes to a common reference model. But how to use semantic annotation?
There are still many problems can be further discussed during the annotation process. For example, how to
optimize ontology and an annotated model? How to solve the inconsistency or conflicts during the mapping?
How to add consistent semantic on models in different levels of a system? How to achieve semi-automatic or
automatic annotation?

We are currently investigating how semantic annotations can help collaborative actors (organizations, design
teams, system developers, etc.) in co-designing, sharing, exchanging, aligning and transforming models. In
particular, this research work will be based on general systems with several kinds of interactions. We can have
interoperation between systems that with different versions (during many years, systems may have been
modified or updated). We can also have systems with same functions but used by different enterprises. Semantic
annotations can bridge this knowledge gap and identify differences in models, in schemas, etc. In some case,
interoperation is a process between a set of related systems throughout a product lifecycle (Marketing, Design,
Manufacture, Service, etc.), and semantic annotations can influence the existing foundations and techniques
which supports models reuse, semantic alignment and transformation, etc. Above all, our research work will
focus on designing, and reusing appropriate ontologies in relationship with a formal semantic annotation
structure model.

REFERENCES

Agt,	H.,	Bauhoff,	G.,	Kutsche,	R.,	Milanovic,	N.,	Widiker,	J.	(2010).	Semantic	Annotation	and	Conflict	Analysis	
for	 Information	 System	 Integration.	 In:	 Proceedings	 of	 the	 3rd	Workshop	 on	Model‐Driven	 Tool	 &	
Process	Integration.	7‐18	

Bechhofer,	 S.,	 Carr,	 L.,	 Goble,	 C.,	 Kampa,	 S.	 and	 Miles‐Board,	 T.	 (2002).	 The	 Semantics	 of	 Semantic	
Annotation.	 In:	 Proceedings	 of	 the	 1st	 International	 Conference	 on	 Ontologies,	 Databases,	 and	
Applications	of	Semantics	for	Large	Scale	Information	Systems.	1151‐1167.			

Born,	M.,	Dorr,	F.,	Weber,	I.	(2007).	User‐Friendly	Semantic	Annotation	in	Business	Process	Modeling.	In:	
Proceedings	of	the	2007	international	conference	on	Web	information	systems	engineering.	

Boudjlida,	N.,	Dong,	 C.,	 Baïna,	 S.,	 Panetto,	H.,	 Krogstie,	 J.,	Hahn,	A.,	Hausmann,	K.,	 	 Tomás,	 J.V.,	 Poler,	R.,	
Abián,	 M.Á.,	 Núñez,	 M.J.,	 Zouggar,	 N.,	 Diamantini,	 C.,	 Tinella,	 S.	 (2006).	 A	 practical	 experiment	 on	
semantic	enrichment	of	enterprise	models	in	a	homogeneous	environment.	INTEROP	NoE	Deliverable	
DTG4.1.	INTEROP	NoE	IST	508011.	http://www.interop‐vlab.eu	

Boudjlida,	N.,	 Panetto,	H.	 (2007).	 Enterprise	 semantic	modelling	 for	 interoperability.	 In:	 Proceedings	 of	
the	12th	IEEE	conference	on	emerging	technologies	and	factory	automation,	Patras,	Greece.	847–854.	

Boyce,	S.,	Pahl,	C.	 (2007).	Developing	Domain	Ontologies	 for	Course	Content.	Educational	Technology	&	
Society	275‐288.	

Bunge,	M.	(1977):	Treatise	on	Basic	Philosophy	(Vol	3):	Ontology	I:	The	Furniture	of	the	World.	D.	Reidel	
Publishing	Company,	first	edition	

Diamantini,	C.,	Potena,	D.	(2008).	Semantic	enrichment	of	strategic	datacubes.	In:	Proceedings	of	the	ACM	
11th	International	Workshop	on	Data	Warehousing	and	OLAP.	81‐88.	

Ding,	G.,	Xu,	N.	(2010).	Automatic	semantic	annotation	of	images	based	on	web	data.	In:	Proceedings	of	the	
6th	international	conference	of	Information	Assurance	and	Security.	317‐322	

Doan,	 A.,	 Madhavan,	 J.,	 Domingos,	 P.,	 Halevy,	 A.Y.	 (2002).	 Learning	 to	 map	 between	 ontologies	 on	 the	
semantic	web.	In	Proceedings	of	the	World	Wide	Web	conference.	662‐673.	

Ellis,	D.	(1996).	The	Dilemma	of	Measurement	in	Information	Retrieval	Research.	Journal	of	the	American	
Society	for	Information.	Vol.	47,	N°	1.	23‐36.	

Fernández,	 N.	 (2010).	 Semantic	 Annotation	 Introduction,	 [online]	 (Updated	 14	 Oct	 2010)	 Available	 at	
<http://www.it.uc3m.es/labgimi/teoria/Module2/SA‐Intro.pdf>	

Fikes,	 R.,	 Farquhar,	 A.,	 Rice,	 J.	 (1997).	 Tools	 for	 Assembling	 Modular	 Ontologies	 in	 Ontolingua.	 In:	
Proceedings	 of	 the	 14th	 national	 conference	 on	 artificial	 intelligence	 and	 9th	 conference	 on	
Innovative	applications	of	artificial	intelligence.	436‐441.	

Horrocks,	I.,	Patel‐Schneider,	P.F.,	Harmelen,	F.V.	(2003)	From	SHIQ	and	RDF	to	OWL:	the	making	of	a	Web	
Ontology	Language.	Journal	of	Web	Semantics.	Vol	1,	N°	1.	7‐26.	

Irfanullah,	I.,	Aslam,	N.,	Loo,	J.,	Loomes,	M.,	Roohullah,	R.	(2010).	In:	Proceedings	of	the	IEEE	international	
symposium	on	Signal	Processing	and	Information	Technology.	491‐495	

Lin,	Y.	(2008).	Semantic	Annotation	for	Process	Models:	Facilitating	Process	Knowledge	Management	via	
Semantic	 Interoperability.	PhD	thesis,	Norwegian	University	of	Science	and	Technology,	Trondheim,	
Norway.	

Liao,	 Y.,	 Romain,	 D.,	 J.	 Berre,	 A.	 (2010).	Model‐driven	 Rule‐based	Mediation	 in	 XML	Data	 Exchange.	 In:	
Proceedings	of	the	1st	International	Workshop	on	Model‐Driven	Interoperability.	89‐97	

CONTROL ENGINEERING AND APPLIED INFORMATICS 140

Luong,	 P.,	 Dieng‐Kuntz,	 R.	 (2007).	 A	 Rule‐based	 Approach	 for	 Semantic	 Annotation	 Evolution.	In	
Computational	Intelligence.	Vol.	23,	Issue	3,	320–338									

Kifer,	M.,	Lausen,	G.,	Wu,	J.	(1995).	Logical	Foundations	of	Object‐Oriented	and	Frame‐Based	Languages.	
Journal	of	the	ACM.	Vol.42,	N°4.	741‐843.	

Kopecký,	 J.,	Vitvar,	T.,	Bournez,	C.,	Farrell,	 J.	 (2007).	SAWSDL:	Semantic	Annotations	 for	WSDL	and	XML	
Schema.	IEEE	Internet	Computing.	Vol.11,	N°	6.	60‐67	

Köpke,	 J.,	 Eder,	 J.	 (2010).	 Semantic	 Annotation	 of	 XML‐Schema	 for	 Document	 Transformations.	 In:	
Proceedings	 of	 the	 OTM	 Workshops.	 5th	 International	 Workshop	 on	 Enterprise	 Integration,	
Interoperability	and	Networking.	Lecture	Notes	in	Computer	Science,	Vol.	6428.	219‐228.		

Maedche,	 A.,	 Staab,	 S.	 (2002).	 Measuring	 Similarity	 between	 Ontologies.	In:	 Proceeding	 of	 the	 13th	
International	Conference	on	Knowledge	Engineering	and	Knowledge	Management.	Ontologies	and	the	
Semantic	Web.	251‐263.	

Mellor,	S.J.,	Scott,	K.,	Uhl,	A.,	Weise,	D.	(2002).	Model‐Driven	Architecture.	In:	Proceedings	of	the	Workshop	
at	the	8th	International	Conference	on	Object‐Oriented	Information	Systems.	290‐297.	

Mellor	S.J.,	Kendall	S.,	Uhl	A.	and	Weise	D.	(2004).	Model	Driven	Architecture,	Addison‐Wesley	Pub	Co.	
Martin,	D.,	Paolucci	M.,	Wagner,	M.	(2007).	Towards	Semantic	Annotations	of	Web	Services:	OWL‐S	from	

the	 SAWSDL	 Perspective.	 In:	 Proceedings	 of	 the	 OWL‐S	 Experiences	 and	 Future	 Developments	
Workshop	at	ESWC	2007.	

Mizoguchi,	 R.	 (2003).	 Tutorial	 on	 Ontological	 Engineering:	 Part	 2:	 Ontology	 Development,	 Tools	 and	
Languages.	New	Generation	Comput.	

Noy,	 N.F.,	 Musen,	 M.A.	 (2000).	 PROMPT:	 Algorithm	 and	 Tool	 for	 Automated	 Ontology	 Merging	 and	
Alignment.	In:	 Proceedings	 of	 the	 17th	 National	 Conference	 on	 Artificial	 Intelligence	 and	 Twelfth	
Conference	on	Innovative	Applications	of	Artificial	Intelligence.	450‐455.	

Oren,	E.,	Hinnerk	Möller,	K.,	Scerri,	S.,	Handschuh,	S.,		Sintek,	M.(2006).	What	are	Semantic	Annotations?.	
Technical	report,	DERI	Galway		

Patil,	 A.,	 Oundhakar,	 S.,	 Sheth,	 A.,	 Verma,	 K.	 (2004).	 	 Meteor‐S	Web	 Service	 annotation	 framework.	 In:	
Proceedings	of	the	13th	International	Conference	on	the	World	Wide	Web.	553‐562.	

Peng,	W.,	Baowen,	X.,	Jianjiang,	L.,	Dazhou,	K.,	Yanhui,	L.	(2004).	A	Novel	Approach	to	Semantic	Annotation	
Based	on	Multi‐ontologies.	In:	Proceedings	of	the	third	International	Conference	on	Machine	Learning	
and	Cybernetics.	Vol.	3.	1452	‐	1457		

Reeve,	 L.H.,	 Han,	 H.	 (2005).	 Survey	 of	 semantic	 annotation	 platforms.	 In:	 Proceedings	 of	 the	 ACM	
Symposium	on	Applied	Computing.	1634‐1638	

Stumme,	G.,	Maedche,	A.	(2001a).	Ontology	Merging	for	Federated	Ontologies	on	the	Semantic	Web.	 	 In:	
Proceedings	of	the	International	Workshop	for	Foundations	of	Models	for	Information	Integration.		

Stumme,	G.,	Maedche,	A.	(2001b).	FCA‐MERGE:	Bottom‐Up	Merging	of	Ontologies.	In:	Proceedings	of	the	
7th	International	Joint	Conference	on	Artificial	Intelligence.				Seattle,	Washington,	USA.	225‐234.	

Talantikite,	H.N.,	Aïssani,	D.,	Boudjlida,	N.	 (2009).	 Semantic	 annotations	 for	web	 services	discovery	 and	
composition.	Computer	Standards	&	Interfaces.	Vol.	31,	N°6.	1108‐1117.	

Wand,	Y.,	Weber,	R.	(1993).	On	the	ontological	expressiveness	of	information	systems	analysis	and	design	
grammars.	Information	System	Journal	Vol	3.	N°4.	217‐237.	

