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A novel feature of the mean velocity gradient in turbulent parallel Poiseuille flows has been found

using the results available in databases of direct numerical simulations at moderately high friction

Reynolds number Rs, up to 2000. The computed turbulence statistics show that the logarithm of the

mean velocity gradient, normalized by its value at the quarter-channel height, is very close to sym-

metric with respect to this position. At this location, the ratio of the viscous transport term to the

viscous stress is a minimum. The range of validity of this property increases with the Reynolds

number and is between y=h¼ 0.1 and y=h¼ 0.9 for Rs¼ 2000. This property is a convenient tool in

channel flow analysis since the velocity profile in the wall region can be accurately predicted from

values much further away. We explore in some detail the properties that follow from this discovery.

VC 2011 American Institute of Physics. [doi:10.1063/1.3657819]

Direct numerical simulations (DNS) of turbulent flows

have become an indispensable tool for studying the statistical

properties and structural characteristics of turbulence and more

particularly of wall bounded turbulent flows. Available DNS

databases for wall-bounded flows include channel, pipe, and

boundary layer flows with friction Reynolds number or Kár-

mán number Rs¼ ush=� up to 2000 (us is the friction velocity,

h the channel half-width, and � the kinematic viscosity). The

aim of this letter is to investigate, using DNS databases, the

evolution of the mean velocity gradient in fully developed sta-

tionary incompressible turbulent Poiseuille flows.

For these flows, the normalized mean streamwise mo-

mentum equation reduces to

�
duvþ

dyþ
þ
dSþ

dyþ
¼ �

1

hþ
; (1)

where S is the wall-normal gradient of the mean streamwise

velocity d �U=dy, uv the mean Reynolds shear-stress, and y

the wall-normal coordinate. The superscript (þ) indicates

normalization with the wall variables, � and us. Equation (1)

represents the equilibrium between the mean pressure gradi-

ent and the sum of the viscous and Reynolds stress gradients.

The integration of Eq. (1) with appropriate boundary condi-

tions yields the linear variation of the total mean stress with

the wall-normal distance

� uvþðgÞ þ SþðgÞ ¼ 1� g; (2)

with g¼ y=h. Under transformation from a Cartesian to a cy-

lindrical coordinate system, Eq. (2) can also be shown to

hold for fully developed turbulent flow in a pipe of radius R

with g¼ y=R.
Figure 1 shows the profiles of the logarithm of S(g) and

S(1� g), normalized by S(0.5), for channel and pipe flows.

The channel data are from the DNS results of Jiménez and

Hoyas1 for the three Kármán numbers Rs¼ hþ of 550, 940,

and 2000, and the data for pipe flow are from the DNS

results of Wu and Moin.2 We present, here, a hitherto unre-

ported symmetry in the logarithm of the mean velocity gradi-

ent, S, which can be characterized by the following relation:

log
SðgÞ

Sð0:5Þ
’ � log

Sð1� gÞ

Sð0:5Þ
;

or equivalently

SðgÞ

Sð0:5Þ
’

Sð0:5Þ

Sð1� gÞ
: (3)

The apparent symmetry around g� 0.5, the channel

quarter-width, is a novel and surprising feature and appears

to be generally respected. The DNS data conform well with

this symmetry property over a wide range of wall-normal

positions, whose extent increases with increasing Reynolds

number. The lower limit of the validity range of the symme-

try property is about 150 wall-units, while the upper limit

increases with the Reynolds number and is approximately

equal to g� 0.8, 0.85, and 0.9 for Rs¼ 550, 940, and 2000,

respectively. In these ranges, the relative difference observed

between the two terms is, respectively, less than 0.4%, 2%,

and 3%. The wall-normal position, g0, of the symmetry point

was determined by the location of the minimum of the sum

of [S(g)S(2g0� g)� S2(g0)]
2, over all values of g within the

interval [100=hþ, 0.85], and by varying g0 between 0.45 and

0.55. The maximum relative deviation from the channel

quarter-width is 60.005 for the Reynolds numbers of Fig. 1.

This symmetry property is perhaps more clearly high-

lighted by examining the derivative of log(S) with respect to g

d ln S

dg
¼

hþS0þ

Sþ
;

where S0 ¼ dS=dy, which, as shown in Fig. 2, has a symmet-

ric profile about g� 0.5. We find best agreement for thea)Electronic mail: faouzi.laadhari@univ-lyon1.fr.
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profile at Rs¼ 550, which is less noisy than the higher Reyn-

olds number profiles where the observed scatter could be

caused by a lack of convergence of the second derivative of

the mean velocity. This figure also shows that the minimum

value is Reynolds-number-independent and has a value of

1.6. It should be noted that the reciprocal of this quantity cor-

responds to the von Kármán mixing-length ‘ divided by h.3

Therefore, this length-scale is symmetric with respect to

g� 0.5 and has a maximum of ‘� 0.63h.

This symmetry property becomes more important in

light of recent work of Mizuno and Jiménez,4 published dur-

ing the revision of the present letter, who found that, in the

overlap region of wall-bounded flows, the length scale based

on the mean local shear

‘þðgÞ ¼
1

SþðgÞ

is more appropriate as a normalization length-scale than

the classical mixing length proportional to y. According to

relation (3), the local mean-shear based length should have

the symmetry

‘ðgÞ

‘ð0:5Þ
’

‘ð0:5Þ

‘ð1� gÞ
:

In order to exploit the result given by relation (3), it is impor-

tant to know how S(0.5) varies with Reynolds number. Figure

3 shows the evolution of S(0.5), normalized by the friction

velocity us and h, as a function of Rs for channel and pipe

flows. The DNS data for channel flow and Rs> 500, which

are free from low Reynolds number effects,5 give a constant

value of hþSþ(0.5)� 6.3. For pipe flow, the DNS data2 and

the results of the super-pipe experiment6 show higher but

constant values of about 7 at large Reynolds numbers. This

difference suggests that the geometry affects the intensity of

the mean velocity gradient more than its distribution. Note

that, for the channel flow at g� 0.5, the viscous transport

term, �hþ2S0þ(0.5), has a value slightly higher than 10, as

shown in Fig. 4, where �hþ2S0þ(g) is plotted against g to-

gether with �hþ2S0þ(1� g) obtained from relation (3)

S0þð1� gÞ ’ S0þðgÞ
Sð0:5Þ

SðgÞ

� �2

:

This figure not only confirms the result of Figs. 1 and 2

but it also shows that �hþ2S0þ(g) has a minimum of about

10, located at g� 0.58, and rises slowly to a Reynolds-

number-independent centerline value of 16, leading to the

empirical relation

�
duvþ

dyþ
ð1Þ ’ �

1

hþ
þ

16

hþ2

at the center of the channel.

Another illustration of the usefulness of relation (3) are

the implications for the eddy viscosity �t, the ratio of turbu-

lent and viscous stresses. We can express �t using relation

(2), giving

FIG. 2. (Color online) Profiles of the ratio of the viscous transport term S0þ

to the viscous stress Sþ. —— (solid gray line), �hþS0þ=Sþ gð Þ; – – (dashed

black line), �hþS0þ=Sþ 1� gð Þ; –�– (dash-dotted black line), 1=(1� g). The

profiles are shifted upwards by a decade with increasing Rs.

FIG. 3. (Color online) Evolution with the friction Reynolds number Rs of

hþSþ(0.5). DNS data of channel flow: �, Laadhari (Ref. 10); ^, Iwamoto

et al. (Ref. 11); !, Jiménez and Hoyas (Refs. 1 and 12); ~, Moser et al.

(Ref. 5); n, Tanahashi et al. (Ref. 13); �, Abe et al. (Ref. 14); D, Hu et al.

(Ref. 9). DNS of pipe flow:(� , Wu and Moin (Ref. 2). Measurements in pipe

flow: (þ), Zagarola and Smits (Ref. 6).

FIG. 1. (Color online) Mean velocity gradient S(g) normalized by S(0.5) for

channel flow at Rs¼ 550, 940, and 2000 (Ref. 1) and pipe flow at Rs¼ 1140

(Ref. 2). ——(solid gray line), S(g)=S(0.5); – – (dashed black line), S(0.5)=
S(1� g). The profiles are shifted upwards by a decade with increasing Rs.
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�þt ðgÞ ¼ �1þ
1� g

SþðgÞ
:

Then, from Eq. (3), the eddy viscosities at g and 1� g are

related by

�þt ð1� gÞ ’ �1þ
gð1� gÞ

Sþ2ð0:5Þ½�þt ðgÞ þ 1�
:

The two expressions have been plotted in Fig. 5 for �þt =h
þ as

a function of g for four different values of Rs; the curves col-

lapse well, particularly for Rs¼ 550 and 2000, everywhere

we expect relation (3) to be applicable. It is worth noting that

with the present results, the value of the eddy viscosity mid-

way between the wall and the centerline is given by

�þt ð0:5Þ ’ �1þ
1

2Sþð0:5Þ
’ �1þ 0:079hþ (4)

for the channel flow and takes a lower value for the pipe

flow due to the higher value of Sþ(0.5). It should be noted

that the maximum of �t occurs when

� hþ
S0þ

Sþ
¼

1

ð1� gÞ
; (5)

and for a logarithmic mean velocity profile, this relation

leads to a peak location of �t at g¼ 0.5.7 However, the two

terms of Eq. (5), plotted in Fig. 2, intersect at a point located

slightly nearer the wall than the channel quarter-width

(g� 0.45) leading to a peak value given by

�þtmax ’ �1þ 0:080hþ:

In addition, the centerline value of �þt =h
þ is constant,

and this indicates that the mean velocity gradient is a func-

tion of 1� g near the center of the channel.

For illustrative purposes, the linear expression for the

premultiplied mean velocity gradient, proposed by Jiménez

and Moser [Ref. 8, Eq. (4.8)] for the region 0.15< g< 0.5

and Rs¼ 2000, was used

yþSþ ¼
1

j
þ

b

hþ
þ ag: (6)

The left-hand side term is plotted in Fig. 6 against g normal-

ized on its value at g¼ 0.5. Note that the linear behavior is

also present in the DNS data of Hu et al.9 at Rs¼ 1440. The

best linear fit of the DNS data at Rs¼ 2000 for g within the

range 0.15–0.5 shows that the premultiplied mean gradient is

described well by the following equation:

2g
SðgÞ

Sð0:5Þ
¼ aðg� 0:5Þ þ 1; (7)

with a¼ 3=7. The right-hand side term and the ratio of the

two terms of this equation are represented in Fig. 6 by the

straight line and the plus symbol (þ), respectively. The max-

imum departure of the ratio from unity is of 61%. The coef-

ficients in relation (6) are then only a function of hþSþ(0.5),

and the slope a,

a ¼ hþSþð0:5Þ
a

2
;

1

j
þ

b

hþ
¼ hþSþð0:5Þ

1

2
�
a

4

� �

:

The integration of d �Uþ=dg ¼ hþSþðgÞ leads to the

mean velocity profile

�Uþ ¼ 2:475 ln yþ þ 1:35gþ 4:85;

which fits the DNS mean velocity data with a maximum rela-

tive departure of 0.1%. The coefficient before the logarith-

mic term is very close to the reciprocal of the von Kármán

constant. This result may just be fortuitous and must be con-

sidered as a particular case since it applies only for one

Reynolds number case, and any attempt to extend it to large

Reynolds numbers will require further investigation.

From relation (7), the mean velocity gradient is well

characterized by

SðgÞ

Sð0:5Þ
¼

aðg� 0:5Þ þ 1

2g
(8)

and the eddy viscosity by the expression

FIG. 4. (Color online) Profiles of the viscous transport term �hþ2S0þ. ——

(solid gray line), �hþ2S0þ; – – (dashed black line), �hþ2S0þ 1� gð Þ. The
profiles are shifted upwards by a decade with increasing Rs.

FIG. 5. (Color online) Profiles of the eddy viscosity �t normalized by us and

h. —— (solid gray line), �þt =h
þ gð Þ; – – (dashed black line), �þt =h

þ 1� gð Þ;
– �� – (dash-double-dotted black line), relation (9); –�– (dash-dotted gray line),

relation (11). The profiles are shifted upwards by 0.1 with increasing Rs

except for Rs¼ 1140 which has the same offset as Rs¼ 940.
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�þt ðgÞ ’ �1þ
gð1� gÞ

1:35gþ 2:475
hþ; (9)

which compares very well with the profile of �t at Rs¼ 2000

of Fig. 5 when g is within the range 0.15–0.5. This expres-

sion is also in good agreement with the relationships for

the maximum of the eddy viscosity and its value at g¼ 0.5,

provided above.

Combining relations (3) and (8), the mean velocity

gradient for g> 0.5 is given by

SðgÞ

Sð0:5Þ
¼

2ð1� gÞ

�aðg� 0:5Þ þ 1
: (10)

This is confirmed by the DNS data since the ratio of the two

terms is fairly constant for g> 0.5 as shown in Fig. 6. The

departure from unity is of the same order as the statistical

uncertainties in the premultiplied mean gradient at large g,

evaluated by Jiménez and Moser8 to be as high as 0.04 in the

Rs¼ 2000 case.

The corresponding eddy viscosity is then a linear func-

tion of g

�þt ðgÞ ’ �1þ
�aðg� 0:5Þ þ 1

12:6
hþ; (11)

and the resulting centerline value

�þt ð1Þ ’ �1þ 0:062hþ

is well correlated with the DNS data as shown in Fig. 5.

The integration of relation (10) results in the mean

velocity defect law,

�Uc � �UðgÞ

Uc

¼ 1:21ð1� gÞ � 2:219 ln
17� 6g

11
;

with �Uc the mean centerline velocity. The mean velocity

data for Rs¼ 2000 and g> 0.5 agree well with this relation,

with a relative discrepancy less than 0.1%.

To conclude, in the present investigation, we discovered

an apparent symmetry property of the mean velocity gradient

in turbulent channel flow. The practical implications of this

property have been illustrated by showing its relevance to

the scaling of eddy viscosity and of the viscous term in the

momentum balance. The validity of this property must be

corroborated by further numerical simulations over a wider

range of Reynolds numbers and accurate high precision

measurements of the first and second mean velocity deriva-

tives. A theoretical explanation of this result would no doubt

improve our understanding of some of the fundamental

mechanisms involved in wall bounded flows.
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8J. Jiménez and R. D. Moser, “What are we learning from simulating wall

turbulence?,” Philos. Trans. R Soc. London, Ser. A 365, 715 (2007).
9Z. W. Hu, C. L. Morfey, and N. D. Sandham, “Wall pressure and shear stress

spectra from direct simulations of channel flow,” AIAA J. 44, 1541 (2006).
10F. Laadhari, “Reynolds number effect on the dissipation function in wall-

bounded flows,” Phys. Fluids 19, 038101 (2007).
11K. Iwamoto, Y. Suzuki, and N. Kasagi, “Reynolds number effect on wall

turbulence: Toward effective feedback control,” Int. J. Heat Fluid Flow

23, 678 (2002).
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