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Abstract 

 

According to the predictive coding theory, top-down predictions are conveyed by backward 

connections, while prediction errors are propagated forward across the cortical hierarchy.  

Using MEG in humans, we show that violating (multisensory) predictions causes a 

fundamental and qualitative change in both the frequency and spatial distribution of cortical 

activity.  When visual speech input correctly predicted auditory speech signals, a slow delta 

regime (3–4 Hz) developed in higher-order speech areas. In contrast, when auditory signals 

invalidated predictions inferred from vision, a low-beta (14–15 Hz) / high-gamma (60–80Hz) 

coupling regime appeared locally in a multisensory area (STS). This frequency shift in 

oscillatory responses scaled with the degree of audio-visual congruence and was 

accompanied by increased gamma activity in lower sensory regions. These findings are 

consistent with the notion that bottom-up prediction errors are communicated in 

predominantly high (gamma) frequency ranges, while top-down predictions are mediated by 

slower (beta) frequencies. 

 



 

 

 
Introduction 

 

Predictive coding and other models of perception based upon hierarchical Bayesian 

inference 1-3 assume that neural representations are optimized to reduce “prediction error”. 

This error is classically defined as the difference between the representations (neuronal 

activity) at each cortical level and the “predictions” or expectations arising from the level 

above, or cascading back from higher cognitive levels. Hence, the better the prediction, the 

smaller the prediction error. This reciprocal relationship between predictions and prediction 

errors is overtly or covertly exploited by several experimental paradigms (e.g., oddball, 

violation and adaptation paradigms) that rely on the contrast between neural responses to 

anticipated and unexpected stimuli, and report stronger responses to stimuli that are not or 

incorrectly anticipated. 

There is also growing evidence that perception involves coordinated slow and fast brain 

oscillations, typically theta/gamma nesting 4-6, and novel hypotheses suggest that bottom-up 

information could be propagated forward on a gamma frequency channel from superficial 

cortical layers, whereas top-down information would use backward propagation on a beta 

frequency channel from deep cortical layers 7. How the coding of cognitive content and 

properties of electrical signaling articulate with each other is unclear. Here, we set out to 

experimentally address whether the rate and distribution of neural activity depends on correct 

or incorrect anticipation of the stimulus, and whether sensory predictions and prediction 

errors are conveyed using different frequency channels.  

 

Audio-visual speech provides an ideal setting in which to test these hypotheses 8. Our 

experimental paradigm capitalizes on a natural ~150 ms temporal lag between the onset of 

facial movements and vocal chord vibration that naturally occurs when we speak 9. This lag 

allows the observer to synthesize phonological predictions prior to auditory onset on the 

basis of visual information. This also gives the experimenter the opportunity to temporally 

distinguish the neural effects related to these visually induced predictions and the prediction 

errors that emerge during audio-visual integration if predictions are invalidated. Here, 

sensory prediction errors were induced experimentally by violating the congruence between 

visual and auditory information. We also exploited the specificity with which visual input 

predicts auditory input in order to create a gradient of perceived incongruence 8-10. We thus 

induced graded prediction errors by varying audio-visual congruence, and expected them to 

be manifest at the neural level in the interaction between the amount of predictive information 

conveyed by the visual input (predictability) and the validity of this information with respect to 

incoming auditory input (audio-visual congruence). We quantified this “predictability-by-



 

 

validity” interaction on neuromagnetic event-related fields (ERFs) measured with 

magnetoencephalography (MEG), and determined the oscillatory processes underlying 

prediction error using time-frequency analyses of the MEG data. We report qualitative 

differences in neural dynamics as a function of the validity of visual predictions, i.e. the 

amount of prediction errors. 

 

Our central hypothesis was that there should be a fundamental and qualitative change in 

neuronal message-passing when sensory predictions are invalidated. In particular, 

audiovisual mismatch detection should enhance coordinated beta and gamma activities 

associated with the propagation of revised predictions and the redeployment of new 

prediction errors, respectively. While we observed distributed slow delta activity in higher-

level cortical areas during the perception of congruent stimuli, faster local cortical activity 

replaced these slow interactions when predictions from visual modality were invalidated by 

auditory inputs. In agreement with our hypothesis, beta activity appeared in regions where 

visual and auditory information converged, i.e. where multisensory predictions were 

generated, whereas gamma activity was seen in lower sensory cortices where prediction 

errors emerged and were propagated forward. 

 

 

Results 

 

We presented 15 subjects with stimuli in one of three conditions: videos (audio-visual: AV 

condition) of a speaker pronouncing different syllables, /pa/, /3a/, /la/, /ta/, /ga/ and /fa/, an 

auditory track of these videos combined with a still face (auditory: A condition), or a mute 

visual track (visual: V condition). The videos could be either natural or a random combination 

of auditory and visual tracks, entailing a condition where auditory and visual tracks were 

congruent (AVc condition) and one where they were incongruent (AVi condition; see 

Methods and Supplementary Fig. 1). Incongruent combinations yielding combination of 

fusion illusory percepts, i.e. McGurk stimuli, were excluded 8, 11.  Subjects performed an 

unrelated target detection task on the syllable /fa/ that was presented in A, V or AVc form in 

13% of the trials (97% correct detection). These trials were subsequently excluded from the 

analyses. The five other syllables were chosen because they yielded graded recognition 

accuracy when presented visually (Fig. 1a), resulting from an increasing predictability 10. The 

phonological prediction conveyed by mouth movements (visemes), varies in specificity 

depending on the pronounced syllable. Typically, syllables beginning with a consonant that is 

formed at the front of the mouth (/p/, /m/) convey a more specific prediction than those 

formed at the back (/g/, /k/, /r/, /l/) 8. Our second experimental factor pertained to the validity 



 

 

of the visual prediction with respect to the auditory input. Physically, the audio-visual stimuli 

could be either congruent (valid prediction) or incongruent (invalid prediction), while 

perceptually, the level of incongruence varied gradually as a function of visual predictability, 

e.g. the strongest perceived incongruence was reported for the most predictable visemes in 

incongruent stimuli (see Supplementary Data). 

 

Predictability-by-validity interaction was tested in a number of different data features to 

establish when and where in the brain prediction errors were expressed. We used the 

amplitude of event related fields over auditory regions to produce statistics as a function of 

predictability and validity across the peristimulus timecourse (Supplementary Fig. 2a). This 

indicates when ERFs are modulated by i) visual prediction validity (main effect of audio-

visual congruence), ii) visual predictability separately under valid and invalid conditions, and 

iii) when prediction errors emerged (predictability-by-validity interaction). We went on to 

characterize the specific time-frequency patterns underlying ERF amplitude variations 

reflecting prediction error, by exploring time-frequency data in a way that is constrained by 

the time course of ERFs. This original methodological approach exploits inter-individual -

stimulus ERF variability to specifically probe time-frequency phase-locking and power effects 

that are sensitive to the experimental factors (Supplementary Fig. 2b). This method thus 

enhances the temporal sensitivity of the time-frequency analysis by revealing stimulus-

induced and/or phase-locked oscillatory patterns underlying ERF modulations (see 12, 

Methods and Supplementary Fig. 2b). This finally permits us to precisely identify the key 

frequencies, phase-locking and nesting principles that specifically underlie the expression of 

prediction error. Finally, to establish the regional specificity of these findings, we broadened 

the correlations between neuromagnetic indices of prediction error and time-frequency 

responses to all MEG channels. 

 

Late ERF oscillatory regime reflects prediction errors 

Our first analysis step was to correlate the amplitude of ERFs (AV–A, i.e. audio-visual 

integration index, see Methods) in response to each of the five syllables with their 

corresponding predictability value, i.e., the recognition level they yielded when presented as 

visemes (Fig. 1a), over the whole peristimulus timecourse (–100 to 600 ms relative to 

auditory onset; Supplementary Fig. 2a). The first two ERF components evoked by audio-

visual syllables on the sensors that responded best to auditory stimuli correspond to feed-

forward visual and auditory responses 13. We refer to these components as M170V and 

M100A, respectively. Reflecting the natural delay between visual and auditory onsets, 

M170V and M100A were separated by approximately 100 ms. A main effect of visual 

prediction validity (audio-visual congruence) was detected after M100A peak in 4 distinct ~20 



 

 

ms time-windows (Fig. 1b). Critically, we detected an effect of predictability (p < 0.01, 

shaded windows in Fig. 1b and c) on the M170V preceding auditory onset (Window 1) and 

on M100A (Window 2) in both AVc and AVi conditions (Fig. 1c). The parametric effect on 

M100A responses confirms that the independently assessed behavioral gradient is 

recovered by early physiological signals despite an un-related task instruction. A further late 

predictability effect was observed in AVi stimuli only, at around 350–500 ms (solid line in Fig. 

1c, Window 3). Accordingly, the predictability-by-validity interaction emerged within this third 

window (Fig. 1c, interaction: p < 0.001). These data confirm that prediction errors only 

occurred late, after cross-modal prediction had emerged at cortical levels higher than 

auditory cortex, presumably at the superior temporal sulcus (STS) level, and possibly above.  

 

We addressed a potential divergence in neural dynamics between the processing of correctly 

and incorrectly anticipated stimuli by comparing the time-frequency structure of evoked 

responses in valid and invalid conditions (see Methods). Consistent with the ERF data, time-

frequency correlation maps (Fig. 2a) show that while AVc and AVi conditions evoked similar 

early (–100 to 300 ms) phase-locking increases in the delta-theta band (2–9 Hz), diverging 

patterns occurred during the latest time-window (350–550 ms). When visual prediction was 

valid, the amplitude of late ERFs correlated with an increase in slow delta (3–4 Hz) phase-

locking (Fig. 2a and b, left panel, 350–500 ms, p < 0.001, interaction: p = 0.04), and a 

decrease in theta phase-locking. Conversely, when the prediction was invalidated by auditory 

input (Fig. 2a and b, right panel), ERF variations were associated with an increase in phase-

locking factor (PLF) in a low-beta band (14–15 Hz, 400–550 ms, p = 0.045, interaction: p = 

0.13), and a PLF decrease in the theta range (5–6 Hz, 350–500 ms, p = 0.018, interaction: p 

= 0.05). That predictability-dependent phase-locking departed from the theta band to either 

adopt a lower rate regime when predictions were valid, or a higher one when they were not, 

supports our hypothesis that visual prediction validity determines a transition in neural 

dynamics. 

 

Beta and delta regimes show distinct spatial dynamics 
To check whether these two distinct phase-locking modes were implemented through 

spatially distinct neural networks, we broadened the analysis to the whole scalp surface while 

focusing on the two time-frequency clusters reflecting the difference between valid and 

invalid conditions (black arrows, in Fig. 2a). We computed Pearson correlations at each 

sensor, between their PLF values in these time-frequency windows and the ERF amplitude 

of auditory sensors (Supplementary Fig. 2b). Scalp topographies of correlation values show 

diverging spatial patterns of stimulus phase-locked oscillatory activity depending on the 

validity of visual prediction (Fig. 2c). When prediction was valid, phase-locked delta activity 



 

 

(3–4 Hz) emerged across regions usually involved in high-order language processing, i.e., 

the ventral temporal cortex and the angular gyrus 14 (Fig. 2c, left).  

 

When visual prediction was invalid, the phase-locked pattern in the beta band (14–15 Hz) 

remained confined to the posterior middle temporal region (Fig. 2c, right), presumably the 

STS that is often described as a convergence point of visual and auditory (speech) inputs 15-

17. The location of this effect strongly converges with fMRI results obtained in an independent 

study in which we also probed predictability-by-validity interaction using a similar 

experimental design (Supplementary data and Supplementary Fig. 3 and 4). The transition 

in frequency regime when predictions were invalidated was thus associated with a drastic 

change in response topography, presumably reflecting a change in message-passing mode 

emphasizing top-down processing. 

 

Prediction invalidation increases beta PLF and gamma power 
An important implication of predictive coding 1, 3 is that the brain dedicates more resources to 

unexpected than to anticipated events. As high-frequency oscillations are energetically more 

demanding than slow oscillations 18-20, we checked whether oscillations in the gamma range 

could explain late ERF amplitude modulations associated with prediction errors (Window 3 in 

Fig. 1b and c). This analysis hence focused on late prediction error effects, i.e. 350 ms after 

auditory onset. We performed the same correlation analysis as above, using the sensors 

(n=10) that showed the strongest validity effect at the group level. These sensors were 

situated over posterior superior and middle temporal regions. Whereas low-frequency (< 30 

Hz) phase-locking and power correlation maps showed the same patterns for these sensors 

as for “auditory” sensors, we detected several clusters showing significant correlations 

between ERF amplitude and high-frequency power. The largest effect occurred in the AVi 

condition between 350 and 500 ms in the 70–90 Hz range (Fig. 3a, black arrow in right 

panel, p < 0.001, interaction: p = 0.01). Prediction invalidation hence increased late gamma 

power.  

 

We further tested for a possible coordinated activity (see Methods) between low-frequency 

phase-locking and high-frequency gamma power (Fig. 3b). When prediction was invalid 

(AVi), late (350–500 ms) mid- and high gamma power distinctly correlated with the two low-

frequency phase-locking patterns shown in the right panels in Figures 2a and b. Prediction 

error resulted in i) a joint increase in mid-gamma (60–70 Hz) power and PLF in low beta 

frequencies (14–15 Hz) suggestive of oscillation hierarchical coupling (nesting) 4-6, and ii) an 

increase in high-gamma (70–90 Hz) power with a PLF decrease in the theta band (5–6Hz) 

(Fig. 3b). The transition to a beta phase-locked mode likely gated an increase in mid-gamma 



 

 

oscillation power, while the increase in high gamma power was accompanied with a 

dissolution of phase-locked oscillations in the theta band.  

 

Finally, to address whether high gamma power modulations in the AVi condition reflected the 

level of prediction error, and in such a case where this occurred at the scalp level, we 

averaged power values in the time-frequency window defined by the interaction above (350–

500ms; 70–90 Hz; Fig. 3a, black arrow in right panel) and computed Pearson correlations 

with visual predictability at each sensor. As shown in Figure 3c, the highest correlation 

values were visible over the left occipital and temporal sensors, mainly distributed between 

early visual areas, auditory areas and the STS. When visual prediction was both strong and 

invalid, high-gamma power increased in low-level sensory regions. The increase in beta 

phase-locking in the STS was seen conjointly with an increase in gamma activity locally and 

in lower-tier sensory areas. This supports the proposal that the beta range is involved in 

inter-areal coupling 17, 21-23, and more specifically used in feedback projections 24, 25, and 

further suggests that the gamma range serves to propagate prediction error forward. 

 

 

Discussion 

 

Our results support theoretical models assuming that the brain uses prediction estimation 

procedures to construct percepts 1, 3, 26-28 and control action 29. In sensory perception, the 

general idea is that the brain continuously uses available information to update internal 

estimates that are used to predict the subsequent input. In this view, the information that is 

propagated forward reflects the difference between incoming input and expectation (i.e., 

what remains to be explained), whereas predictions are propagated backward. In our 

experimental setting, the temporal precedence of visual signals allows for the generation of 

predictions that are then confronted with incoming auditory signals 8. Consistent with 

predictive models, detectable correlates of prediction error were confined to late responses 

(~350 ms). This is because they are most strongly manifest after auditory and visual signals 

have converged on the STS, where phonological predictions generated on the basis of the 

visual input are effective (see Supplementary Data). 

 

We hypothesized that prediction validity at the origin of prediction errors induces a qualitative 

shift in neural dynamics that determines the message-passing mode. As expected, in the 

case of visual prediction validation, we observed stimulus-locked slow neural activity in a 

large high-order integrative network.  In contrast, visual prediction invalidation induced the 

dissolution of distributed low-frequency oscillations and the emergence of higher-frequency 



 

 

activity in the STS. Consistent with previous studies 19, 20, this increased high frequency 

activity co-localized with an increase in the BOLD signal (see Supplementary Fig. 4). The 

oscillatory pattern involved low beta and gamma activity locally in the STS and high gamma 

(70–90 Hz) activity in early auditory and visual processing systems. In other words, we 

observed a transition from a smooth distributed flow of information to a fast local processing, 

presumably aiming at i) resolving the conflict at the stage where audio-visual phonological 

incongruence is registered by forming new plausible sensory predictions, and ii) estimating 

these predictions in lower processing stages. 

 

Superficial layers of the cortex are the predominant source of gamma oscillations 30 and the 

notion that prediction error is indexed by increased gamma power in lower-tier sensory areas 

is therefore consistent with the proposal that superficial pyramidal cells, that originate forward 

projections in cortical hierarchies, report prediction error 1 (see Supplementary Fig. 5). That 

low beta activity increased in the STS, a higher hierarchical stage, also fits with the idea that 

deeper layer pyramidal cells, notionally representational units originating backward 

predictions 31, are associated with beta activity 7, 24, 25, 32. Given that superficial pyramidal cells 

receive their input from layer IV and project back on deep layers 33, an increase in prediction 

error enhancing superficial gamma activity likely strengthens connections across superficial 

and deep cortical layers. This coupling between superficial and deep layers generates a low 

beta rhythm (15Hz) that changes the nature of message-passing 34, 35. Functionally, the 

emergence of this common rhythm across superficial and deep layers could reflect i) the 

convergence of error and representation units on a new representational solution (prediction 

error minimization) and ii) top-down propagation of this solution to hierarchically lower 

regions. A slower frequency channel for top-down than for bottom-up signal propagation 

could reflect that top-down predictions result from the accumulation of bottom-up prediction 

errors. The emergence of low beta activity (14–15Hz) in the STS and increased high gamma 

activity locally and in lower-tier sensory areas could signal the redeployment of prediction 

errors due to alternative prediction testing operations (Supplementary Fig. 5). 

 

While beta and high gamma (80Hz) activity (and BOLD response) indexed prediction error 

and its resolution, slower delta/theta oscillatory activity signaled further processing of 

correctly anticipated stimuli. Delta (3–4Hz) activity in our data localized to distributed lexico-

semantic areas, suggesting that late slow stimulus-locked oscillatory activity reflects higher 

stages of speech processing 36, 37 and stabilizes sensory representations 38, 39. It is unclear 

how slow activity precisely relates to perception. Perception is often thought to rely on 

synchronization of focal neuronal assemblies in the gamma range 40-42. Delta/theta activity on 

the other hand has been suggested to shape gamma activity in superficial cortical layers 43 



 

 

that propagate information to the next hierarchical stage 44. Accordingly, we observed that 

gamma activity related to prediction error is accompanied by a decrease in theta phase-

locking (Fig. 3b). The observation that mid and high gamma activity are related to the phase-

consistency of beta and theta activity, respectively, extends the idea that gamma frequency 

variations reflect information routing 32, 34, 45, 46, and that message-passing is indexed by 

specific hierarchical combinations of slow and high frequencies (low/high frequency ratio) 47. 

 

The current data demonstrate that violating intermodal expectations changes the neural 

dynamics of slow (delta/theta) brain activity, and increases the coordination between local 

low beta and high gamma oscillatory activity. Our data suggest that this transition occurs in 

brain regions where audio-visual predictions are likely updated (STS), and new prediction 

errors generated (auditory and visual cortices). These findings suggest a tight relationship 

between particular high-frequency modes of activity and prediction errors, and suggest that 

slow cortical activity contains a previously unappreciated wealth of information that reflects 

perceptual expectations. 

 

 

Acknowledgements 

 

This work was supported by the Centre National de la Recherche Scientifique (A.-L.G.) and 

the Fondation Fyssen (V.W.). We thank the staff of the Centre de Neuroimagerie de 

Recherche and the Magnetoencephalography Center (Hôpital de la Pitié-Salpêtrière), in 

particular Jean-Didier Lemarechal, Antoine Ducorps, and Denis Schwarz, and the colleagues 

who commented on this work: Virginie van Wassenhove, Benjamin Morillon, Alexandre 

Hyafil, Sophie Denève, Lucia Melloni, François Griffon, Andreas Kleinschmidt, Etienne 

Koechlin, Brian Fischer, Karl Friston and Catherine Tallon-Baudry. 

 

 

Author Contributions 

 

The author(s) have made the following declarations about their contributions: Conceived and 

designed the experiments: LHA, ALG. Performed the experiments: LHA. Analyzed the data: 

LHA, VW, ALG. Contributed to analysis tools: LHA, VW. Wrote the paper: LHA, VW, ALG. 

 

 

 

 



 

 

Figure legends 

 

Figure 1. Interaction between predictability and validity in ERFs.  

a. Predictability was assessed behaviorally as the recognition rate of syllables presented in 

the visual (V) condition. Normalized predictability of each syllable was then correlated with 

experimental measures. b. Main ERF components evoked on auditory sensors by the 

presentation of AVc (dashed line) and AVi (solid line) stimuli. Grey surfaces between dashed 

and solid lines delimit time periods showing a main effect of validity (** p < 0.01). c. 

Correlations between ERF (AV–A) amplitude and predictability were computed at each time 

bin, separately for AVc (dashed line) and AVi (solid line) conditions. ERFs and correlation 

lines are locked to visual onset on the left, and on auditory onset on the right of the vertical 

double bar, respectively (see Methods). Windows 1, 2 and 3 (shaded surfaces in b and c) 

indicate the timeperiods where correlation is significant (signed r2). Black horizontal lines 

delimit statistical threshold p < 0.01 (** p < 0.01, * p < 0.05). Window 1 indicates that the 

visually-evoked response increased with visual predictability but was not affected by 

prediction validity (interaction in window 1: p = 0.93). Window 2 indicates that the decrease in 

M100A was accelerated proportionally to visual predictability, confirming that visual input 

hence sped up 8, 10 and “sharpened” 48 early auditory evoked responses proportionally to its 

informational value, yet without prediction error computation (non-significant interaction in 

window 2: p = 0.52). Prediction errors (visual predictability-by-validity interaction) emerged in 

the latest Window 3 (grey surfaces between dashed and solid lines in Window 3 delimit 

significant interaction, p < 0.001). 

 

Figure 2. Late low-frequency oscillatory patterns depend on the validity of inferences. 

a. Correlation strength (signed r2) between ERF amplitude and PLF of low (2–20 Hz) 

frequency bands. Time is expressed relative to auditory stimulus onset. Contours delimits 

statistical threshold of p < 0.05, p < 0.01 and p < 0.001. Arrows indicate time-frequency 

effects of interest, subsequently used for topographical rendering (see c.). b. Significance of 

the correlation strength (cluster corrected for multiple comparisons) across time in selected 

frequency bands, in AVc condition (delta-theta [350–500ms; 3–4 Hz]), and in AVi condition 

(delta-theta [350–500ms; 5–6 Hz]; beta [400–550; 14–15 Hz]). Thick lines indicate p cluster < 

0.05 across time (*** p < 0.001, * p < 0.05). Filled-in grey surfaces represent the mean and 

standard deviation of the corresponding null distributions across 1,000 permutations. c. 

Topographical renderings were obtained by computing Pearson correlations between 

amplitude of late ERFs (on auditory sensors) and PLF values of selected time- and 

frequency- windows of interest (see a. and b.) at each sensor for AVc (left topography) and 

AVi (right topography) conditions.  



 

 

 

Figure 3. Late high-frequency activity reflects prediction error computation.  

a. Correlation between ERF amplitude over sensors showing a significant effect of validity 

(located over the STS, see Methods section) and power of high (30–120 Hz) frequency 

bands for AVc (left panel) and AVi (right panel) stimuli. Black arrows indicate time- and 

frequency-windows of interest for subsequent analysis. Corrected r² for the frequency bands 

of clusters of interest are indicated below the right panel (AVi: high-gamma [350–500ms; 70–

90 Hz], thick line indicates p cluster < 0.05, *** p < 0.001.) b. Correlation strength between 

high-frequency (30–120 Hz) power and low frequency (2–30 Hz) PLF for AVi stimuli 

(averaged across time between 350 and 500 ms). Contours delimit statistical thresholds of p 

< 0.05, p < 0.01 and p < 0.001. Significant theta/gamma and low beta/gamma correlations 

only occurred in the invalid condition. Corrected r² for the frequency bands of selected 

clusters of interest are indicated in right panel (theta 5–6 Hz and beta 14–15 Hz). Filled-in 

grey surfaces represent the mean and standard deviation of corresponding null distributions 

across 1,000 permutations (thick line indicates p cluster < 0.05, * p < 0.05). c. Scalp 

topography of power × predictability correlation strength for AVi condition. Correlation 

strength (signed r2) between normalized predictability rates and power (averaged across 

time- [350–500 ms] and frequency- [70–90 Hz] windows) were computed at each sensor.  

 

 

Methods 

 

Subjects 

All subjects gave written informed consent to take part in these studies that were approved of 

by the local ethics committee (Comité Consultatif de Protection des Personnes se prêtant à 

des Recherches Biomédicales Paris-Cochin, # RBM 01-04). Thirty-four healthy French native 

speakers (right-handed, 19 females; age range: 20–53 years) participated in two behavioral 

pilot experiments (see Supplementary Data) and two neuroimaging experiments. Nineteen 

participants took part in the behavioral experiments. Fifteen other participants participated in 

the MEG experiment. Sixteen participants participated in the fMRI experiment. Twelve of 

them participated in both neuroimaging studies. 

 

Experimental procedures.  

Stimuli were excerpts from digital videos of a male speaker pronouncing consonant/vowel 

syllables (C/a/ syllables). Specific stimulus combinations and durations are provided in 

Supplementary Figure 1. Stimuli were presented using Presentation software 

(Neurobehavioral Systems). Two preliminary experiments served to i) establish a behavioral 



 

 

gradient of visual predictability, which was subsequently normalized and correlated with MEG 

signals (see statistical analysis section below) and ii) assess how visual predictability 

interacts with the subjective percept as a function of audio-visual congruence (see 

Supplementary data). During the MEG experiment, participants sat at a distance of 1 m 

from the monitor, the movie (720×576 pixels) subtending 10.5° (horizontal) and 8.5° (vertical) 

visual angles. To prevent eye movements, subjects were asked to fixate a cross and blink 

only after giving their motor response (after the video). Thus, only few trials (less than 5%) 

were contaminated by eye movement artifacts and were excluded. Each stimulus was 

presented 54 times in a pseudo-randomized order. 

 

MEG recordings and data processing. 

Continuous cerebral activity was recorded with a whole-head MEG system (Omega 151, 

CTF Systems), with 151 axial gradiometers over the scalp, at a sampling rate of 1250 Hz and 

low-pass filtered online at 300 Hz. Data preprocessing, analysis, and visualization were 

performed using both in-house software (http://cogimage.dsi.cnrs.fr/logiciels/) and programs 

written in MATLAB (The Mathworks, Natick, MA). Eye movements and blinks were monitored 

with four ocular electrodes (Viasys Healthcare) and automatically marked when they 

deviated by 2 standard deviations (SDs) from the mean. This technique, however, does not 

detect microsaccades. One supplementary electrode was used to monitor cardiac activity. 

We rejected off-line trials that were contaminated by eye or head movement, muscle 

contractions, or electromagnetic artifacts. Artifacts related to cardiac activity were eliminated 

by using a heartbeat trace matched filter. Event-related fields (ERFs) and time-frequency 

signals (phase-locking factor and oscillatory power, see below) were analyzed on a 1200 ms 

interval centered on auditory onset (AO) (–600 to 600 ms) and baseline corrected (when 

appropriate) on the interval (–600 to –300 ms, i.e., during the presentation of a still face), to 

ensure that the correction occurred before mouth movement onset. High-pass (0.15 Hz) and 

low-pass (30 Hz) filters were applied before averaging epochs to obtain ERFs. All signals 

were smoothed across time using a 20 ms sliding-average window. 

 

Time–frequency analyses.  

Time–frequency wavelet transforms were applied to each trial at each MEG sensor using a 

family of complex Morlet wavelets (m = 8), resulting in estimates of Phase-Locking Factor 49 

at each time sample and at each frequency between 2 and 30 Hz (frequency step, 1 Hz), and 

of oscillatory power at each time sample and frequencies ranging from low (2–30 Hz; 

frequency step, 1 Hz) to high (30–120 Hz; frequency step, 2 Hz) frequency bands. Baseline-

corrected power was defined at each time sample and frequency, as the increase of 

oscillatory power relative to baseline in logarithmic units. The log-transformed data were 



 

 

distributed normally, which allowed us to use standard parametric statistical tests (e.g., 

paired t tests, Pearson correlations). 

 

Statistical analyses. 

We first computed Pearson correlations between the magnitude of ERF amplitude and 

predictability (Fig. 1c). To measure the effect of predictability in early auditory regions, we 

extracted the time courses of ERFs from auditory sensors selected individually as the three 

sensors where M100A amplitude was maximal. Pearson correlations were computed across 

subjects between visual predictability and AV–A ERFs at each time bin of peristimulus time, 

and significance was assumed for p < 0.01 (a detailed description of the correlation method 

is illustrated in Supplementary Fig. 2a). To measure the interaction between validity and 

predictability on ERFs we computed two-sample t tests at each time bin of peristimulus time 

by using individual regression slopes of the predictability × ERF amplitude correlation (Fig. 

1c, grey surface between dashed and solid lines, significance assumed for p < 0.05). To 

correct for slight latency differences between the onsets of visual mouth movements (MO) 

and auditory onsets depending on the syllable (see Supplementary Fig. 1 b), we separated 

the analysis in two parts: the first part (Fig. 1b and c, left of the double vertical bar) was 

synchronized on MO, and the second one (Fig. 1b and c, to the right of the bar) was 

synchronized on auditory onset. For each syllable, MO was detected by measuring the 

overall color change of pixels (comprised in a 321×151 pixels rectangle surrounding center of 

the mouth) between successive frames of the videos. MO was therefore defined as the 

timepoint where the average of pixel colors of a frame deviated significantly of 2 SDs from 

the previous frame. The M170V component, resulting from averaging neuromagnetic fields 

time-locked on MO, peaked 170 ms after MO. While the M170 response to faces is 

classically detected in the fusiform cortex, MO elicited a specific response in motion sensitive 

cortex, previously identified as MT/V5 10. As there was a delay of about 25 ms between 

responses to visual input in MT/V5 and that in auditory regions, we conclude that the 

component measured by auditory sensors results from direct cross-modal (lateral) input to 

auditory cortex 10 and not from volume conduction. Importantly, we assume that this 

component is specifically related to visual mouth movement as we used a static face as a 

baseline (see Supplementary Fig. 1). 

Pearson correlations between ERF amplitude and time-frequency signals (power or PLF) 

were computed after normalization across experimental conditions (i.e., zero mean and unit 

variance) at the single subject level to correct for a possible influence of outliers (a detailed 

illustration of the correlation method is provided in Supplementary Fig. 2b). To determine 

the oscillatory structure underlying modulations of ERF amplitude, we computed correlation 

maps (Fig. 2a) by correlating time-frequency signals (low-frequency [2–30 Hz] PLF and 



 

 

power, respectively) with the amplitude of ERFs on individually selected auditory sensors. 

Because ERF-by-power and ERF-by-PLF maps did not qualitatively differ, and because 

there was no significant cluster above 20 Hz, we restricted the presented results to ERF-by-

PLF maps between 2 and 20Hz. We then focused on window 3 to determine the spectral 

signature of the predictability-by-validity interaction. From AVc and AVi maps in Figure 2a, 

we selected two time-frequency windows overlapping with window 3 and showing significant 

positive correlation strengths during time periods exceeding 100 ms (Fig. 2a: AVc [350–500 

ms; 3–4 Hz] and AVi [400–550 ms; 14–15 Hz]). In each of these time-frequency windows, we 

measured the interaction between predictability and validity by computing two-sample t tests 

using individual regression slopes between PLF values and predictability. Note that this 

interaction was not significant for the (14–15 Hz) cluster shown in Figure 2a (p = 0.13), but 

was significant when extending the frequency range to 12–15 Hz (p = 0.017), consistent with 

the spread of the beta-gamma ‘nesting’ cluster shown in Figure 3b. Scalp topographies in 

Figure 2c were obtained by correlating PLF values (averaged across time- and frequency-

windows of interest) at each sensor of the scalp with the amplitude of ERFs extracted on 

auditory sensors (averaged across the same time-window). The following analysis aimed at 

determining the high-frequency (30–120 Hz) spectral signature of late prediction error 

effects. Correlation maps in Figure 3a were obtained by correlating high-frequency power 

with the amplitude of ERFs extracted from “validity sensors” (the n = 10 occipito-temporal 

sensors selected at the group level as exhibiting a significant [p < 0.01] main effect of validity 

on ERF amplitude). The predictability-by-validity interaction was measured by computing 

two-sample t tests using individual regression slopes between predictability and power 

values (averaged across time [350–500 ms] and frequencies [70–90 Hz]). Hierarchical 

coupling across frequencies (reflecting nesting) (Fig. 3b) was obtained by computing, for 

each participant, correlations between low-frequency PLF and high-frequency power 

(averaged across time [350–500 ms] and frequencies [70–90 Hz]). While previous studies 

investigated nesting by looking at power changes in one frequency related to the phase of 

another frequency, we explored whether low oscillatory activity time- and phase-locked to the 

stimulus (irrespective of the relative phase value) was consistently associated with power 

increase. Finally, scalp topography in Figure 3c was obtained by correlating high power 

values (averaged across time [350–500 ms] and frequencies [70–90 Hz]) at each sensor with 

normalized visual predictability of syllables. 

To assess the strength of the observed effects and correct for type-I errors potentially arising 

from multiple comparisons performed at single time points within each frequency band, we 

used non-parametric cluster statistics 50. This analysis consists in clustering adjacent time 

samples that exhibit similar modulations between conditions, or similar correlations with 

event-related fields. As a first step, we selected all time samples in a variable of interest 



 

 

(ERF amplitude or PLF or power in specific frequency bands) which r-square difference 

exceeded p < 0.05. Then, the selected samples were clustered in connected sets on the 

basis of temporal adjacency. Cluster selection criterion in Figure 3b was based on the 

extraction of contiguous samples in PLF frequency-bands of interest. A cluster-level statistic 

was then computed by taking the sum of the r-squares within a cluster.  

Non-parametric statistics were computed by performing permutation tests. To assess the null 

distribution, the syllable labels were randomly intermixed within each subject and the r-

square difference was computed and a p < 0.05 threshold was applied. This procedure was 

repeated 1,000 times. For each of these permutations, the maximum cluster-level statistic 

was extracted. The non-parametric p-statistic was computed by comparing the null 

distribution of cluster-level statistics to the original cluster-level statistic. It is important to note 

that cluster-corrected p-statistics were computed with respect to the null distribution of the 

maximum cluster-level statistics: this statistical test hence controls the false alarm rate for all 

clusters. All reported results and p values were corrected at the cluster level following this 

procedure, and correlations maps in Figures 2 and 3 only display clusters that reached a 

corrected p value < 0.05.  
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