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Transitions in neural oscillations reflect prediction errors generated in audiovisual speech

 

Introduction

Predictive coding and other models of perception based upon hierarchical Bayesian inference [START_REF] Friston | A theory of cortical responses[END_REF][START_REF] Mumford | On the computational architecture of the neocortex. II. The role of cortico-cortical loops[END_REF][START_REF] Rao | Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects[END_REF] assume that neural representations are optimized to reduce "prediction error". This error is classically defined as the difference between the representations (neuronal activity) at each cortical level and the "predictions" or expectations arising from the level above, or cascading back from higher cognitive levels. Hence, the better the prediction, the smaller the prediction error. This reciprocal relationship between predictions and prediction errors is overtly or covertly exploited by several experimental paradigms (e.g., oddball, violation and adaptation paradigms) that rely on the contrast between neural responses to anticipated and unexpected stimuli, and report stronger responses to stimuli that are not or incorrectly anticipated.

There is also growing evidence that perception involves coordinated slow and fast brain oscillations, typically theta/gamma nesting [START_REF] Buzsaki | Neuronal oscillations in cortical networks[END_REF][START_REF] Canolty | High gamma power is phase-locked to theta oscillations in human neocortex[END_REF][START_REF] Lakatos | An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex[END_REF] , and novel hypotheses suggest that bottom-up information could be propagated forward on a gamma frequency channel from superficial cortical layers, whereas top-down information would use backward propagation on a beta frequency channel from deep cortical layers [START_REF] Wang | Neurophysiological and computational principles of cortical rhythms in cognition[END_REF] . How the coding of cognitive content and properties of electrical signaling articulate with each other is unclear. Here, we set out to experimentally address whether the rate and distribution of neural activity depends on correct or incorrect anticipation of the stimulus, and whether sensory predictions and prediction errors are conveyed using different frequency channels.

Audio-visual speech provides an ideal setting in which to test these hypotheses [START_REF] Van Wassenhove | Visual speech speeds up the neural processing of auditory speech[END_REF] . Our experimental paradigm capitalizes on a natural ~150 ms temporal lag between the onset of facial movements and vocal chord vibration that naturally occurs when we speak [START_REF] Chandrasekaran | The natural statistics of audiovisual speech[END_REF] . This lag allows the observer to synthesize phonological predictions prior to auditory onset on the basis of visual information. This also gives the experimenter the opportunity to temporally distinguish the neural effects related to these visually induced predictions and the prediction errors that emerge during audio-visual integration if predictions are invalidated. Here, sensory prediction errors were induced experimentally by violating the congruence between visual and auditory information. We also exploited the specificity with which visual input predicts auditory input in order to create a gradient of perceived incongruence [START_REF] Van Wassenhove | Visual speech speeds up the neural processing of auditory speech[END_REF][START_REF] Chandrasekaran | The natural statistics of audiovisual speech[END_REF][START_REF] Arnal | Dual neural routing of visual facilitation in speech processing[END_REF] . We thus induced graded prediction errors by varying audio-visual congruence, and expected them to be manifest at the neural level in the interaction between the amount of predictive information conveyed by the visual input (predictability) and the validity of this information with respect to incoming auditory input (audio-visual congruence). We quantified this "predictability-by-validity" interaction on neuromagnetic event-related fields (ERFs) measured with magnetoencephalography (MEG), and determined the oscillatory processes underlying prediction error using time-frequency analyses of the MEG data. We report qualitative differences in neural dynamics as a function of the validity of visual predictions, i.e. the amount of prediction errors.

Our central hypothesis was that there should be a fundamental and qualitative change in neuronal message-passing when sensory predictions are invalidated. In particular, audiovisual mismatch detection should enhance coordinated beta and gamma activities associated with the propagation of revised predictions and the redeployment of new prediction errors, respectively. While we observed distributed slow delta activity in higherlevel cortical areas during the perception of congruent stimuli, faster local cortical activity replaced these slow interactions when predictions from visual modality were invalidated by auditory inputs. In agreement with our hypothesis, beta activity appeared in regions where visual and auditory information converged, i.e. where multisensory predictions were generated, whereas gamma activity was seen in lower sensory cortices where prediction errors emerged and were propagated forward.

Results

We presented 15 subjects with stimuli in one of three conditions: videos (audio-visual: AV condition) of a speaker pronouncing different syllables, /pa/, /3a/, /la/, /ta/, /ga/ and /fa/, an auditory track of these videos combined with a still face (auditory: A condition), or a mute visual track (visual: V condition). The videos could be either natural or a random combination of auditory and visual tracks, entailing a condition where auditory and visual tracks were congruent (AVc condition) and one where they were incongruent (AVi condition; see Methods and Supplementary Fig. 1). Incongruent combinations yielding combination of fusion illusory percepts, i.e. McGurk stimuli, were excluded [START_REF] Van Wassenhove | Visual speech speeds up the neural processing of auditory speech[END_REF][START_REF] Mcgurk | Hearing lips and seeing voices[END_REF] . Subjects performed an unrelated target detection task on the syllable /fa/ that was presented in A, V or AVc form in 13% of the trials (97% correct detection). These trials were subsequently excluded from the analyses. The five other syllables were chosen because they yielded graded recognition accuracy when presented visually (Fig. 1a), resulting from an increasing predictability [START_REF] Arnal | Dual neural routing of visual facilitation in speech processing[END_REF] . The phonological prediction conveyed by mouth movements (visemes), varies in specificity depending on the pronounced syllable. Typically, syllables beginning with a consonant that is formed at the front of the mouth (/p/, /m/) convey a more specific prediction than those formed at the back (/g/, /k/, /r/, /l/) [START_REF] Van Wassenhove | Visual speech speeds up the neural processing of auditory speech[END_REF] . Our second experimental factor pertained to the validity of the visual prediction with respect to the auditory input. Physically, the audio-visual stimuli could be either congruent (valid prediction) or incongruent (invalid prediction), while perceptually, the level of incongruence varied gradually as a function of visual predictability, e.g. the strongest perceived incongruence was reported for the most predictable visemes in incongruent stimuli (see Supplementary Data).

Predictability-by-validity interaction was tested in a number of different data features to establish when and where in the brain prediction errors were expressed. We used the amplitude of event related fields over auditory regions to produce statistics as a function of predictability and validity across the peristimulus timecourse (Supplementary Fig. 2a). This indicates when ERFs are modulated by i) visual prediction validity (main effect of audiovisual congruence), ii) visual predictability separately under valid and invalid conditions, and iii) when prediction errors emerged (predictability-by-validity interaction). We went on to characterize the specific time-frequency patterns underlying ERF amplitude variations reflecting prediction error, by exploring time-frequency data in a way that is constrained by the time course of ERFs. This original methodological approach exploits inter-individualstimulus ERF variability to specifically probe time-frequency phase-locking and power effects that are sensitive to the experimental factors (Supplementary Fig. 2b). This method thus enhances the temporal sensitivity of the time-frequency analysis by revealing stimulusinduced and/or phase-locked oscillatory patterns underlying ERF modulations (see [START_REF] Shah | Neural dynamics and the fundamental mechanisms of event-related brain potentials[END_REF] , Methods and Supplementary Fig. 2b). This finally permits us to precisely identify the key frequencies, phase-locking and nesting principles that specifically underlie the expression of prediction error. Finally, to establish the regional specificity of these findings, we broadened the correlations between neuromagnetic indices of prediction error and time-frequency responses to all MEG channels.

Late ERF oscillatory regime reflects prediction errors

Our first analysis step was to correlate the amplitude of ERFs (AV-A, i.e. audio-visual integration index, see Methods) in response to each of the five syllables with their corresponding predictability value, i.e., the recognition level they yielded when presented as visemes (Fig. 1a), over the whole peristimulus timecourse (-100 to 600 ms relative to auditory onset; Supplementary Fig. 2a). The first two ERF components evoked by audiovisual syllables on the sensors that responded best to auditory stimuli correspond to feedforward visual and auditory responses [START_REF] Garrido | Dynamic causal modelling of evoked potentials: a reproducibility study[END_REF] . We refer to these components as M170V and M100A, respectively. Reflecting the natural delay between visual and auditory onsets, M170V and M100A were separated by approximately 100 ms. A main effect of visual prediction validity (audio-visual congruence) was detected after M100A peak in 4 distinct ~20 ms time-windows (Fig. 1b). Critically, we detected an effect of predictability (p < 0.01, shaded windows in Fig. 1b andc) on the M170V preceding auditory onset (Window 1) and on M100A (Window 2) in both AVc and AVi conditions (Fig. 1c). The parametric effect on M100A responses confirms that the independently assessed behavioral gradient is recovered by early physiological signals despite an un-related task instruction. A further late predictability effect was observed in AVi stimuli only, at around 350-500 ms (solid line in Fig. 1c, Window 3). Accordingly, the predictability-by-validity interaction emerged within this third window (Fig. 1c, interaction: p < 0.001). These data confirm that prediction errors only occurred late, after cross-modal prediction had emerged at cortical levels higher than auditory cortex, presumably at the superior temporal sulcus (STS) level, and possibly above.

We addressed a potential divergence in neural dynamics between the processing of correctly and incorrectly anticipated stimuli by comparing the time-frequency structure of evoked responses in valid and invalid conditions (see Methods). Consistent with the ERF data, timefrequency correlation maps (Fig. 2a) show that while AVc and AVi conditions evoked similar early (-100 to 300 ms) phase-locking increases in the delta-theta band (2-9 Hz), diverging patterns occurred during the latest time-window (350-550 ms). When visual prediction was valid, the amplitude of late ERFs correlated with an increase in slow delta (3-4 Hz) phaselocking (Fig. 2a andb, left panel, 350-500 ms, p < 0.001, interaction: p = 0.04), and a decrease in theta phase-locking. Conversely, when the prediction was invalidated by auditory input (Fig. 2a andb, right panel), ERF variations were associated with an increase in phaselocking factor (PLF) in a low-beta band (14-15 Hz, 400-550 ms, p = 0.045, interaction: p = 0.13), and a PLF decrease in the theta range (5-6 Hz, 350-500 ms, p = 0.018, interaction: p = 0.05). That predictability-dependent phase-locking departed from the theta band to either adopt a lower rate regime when predictions were valid, or a higher one when they were not, supports our hypothesis that visual prediction validity determines a transition in neural dynamics.

Beta and delta regimes show distinct spatial dynamics

To check whether these two distinct phase-locking modes were implemented through spatially distinct neural networks, we broadened the analysis to the whole scalp surface while focusing on the two time-frequency clusters reflecting the difference between valid and invalid conditions (black arrows, in Fig. 2a). We computed Pearson correlations at each sensor, between their PLF values in these time-frequency windows and the ERF amplitude of auditory sensors (Supplementary Fig. 2b). Scalp topographies of correlation values show diverging spatial patterns of stimulus phase-locked oscillatory activity depending on the validity of visual prediction (Fig. 2c). When prediction was valid, phase-locked delta activity (3-4 Hz) emerged across regions usually involved in high-order language processing, i.e., the ventral temporal cortex and the angular gyrus [START_REF] Hickok | The cortical organization of speech processing[END_REF] (Fig. 2c, left).

When visual prediction was invalid, the phase-locked pattern in the beta band (14-15 Hz) remained confined to the posterior middle temporal region (Fig. 2c, right), presumably the STS that is often described as a convergence point of visual and auditory (speech) inputs 15- 17 . The location of this effect strongly converges with fMRI results obtained in an independent study in which we also probed predictability-by-validity interaction using a similar experimental design (Supplementary data and Supplementary Fig. 3 and4). The transition in frequency regime when predictions were invalidated was thus associated with a drastic change in response topography, presumably reflecting a change in message-passing mode emphasizing top-down processing.

Prediction invalidation increases beta PLF and gamma power

An important implication of predictive coding [START_REF] Friston | A theory of cortical responses[END_REF][START_REF] Rao | Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects[END_REF] is that the brain dedicates more resources to unexpected than to anticipated events. As high-frequency oscillations are energetically more demanding than slow oscillations [START_REF] Koch | Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans[END_REF][START_REF] Mukamel | Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex[END_REF][START_REF] Niessing | Hemodynamic signals correlate tightly with synchronized gamma oscillations[END_REF] , we checked whether oscillations in the gamma range could explain late ERF amplitude modulations associated with prediction errors (Window 3 in Fig. 1b andc). This analysis hence focused on late prediction error effects, i.e. 350 ms after auditory onset. We performed the same correlation analysis as above, using the sensors (n=10) that showed the strongest validity effect at the group level. These sensors were situated over posterior superior and middle temporal regions. Whereas low-frequency (< 30 Hz) phase-locking and power correlation maps showed the same patterns for these sensors as for "auditory" sensors, we detected several clusters showing significant correlations between ERF amplitude and high-frequency power. The largest effect occurred in the AVi condition between 350 and 500 ms in the 70-90 Hz range (Fig. 3a, black arrow in right panel, p < 0.001, interaction: p = 0.01). Prediction invalidation hence increased late gamma power.

We further tested for a possible coordinated activity (see Methods) between low-frequency phase-locking and high-frequency gamma power (Fig. 3b). When prediction was invalid (AVi), late (350-500 ms) mid-and high gamma power distinctly correlated with the two lowfrequency phase-locking patterns shown in the right panels in Figures 2a andb. Prediction error resulted in i) a joint increase in mid-gamma (60-70 Hz) power and PLF in low beta frequencies (14-15 Hz) suggestive of oscillation hierarchical coupling (nesting) [START_REF] Buzsaki | Neuronal oscillations in cortical networks[END_REF][START_REF] Canolty | High gamma power is phase-locked to theta oscillations in human neocortex[END_REF][START_REF] Lakatos | An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex[END_REF] , and ii) an increase in high-gamma (70-90 Hz) power with a PLF decrease in the theta band (5-6Hz) (Fig. 3b). The transition to a beta phase-locked mode likely gated an increase in mid-gamma oscillation power, while the increase in high gamma power was accompanied with a dissolution of phase-locked oscillations in the theta band.

Finally, to address whether high gamma power modulations in the AVi condition reflected the level of prediction error, and in such a case where this occurred at the scalp level, we averaged power values in the time-frequency window defined by the interaction above (350-500ms; 70-90 Hz; Fig. 3a, black arrow in right panel) and computed Pearson correlations with visual predictability at each sensor. As shown in Figure 3c, the highest correlation values were visible over the left occipital and temporal sensors, mainly distributed between early visual areas, auditory areas and the STS. When visual prediction was both strong and invalid, high-gamma power increased in low-level sensory regions. The increase in beta phase-locking in the STS was seen conjointly with an increase in gamma activity locally and in lower-tier sensory areas. This supports the proposal that the beta range is involved in inter-areal coupling [START_REF] Kayser | Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration[END_REF][START_REF] Engel | Beta-band oscillations--signalling the status quo?[END_REF][START_REF] Von Stein | Top-down processing mediated by interareal synchronization[END_REF][START_REF] Womelsdorf | Modulation of neuronal interactions through neuronal synchronization[END_REF] , and more specifically used in feedback projections [START_REF] Sejnowski | Network oscillations: emerging computational principles[END_REF][START_REF] Wrobel | Beta activity: a carrier for visual attention[END_REF] , and further suggests that the gamma range serves to propagate prediction error forward.

Discussion

Our results support theoretical models assuming that the brain uses prediction estimation procedures to construct percepts [START_REF] Friston | A theory of cortical responses[END_REF][START_REF] Rao | Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects[END_REF][START_REF] Neisser | Cognitive psychology[END_REF][START_REF] Poeppel | Speech perception at the interface of neurobiology and linguistics[END_REF][START_REF] Stevens | Remarks on analysis by synthesis and distinctive features[END_REF] and control action [START_REF] Wolpert | An internal model for sensorimotor integration[END_REF] . In sensory perception, the general idea is that the brain continuously uses available information to update internal estimates that are used to predict the subsequent input. In this view, the information that is propagated forward reflects the difference between incoming input and expectation (i.e., what remains to be explained), whereas predictions are propagated backward. In our experimental setting, the temporal precedence of visual signals allows for the generation of predictions that are then confronted with incoming auditory signals [START_REF] Van Wassenhove | Visual speech speeds up the neural processing of auditory speech[END_REF] . Consistent with predictive models, detectable correlates of prediction error were confined to late responses (~350 ms). This is because they are most strongly manifest after auditory and visual signals have converged on the STS, where phonological predictions generated on the basis of the visual input are effective (see Supplementary Data).

We hypothesized that prediction validity at the origin of prediction errors induces a qualitative shift in neural dynamics that determines the message-passing mode. As expected, in the case of visual prediction validation, we observed stimulus-locked slow neural activity in a large high-order integrative network. In contrast, visual prediction invalidation induced the dissolution of distributed low-frequency oscillations and the emergence of higher-frequency activity in the STS. Consistent with previous studies [START_REF] Mukamel | Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex[END_REF][START_REF] Niessing | Hemodynamic signals correlate tightly with synchronized gamma oscillations[END_REF] , this increased high frequency activity co-localized with an increase in the BOLD signal (see Supplementary Fig. 4). The oscillatory pattern involved low beta and gamma activity locally in the STS and high gamma (70-90 Hz) activity in early auditory and visual processing systems. In other words, we observed a transition from a smooth distributed flow of information to a fast local processing, presumably aiming at i) resolving the conflict at the stage where audio-visual phonological incongruence is registered by forming new plausible sensory predictions, and ii) estimating these predictions in lower processing stages. Superficial layers of the cortex are the predominant source of gamma oscillations [START_REF] Roopun | Period concatenation underlies interactions between gamma and beta rhythms in neocortex[END_REF] and the notion that prediction error is indexed by increased gamma power in lower-tier sensory areas is therefore consistent with the proposal that superficial pyramidal cells, that originate forward projections in cortical hierarchies, report prediction error 1 (see Supplementary Fig. 5). That low beta activity increased in the STS, a higher hierarchical stage, also fits with the idea that deeper layer pyramidal cells, notionally representational units originating backward predictions [START_REF] Spratling | Reconciling predictive coding and biased competition models of cortical function[END_REF] , are associated with beta activity [START_REF] Wang | Neurophysiological and computational principles of cortical rhythms in cognition[END_REF][START_REF] Sejnowski | Network oscillations: emerging computational principles[END_REF][START_REF] Wrobel | Beta activity: a carrier for visual attention[END_REF][START_REF] Buschman | Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices[END_REF] . Given that superficial pyramidal cells receive their input from layer IV and project back on deep layers [START_REF] George | Towards a mathematical theory of cortical micro-circuits[END_REF] , an increase in prediction error enhancing superficial gamma activity likely strengthens connections across superficial and deep cortical layers. This coupling between superficial and deep layers generates a low beta rhythm (15Hz) that changes the nature of message-passing [START_REF] Kopell | Are different rhythms good for different functions?[END_REF][START_REF] Kramer | Rhythm generation through period concatenation in rat somatosensory cortex[END_REF] . Functionally, the emergence of this common rhythm across superficial and deep layers could reflect i) the convergence of error and representation units on a new representational solution (prediction error minimization) and ii) top-down propagation of this solution to hierarchically lower regions. A slower frequency channel for top-down than for bottom-up signal propagation could reflect that top-down predictions result from the accumulation of bottom-up prediction errors. The emergence of low beta activity (14-15Hz) in the STS and increased high gamma activity locally and in lower-tier sensory areas could signal the redeployment of prediction errors due to alternative prediction testing operations (Supplementary Fig. 5).

While beta and high gamma (80Hz) activity (and BOLD response) indexed prediction error and its resolution, slower delta/theta oscillatory activity signaled further processing of correctly anticipated stimuli. Delta (3-4Hz) activity in our data localized to distributed lexicosemantic areas, suggesting that late slow stimulus-locked oscillatory activity reflects higher stages of speech processing [START_REF] Hagoort | Integration of word meaning and world knowledge in language comprehension[END_REF][START_REF] Hald | EEG theta and gamma responses to semantic violations in online sentence processing[END_REF] and stabilizes sensory representations [START_REF] Kayser | Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns[END_REF][START_REF] Schroeder | The gamma oscillation: master or slave?[END_REF] . It is unclear how slow activity precisely relates to perception. Perception is often thought to rely on synchronization of focal neuronal assemblies in the gamma range [START_REF] Engel | Dynamic predictions: oscillations and synchrony in top-down processing[END_REF][START_REF] Fries | Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry[END_REF][START_REF] Wyart | Neural dissociation between visual awareness and spatial attention[END_REF] . Delta/theta activity on the other hand has been suggested to shape gamma activity in superficial cortical layers [START_REF] Schroeder | Low-frequency neuronal oscillations as instruments of sensory selection[END_REF] that propagate information to the next hierarchical stage [START_REF] Rockland | Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey[END_REF] . Accordingly, we observed that gamma activity related to prediction error is accompanied by a decrease in theta phaselocking (Fig. 3b). The observation that mid and high gamma activity are related to the phaseconsistency of beta and theta activity, respectively, extends the idea that gamma frequency variations reflect information routing [START_REF] Buschman | Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices[END_REF][START_REF] Kopell | Are different rhythms good for different functions?[END_REF][START_REF] Akam | Oscillations and filtering networks support flexible routing of information[END_REF][START_REF] Colgin | Frequency of gamma oscillations routes flow of information in the hippocampus[END_REF] , and that message-passing is indexed by specific hierarchical combinations of slow and high frequencies (low/high frequency ratio) [START_REF] Panzeri | Sensory neural codes using multiplexed temporal scales[END_REF] .

The current data demonstrate that violating intermodal expectations changes the neural dynamics of slow (delta/theta) brain activity, and increases the coordination between local low beta and high gamma oscillatory activity. Our data suggest that this transition occurs in brain regions where audio-visual predictions are likely updated (STS), and new prediction errors generated (auditory and visual cortices). These findings suggest a tight relationship between particular high-frequency modes of activity and prediction errors, and suggest that slow cortical activity contains a previously unappreciated wealth of information that reflects perceptual expectations. indicate the timeperiods where correlation is significant (signed r 2 ). Black horizontal lines delimit statistical threshold p < 0.01 (** p < 0.01, * p < 0.05). Window 1 indicates that the visually-evoked response increased with visual predictability but was not affected by prediction validity (interaction in window 1: p = 0.93). Window 2 indicates that the decrease in M100A was accelerated proportionally to visual predictability, confirming that visual input hence sped up [START_REF] Van Wassenhove | Visual speech speeds up the neural processing of auditory speech[END_REF][START_REF] Arnal | Dual neural routing of visual facilitation in speech processing[END_REF] and "sharpened" [START_REF] Grill-Spector | Repetition and the brain: neural models of stimulus-specific effects[END_REF] early auditory evoked responses proportionally to its informational value, yet without prediction error computation (non-significant interaction in window 2: p = 0.52). Prediction errors (visual predictability-by-validity interaction) emerged in the latest Window 3 (grey surfaces between dashed and solid lines in Window 3 delimit significant interaction, p < 0.001). 

Figure 1 .

 1 Figure 1. Interaction between predictability and validity in ERFs. a. Predictability was assessed behaviorally as the recognition rate of syllables presented in the visual (V) condition. Normalized predictability of each syllable was then correlated with experimental measures. b. Main ERF components evoked on auditory sensors by the presentation of AVc (dashed line) and AVi (solid line) stimuli. Grey surfaces between dashed and solid lines delimit time periods showing a main effect of validity (** p < 0.01). c. Correlations between ERF (AV-A) amplitude and predictability were computed at each time bin, separately for AVc (dashed line) and AVi (solid line) conditions. ERFs and correlation lines are locked to visual onset on the left, and on auditory onset on the right of the vertical double bar, respectively (see Methods). Windows 1, 2 and 3 (shaded surfaces in b and c)

Figure 2 .

 2 Figure 2. Late low-frequency oscillatory patterns depend on the validity of inferences. a. Correlation strength (signed r 2 ) between ERF amplitude and PLF of low (2-20 Hz) frequency bands. Time is expressed relative to auditory stimulus onset. Contours delimits statistical threshold of p < 0.05, p < 0.01 and p < 0.001. Arrows indicate time-frequency effects of interest, subsequently used for topographical rendering (see c.). b. Significance of the correlation strength (cluster corrected for multiple comparisons) across time in selected frequency bands, in AVc condition (delta-theta [350-500ms; 3-4 Hz]), and in AVi condition (delta-theta [350-500ms; 5-6 Hz]; beta [400-550; 14-15 Hz]). Thick lines indicate p cluster < 0.05 across time (*** p < 0.001, * p < 0.05). Filled-in grey surfaces represent the mean and standard deviation of the corresponding null distributions across 1,000 permutations. c. Topographical renderings were obtained by computing Pearson correlations between amplitude of late ERFs (on auditory sensors) and PLF values of selected time-and frequency-windows of interest (see a. and b.) at each sensor for AVc (left topography) and AVi (right topography) conditions.

Figure 3 .

 3 Figure 3. Late high-frequency activity reflects prediction error computation. a. Correlation between ERF amplitude over sensors showing a significant effect of validity (located over the STS, see Methods section) and power of high (30-120 Hz) frequency bands for AVc (left panel) and AVi (right panel) stimuli. Black arrows indicate time-and frequency-windows of interest for subsequent analysis. Corrected r² for the frequency bands of clusters of interest are indicated below the right panel (AVi: high-gamma [350-500ms; 70-90 Hz], thick line indicates p cluster < 0.05, *** p < 0.001.) b. Correlation strength between high-frequency (30-120 Hz) power and low frequency (2-30 Hz) PLF for AVi stimuli (averaged across time between 350 and 500 ms). Contours delimit statistical thresholds of p < 0.05, p < 0.01 and p < 0.001. Significant theta/gamma and low beta/gamma correlations only occurred in the invalid condition. Corrected r² for the frequency bands of selected clusters of interest are indicated in right panel (theta 5-6 Hz and beta 14-15 Hz). Filled-in grey surfaces represent the mean and standard deviation of corresponding null distributions across 1,000 permutations (thick line indicates p cluster < 0.05, * p < 0.05). c. Scalp topography of power × predictability correlation strength for AVi condition. Correlation strength (signed r 2 ) between normalized predictability rates and power (averaged across time-[350-500 ms] and frequency-[70-90 Hz] windows) were computed at each sensor.
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Methods

Subjects

All subjects gave written informed consent to take part in these studies that were approved of 

Experimental procedures.

Stimuli were excerpts from digital videos of a male speaker pronouncing consonant/vowel syllables (C/a/ syllables). Specific stimulus combinations and durations are provided in Supplementary Figure 1. Stimuli were presented using Presentation software (Neurobehavioral Systems). Two preliminary experiments served to i) establish a behavioral gradient of visual predictability, which was subsequently normalized and correlated with MEG signals (see statistical analysis section below) and ii) assess how visual predictability interacts with the subjective percept as a function of audio-visual congruence (see

Supplementary data).

During the MEG experiment, participants sat at a distance of 1 m from the monitor, the movie (720×576 pixels) subtending 10.5° (horizontal) and 8.5° (vertical) visual angles. To prevent eye movements, subjects were asked to fixate a cross and blink only after giving their motor response (after the video). Thus, only few trials (less than 5%) were contaminated by eye movement artifacts and were excluded. Each stimulus was presented 54 times in a pseudo-randomized order.

MEG recordings and data processing.

Continuous cerebral activity was recorded with a whole-head MEG system (Omega 151, CTF Systems), with 151 axial gradiometers over the scalp, at a sampling rate of 1250 Hz and low-pass filtered online at 300 Hz. Data preprocessing, analysis, and visualization were performed using both in-house software (http://cogimage.dsi.cnrs.fr/logiciels/) and programs written in MATLAB (The Mathworks, Natick, MA). Eye movements and blinks were monitored with four ocular electrodes (Viasys Healthcare) and automatically marked when they deviated by 2 standard deviations (SDs) from the mean. This technique, however, does not detect microsaccades. One supplementary electrode was used to monitor cardiac activity.

We rejected off-line trials that were contaminated by eye or head movement, muscle contractions, or electromagnetic artifacts. Artifacts related to cardiac activity were eliminated by using a heartbeat trace matched filter. Event-related fields (ERFs) and time-frequency signals (phase-locking factor and oscillatory power, see below) were analyzed on a 1200 ms interval centered on auditory onset (AO) (-600 to 600 ms) and baseline corrected (when appropriate) on the interval (-600 to -300 ms, i.e., during the presentation of a still face), to ensure that the correction occurred before mouth movement onset. High-pass (0.15 Hz) and low-pass (30 Hz) filters were applied before averaging epochs to obtain ERFs. All signals were smoothed across time using a 20 ms sliding-average window.

Time-frequency analyses.

Time-frequency wavelet transforms were applied to each trial at each MEG sensor using a family of complex Morlet wavelets (m = 8), resulting in estimates of Phase-Locking Factor [START_REF] Tallon-Baudry | Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human[END_REF] at each time sample and at each frequency between 2 and 30 Hz (frequency step, 1 Hz), and of oscillatory power at each time sample and frequencies ranging from low (2-30 Hz; frequency step, 1 Hz) to high (30-120 Hz; frequency step, 2 Hz) frequency bands. Baselinecorrected power was defined at each time sample and frequency, as the increase of oscillatory power relative to baseline in logarithmic units. The log-transformed data were distributed normally, which allowed us to use standard parametric statistical tests (e.g., paired t tests, Pearson correlations).

Statistical analyses.

We first computed Pearson correlations between the magnitude of ERF amplitude and predictability (Fig. 1c). To measure the effect of predictability in early auditory regions, we extracted the time courses of ERFs from auditory sensors selected individually as the three sensors where M100A amplitude was maximal. Pearson correlations were computed across subjects between visual predictability and AV-A ERFs at each time bin of peristimulus time, and significance was assumed for p < 0.01 (a detailed description of the correlation method is illustrated in Supplementary Fig. 2a). To measure the interaction between validity and predictability on ERFs we computed two-sample t tests at each time bin of peristimulus time by using individual regression slopes of the predictability × ERF amplitude correlation (Fig. 1c, grey surface between dashed and solid lines, significance assumed for p < 0.05). To correct for slight latency differences between the onsets of visual mouth movements (MO) and auditory onsets depending on the syllable (see Supplementary Fig. 1 b), we separated the analysis in two parts: the first part (Fig. 1b andc, left of the double vertical bar) was synchronized on MO, and the second one (Fig. 1b andc, to the right of the bar) was synchronized on auditory onset. For each syllable, MO was detected by measuring the overall color change of pixels (comprised in a 321×151 pixels rectangle surrounding center of the mouth) between successive frames of the videos. MO was therefore defined as the timepoint where the average of pixel colors of a frame deviated significantly of 2 SDs from the previous frame. The M170V component, resulting from averaging neuromagnetic fields time-locked on MO, peaked 170 ms after MO. While the M170 response to faces is classically detected in the fusiform cortex, MO elicited a specific response in motion sensitive cortex, previously identified as MT/V5 [START_REF] Arnal | Dual neural routing of visual facilitation in speech processing[END_REF] . As there was a delay of about 25 ms between responses to visual input in MT/V5 and that in auditory regions, we conclude that the component measured by auditory sensors results from direct cross-modal (lateral) input to auditory cortex [START_REF] Arnal | Dual neural routing of visual facilitation in speech processing[END_REF] and not from volume conduction. Importantly, we assume that this component is specifically related to visual mouth movement as we used a static face as a baseline (see Supplementary Fig. 1).

Pearson correlations between ERF amplitude and time-frequency signals (power or PLF)

were computed after normalization across experimental conditions (i.e., zero mean and unit variance) at the single subject level to correct for a possible influence of outliers (a detailed illustration of the correlation method is provided in Supplementary Fig. 2b). To determine the oscillatory structure underlying modulations of ERF amplitude, we computed correlation maps (Fig. 2a) by correlating time-frequency signals (low-frequency [2-30 Hz] PLF and power, respectively) with the amplitude of ERFs on individually selected auditory sensors.

Because ERF-by-power and ERF-by-PLF maps did not qualitatively differ, and because there was no significant cluster above 20 Hz, we restricted the presented results to ERF-by-PLF maps between 2 and 20Hz. We then focused on window 3 to determine the spectral signature of the predictability-by-validity interaction. From AVc and AVi maps in Figure 2a, we selected two time-frequency windows overlapping with window 3 and showing significant positive correlation strengths during time periods exceeding 100 ms (Fig. 2a: AVc [350-500 ms; 3-4 Hz] and AVi [400-550 ms; 14-15 Hz]). In each of these time-frequency windows, we measured the interaction between predictability and validity by computing two-sample t tests using individual regression slopes between PLF values and predictability. Note that this interaction was not significant for the (14-15 Hz) cluster shown in Figure 2a (p = 0.13), but was significant when extending the frequency range to 12-15 Hz (p = 0.017), consistent with the spread of the beta-gamma 'nesting' cluster shown in Figure 3b. Scalp topographies in To assess the strength of the observed effects and correct for type-I errors potentially arising from multiple comparisons performed at single time points within each frequency band, we used non-parametric cluster statistics [START_REF] Maris | Nonparametric statistical testing of EEG-and MEG-data[END_REF] . This analysis consists in clustering adjacent time samples that exhibit similar modulations between conditions, or similar correlations with event-related fields. As a first step, we selected all time samples in a variable of interest (ERF amplitude or PLF or power in specific frequency bands) which r-square difference exceeded p < 0.05. Then, the selected samples were clustered in connected sets on the basis of temporal adjacency. Cluster selection criterion in Figure 3b was based on the extraction of contiguous samples in PLF frequency-bands of interest. A cluster-level statistic was then computed by taking the sum of the r-squares within a cluster.

Non-parametric statistics were computed by performing permutation tests. To assess the null distribution, the syllable labels were randomly intermixed within each subject and the rsquare difference was computed and a p < 0.05 threshold was applied. This procedure was repeated 1,000 times. For each of these permutations, the maximum cluster-level statistic was extracted. The non-parametric p-statistic was computed by comparing the null distribution of cluster-level statistics to the original cluster-level statistic. It is important to note that cluster-corrected p-statistics were computed with respect to the null distribution of the maximum cluster-level statistics: this statistical test hence controls the false alarm rate for all clusters. All reported results and p values were corrected at the cluster level following this procedure, and correlations maps in Figures 2 and3 only display clusters that reached a corrected p value < 0.05.