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Abstract 

This paper presents a method for indexing activities of daily living in videos 

obtained from wearable cameras. In the context of dementia diagnosis by doctors, 

the videos are recorded at patients’ houses and later visualized by the medical 

practitioners. The videos may last up to two hours, therefore a tool for an efficient 

navigation in terms of activities of interest is crucial for the doctors. The specific 

recording mode provides video data which are really difficult, being a single 

sequence shot where strong motion and sharp lighting changes often appear. Our 

work introduces an automatic motion based segmentation of the video and a video 

structuring approach in terms of activities by a hierarchical two-level Hidden 

Markov Model. We define our description space over motion and visual 

characteristics of video and audio channels. Experiments on real data obtained 

from the recording at home of several patients show the difficulty of the task and 

the promising results of our approach. 

1. Introduction 

The application which drives our research is the vast and urgent area of sustaining 

capacities of the society to afford increasing costs and ensure convenient 
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treatment to the rapidly aging population of the planet. The aging of the world 

population has led to an unprecedented rise in the spread of dementia globally, 

with significant personal and socio-economic costs. For instance, Europe is 

currently undergoing a demographic change with the average age of the 

population increasing significantly. According to EUROPOP2008 [1] (EUROpean 

POpulation Projections, base year 2008), by 2060 it is projected that almost three 

times as many people will be aged 80 or more. An unfortunate effect of ageing is 

the greater likelihood of exposure to chronic conditions like dementia; today 10% 

of people over the age of 65 have Alzheimer’s disease. The situation will be even 

worse if Science does not make significant progress: 25% of population after the 

age of 65 will have dementia diseases. Elderly people with strong cognitive 

impairments such as dementia cannot sustain their life independently, and the 

placement in nursing homes becomes unavoidable with a high cost for the society. 

One of the major goals in medical research is the early diagnosis of a dementia 

disease. This would help proposing appropriate care giving and later entering to 

the specialized institutions, thus reducing ever growing costs of these diseases for 

the society. According to results of medical research [2] the first decline in 

cognitive performances can appear as early as 12 years before dementia phase and 

up to 10 years before the individuals become slightly dependent in their activities 

of daily living. To detect the first signs a subject could show and also to assess the 

progression of the disease with patients in established dementia phase, an 

objective observation of various activities in an everyday life is required for 

medical practitioners. This is why the observation with various types of sensors 

including video cameras is now entering in clinical practice [31]. The amount of 

generated video data is usually very large: indeed the observation with external 

cameras in smart homes can last for several hours [3]; the monitoring with 

wearable sensors can be shorter, but still unexplorable by a medical practitioner in 

the short time allocated to the preparation of an appointment with a patient. Hence 

the necessity of automatic recognition of activities of interest is obvious. In 

literature, a large amount of research is now devoted to the recognition of human 

activities in video recorded with stationary video sensors installed in buildings, 

e.g. [4]. Some of them are specifically devoted to the elderly people for 

observation to assess the degree of autonomy and signs of coming dementia [3]. 

Nevertheless, the “external observation” does not allow for a medical practitioner 
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to observe fine actions of the patient, such as instrumental activities of daily 

leaving. To see how a person uses aliments when cooking or how he/she is 

knitting or washing dishes would require a very dense installation of various 

sensors at home for each observed patient. Furthermore, equipping homes with 

sensors is not always well accepted by elderly persons. Hence, during the last 

decade various attempts have been made to use a wearable video acquisition set-

up. Thus the SenseCam [6] device, which is worn by a person, serves to constitute 

his life-log and to rememorize the events for a person with memory impairments. 

The WearCam [7] project uses a camera strapped on the head of young children. 

This setup allows capturing the field of view of the child together with his gaze in 

order to monitor the impairments in child’s development. All these wearable 

video sensors somehow give “the point-of-view” of a person in his activity. They 

are thus precious for the fine studies of behavior as required in particular for 

dementia diseases. Hence, in this paper we develop the research we first proposed 

in [5] on activities recognition in videos recorded with cameras worn by patients 

for diagnosis and monitoring of dementia. We specifically focus on the formalism 

used for indexing of instrumental activities in such videos, which is a hierarchical 

two level Hidden Markov Model (HMM). The paper is organized as follows: in 

section  2 we explicit the origin and the nature of video data, in section  3 we 

describe the proposed formalism. In section  4, we present our method for 

partitioning the videos and in section  5 we present our strategy for the extraction 

of meaningful features which feed the HMM as observations. Experiments with 

various configurations of the model and description space are reported in 

section  6. Finally, we conclude and give perspectives of this work in section  7. 

2. Origin of the data 

a. The visit and recording protocol 

The idea of this research from a medical point of view is to use the video 

recording in the same way as a clinical test such as MRI or radiography and to get 

this observations in a stress-less and friendly environment for the patient, while at 

home. In a target usage scenario the doctor will ask the paramedical staff to visit 

the patient with the recording system. Then, the recorded video is automatically 

processed and indexed by our method off-line. Finally, the doctor will use the 
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video and indexes produced by our analysis to navigate in it and search for the 

activities of interest. Visual analysis of the latter serves to diagnose the disease or 

assess the evolution of the patient’s condition. The typical recording scenario 

consists of two stages. A small bootstrap video for estimation of patient’s 

localization in his home environment is recorded at the beginning of the recording 

session. Indeed, when a paramedical assistant comes to visit a patient for the first 

time, the patient “visits” his house when recording. Then, the patient is asked to 

perform some of the activities which are a part of clinical evaluation protocols in 

assessing dementia progress. These activities define the targeted events to be 

detected by our method. 

b. The video recording device 

The video acquisition device should be easy to put on, should remain in the same 

position even when the patient moves hectically. It has to bring as less discomfort 

as possible to an aged patient. Regarding these constraints, a vest was adapted to 

be the support of the camera. The camera is fixed approximately on the shoulder 

of the patient with hook-and-loops fasteners which allow the camera’s position to 

be adapted to the patient’s morphology. This position combined with the wide 

angle lens of the camera offers a large view field similar to the patient’s one. With 

the camera being light and the vest distributing the weight on all the upper body, 

the acceptance of the device is very good. The volunteers have felt no discomfort 

while wearing it and were able to perform their activities as if the device was not 

present. An illustration of the device is given in Figure 1.  

c. The video characteristics 

The videos obtained from wearable cameras are quite different from the standard 

edited videos in e.g. cinema, commercials, sports or TV programs of other genres. 

Indeed, edited videos which are usually a target of video indexing methods have a 

“clean” motion and are assembled from video shots with discontinuities on the 

shot borders. In our case, the video is recorded as a long continuous sequence, as 

in surveillance applications. The latter deals with stationary cameras or with 

regular motions, such as PTZ. In our wearable setting the camera has a wide angle 

lens in order to capture a large part of the patient’s environment. Hence ego-

motion of the patient even of a weak physical magnitude can yield strong changes 
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in the recorded scene content in the field of view of the wearable camera as well 

as a strong blur. Furthermore, when moving in a natural home environment, the 

patients face strong light sources, such as windows resulting in saturation of 

luminance in the field of view. Examples of such challenging videos are 

represented in Figure 2 by key-frames. 

 

(a) Motion blur due to strong 

motion. 

 

 (b) Low lighting while in 

dark environment. 

 

 (c) High lighting while facing 

a window. 

FIGURE 2: Examples of frames presenting challenging data for video analysis. 

Furthermore, the variability of the data is very strong: the same activities are not 

performed by different patients in the same environment as this is the case in 

“smart homes” [3]. 

d. Activities of Daily Living 

Up to now, the medical practitioners were using a paper questionnaire while 

interviewing the patient and his relatives to determine his ability to correctly 

perform the following Activities of Daily Living (ADL): “Hoovering”, 

 

FIGURE 1: The recording device (red circle) fixed on the vest adapted to be the support of the 

camera. 
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“Sweeping”, “Washing Clothes”, “Serving”, “Making Coffee”, “Making Snack”, 

“Hair Brushing”, “Phone”, “TV”, “Knitting”, “Plant Spraying”, 

“Listening to Radio”, “Wiping Dishes”, “Brushing Teeth”, “Washing Dishes”. 

These ADL are the target of automatic recognition in order to provide doctors 

with an efficient navigation tool throughout the video recorded at the patient’s 

home. Hence, we come now to the problem of recognition of activities sequential 

in time, on the basis of noisy and variable data with some possible constraints on 

their time scheduling. We resort to HMMs, which proved to be an excellent model 

for such types of problems [35].  

3. Hidden Markov Models for Video Structuring 

a. Classical Hidden Markov Models 

The Hidden Markov Model (HMM) is a statistical model which was first 

introduced in [9] where its application to speech recognition was presented. An 

HHM is composed of m states:            . An observation model, which is 

usually a Gaussian Mixture Model (GMM) for continuous observations, and 

transition probabilities towards other states and itself are associated to each state 

  . The transition matrix         contains all the transition probabilities 

between all states of the HMM,     is the transition probability between state    

and    and the diagonal of the matrix contains all the loop probabilities. 

HMMs were later applied to many fields such as handwriting and gesture 

recognition [12], bioinformatics and video. The video applications of the HMMs 

have been first designed for low-level temporal structuring like the method for 

video segmentation using image, audio and motion content presented in [10], 

were the HMM states represent the camera motion and the transitions between 

shots. Since the work [9] the research in HMMs has been very intensive and 

resulted both in more sophisticated observation models and more complex 

architecture. Hence in [12] a non-Gaussian HMM has been proposed to cope with 

outliers in observations. As for the structure of HMMs, the richness of application 

contexts and constraints imposed in various spatio-temporal scenarios to model 

yielded a wide range of HMMs. An HMM can be fully connected or partially 

connected. In the later case some transitions probabilities in matrix    are forced 

to be null. Amongst the variety of HMMs hierarchical and segmental HMMs 
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turned to be the most popular for modeling of activities in video streams. In the 

following sub-sections we analyze their advantages (and draw backs) and propose 

our solution. 

b. Hierarchical Hidden Markov Models 

With regards to the complexity and inherent hierarchical structure in video scenes 

coming from numerous application domains the classical “flat” HMM, as 

presented above, is limited. Indeed the structure of video scenes in e.g. sports 

video can be mapped to more than one HMM. Thus; in tennis videos [11] one 

HMM can describe a match as a set of “sets”, each set can be represented as a set 

of “games” and each game can be represented as set of “points” etc.., up to an 

elementary events such as “rally”, “first missed serve”. In our case of modeling of 

activities of daily leaving each activity, such as “washing dishes”, “making 

coffee”, “watching TV” etc can also be decomposed into some elementary events. 

In both cases a vertical link of hierarchy exists between states of more “global” 

HMM and “more detailed” HMM. This can be represented by a specific case of 

HMM, the so-called “hierarchical HMMs (HHMMs)” modeling both the 

hierarchy of events (states) and transitions between them. Usually [14] the 

hierarchical structure is defined using the bottom-level states as emitting sates 

(where the observation distribution has to be learnt) and high-level states as 

“internal” states to model the structure of the events. In the formulation of [14] a 

state is denoted by   
              where   is the state index and   is the 

hierarchy index i.e. the state level, with     the top-level HMM. The possible 

transitions are both horizontal (between the states of the same level) and vertical 

between states of neighboring levels   and    . A transition matrix    
 
 

    
  
 

  is defined for the sub-states of each internal state   
 , where    

  
 

 

    
      

     is the probability of making a horizontal transition from sub-states 

  and   of   
 . The vertical transitions    

 
     

 
   

           
      

    can 

be seen as the probability of entering state   
    from its “parent” state   

 . This 

probability is related to the initial probabilities of the classical HMM as the 

probability that state   
  will initially activate the state   

   . Each production state 

(state at lower level) is parameterized by an observation model    
. A two-level 
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approach was proposed in [13] where the bottom level is composed of HMMs for 

features analysis, and the top level is a stochastic context-free parsing. This model 

was applied to gesture recognition and video surveillance. The results presented 

in [13] show improvement in recognition performance of the proposed HHMM 

over a flat HMM. However, one of the main drawbacks of these fully hierarchical 

models is the higher number of parameters to train (such as complementary 

“vertical” transition probabilities    
 
) which induces the need of a large amount 

of learning data.  

c. Segmental Hidden Markov Models 

The major limitation of classical HMMs and derived HHMMs is the invalidity of 

the “Independence Assumption” [16]. This means the hypothesis on independence 

of subsequent observations. In video this is clearly not the case. Hence the 

Segmental Hidden Markov Model (SHMM), introduced in [16], addresses the 

problem of variable length sequences of observation vectors as presented in [17]. 

The application to video has been for example shown for tennis video parsing [18] 

where thanks to SHMM different modalities can be processed with their native 

sampling rates and models. Once again, despite the gain in performance, these 

models have a much higher computational cost and number of parameters than the 

flat HMM. 

d. Design of an activities recognition model: a two-level 

hierarchical HMM 

In order to take into account both the complexity of our data and the lack of large 

amount of training data for learning purposes, we propose the following model. If 

we abstract our problem of recognition of daily activities in the video to its 

simplest core, we can draw an equivalence between an activity and a hidden state 

of an HMM. The connectivity of the HMM can, at this level, be defined by the 

spatial constraints of the patient’s environment when it is known. The easiest way 

is to design a fully connected HMM and train the inherent state-transition 

probabilities from the labeled data. Unfortunately, the ADL we consider are very 

much heterogeneous and often very complex, therefore the suggested equivalence 

between an activity and a hidden state cannot hold together. 
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Hence, we propose a two-level Hierarchical HMM (HHMM). The activities that 

are meaningful to the medical practitioners are encoded in the top-level HMM, the 

set of possible states is thus defined accordingly. We also introduce a reject state 

“None” to model non-meaningful observations from doctors’ point of view. Thus 

defined, the top-level HMM contains the transitions between “semantic” activities 

including the reject class. A bottom-level HHM models an activity with m  non-

semantic states, as in [19]. The number of states at bottom level   is fixed to 3, 5 

or 7 for ADL states and to 1, 3, 5 or 9 for the reject class “None” in our 

experiments. The overall structure of the HHMM is presented in Figure 3, with 3 

states at the bottom level. 

i. Top-level HMM 

The top-level HMM represents the relations between the actions of interest, which 

are the ADL defined by the medical practitioners. In this work, the actions of 

interest are ADL such as “Meds Management”, “Hand Cleaning” , “Brushing 

Teeth”, “Plant Spraying”, “Washing Dishes”, “Sweeping”, “Making Coffee”, 

“Making Snack”, “Hair Brushing”, “Phone”, “TV” etc, and another activity for all 

the rest which is not relevant to the ADL of interest named “None”. We denote 

the set of states at this level as       
       

   and transition matrix    

    
  , where    is the number of activities. In this work, no constraints were 

specified over the transitions between activities as such restrictions are very 

difficult to know a priori when addressing a larger set of activities and when 

analyzing a large set of videos where the physical constraints of each patient’s 

house are different. Moreover, the ADL a patient is asked to fulfill depend very 

much on his condition and their sequencing cannot be fixed for all patients in the 

same way. Hence, we design the top-level HMM as a fully connected one. We 

consider equiprobable transitions from activities states to one another, 

hence         
  

 

  
. The states of the top-level HMM modeling activities are 

denoted in Figure 3 as “Act” for the sake of simplicity. In our model, 

        
               in example in Figure 3, correspond to vertical transitions 

        
   in the HHMM formalism of [14]. 
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ii. Bottom-level HMM 

Most of the activities defined in the above section are complex and could not 

easily be modeled by one state. For each activity   
  in the top-level HMM a 

bottom-level HMM is defined with the set of states   
      

     
  
 

   with 

  
           for ADL states and   

             states for the reject class 

“none” in our experiments. The state transition matrices   
 , for          also 

correspond to a fully connected HMM:     
   , at initialization, for         

  

and         
 . For the video stream not to be over-segmented the loop 

probabilities     
  have to be initialized with greater values than other transition 

probabilities:     
      

       , this will be explicitly defined in our 

 

FIGURE 3: The two-level HMM structure for modeling activities of a patient. Act. Activities, q: 

emitting states. Dashed circled states are non emitting states. 
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experimental study. Activities are more likely to involve several successive 

observations rather than just one, this explains the choice for such a higher loop 

probability. 

At the bottom level, each non semantic state models the observation vector   by a 

Gaussian Mixture Model (GMM). In our model we consider diagonal covariance 

matrix. The GMM and the transitions matrix of all the bottom-level HMMs are 

learned using the classical Baum Welsh algorithm [9] with labeled data 

corresponding to each activity. 

iii. Implementation, training and recognition 

HMM is a well-studied subject for today, and a lot of implementations of HMMs 

are available in open source software. In our implementation of the designed two-

level HHMM, we used the HTK library [32]. This probably is the mostly used 

software for HMMs [8]. 

We consider a continuous HMM that models observations probability with GMM. 

The nature of the observations will be detailed in section  5. For training the 

bottom-level HMMs we use the Baum-Welsh algorithm. In the Baum-Welsh 

algorithm, an initialization is needed. The number of states at the bottom level   

is fixed and will not be changed during the learning process. The transition 

probabilities are initialized with greater values for loop probabilities as stated in 

previous section, the exact values are precised in each experiment presented in 

section  6. We used a fixed number of Gaussian components for the observation 

model. The HTK Baum-Welsh training implementation may discard low-weight 

Gaussian components in a mixture. Precisely, the component   of the GMM is 

discarded if the re-estimated weight is lower than a minimal “threshold” weight. 

The initialization of the GMM can be done as a “flat-start” i.e. setting all means 

and variances to be equal to the global mean and variance. However, since the 

Baum-Welsh would only find a local optimum and that the amount of learning 

data in our context is not very large, a more detailed initialization is possible by 

using iterative Viterbi alignments. 

For the recognition, the Viterbi algorithm is used. The HTK implementation 

makes efficient use of the “token passing” paradigm to implement a beam pruned 

Viterbi search. Details on the HTK library can be found in the HTK Book [33]. 
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4. Partitioning into analysis units 

The video structuring will rely on an analysis unit. We want to establish a 

minimal unit of analysis which is more relevant than the video frames. The 

objective is to segment the video into the different viewpoints that the patient 

provides by moving throughout his home. In contrast to the work in [6] where the 

description space is based on a fixed key-framing of the video, our goal is to use 

the motion of the patient as one of the features. This choice corresponds to the 

need to distinguish between various activities of a patient which are naturally 

static (e.g. reading) and dynamic (e.g. hoovering). This viewpoint segmentation of 

our long uninterrupted video sequences may be considered as an equivalent to 

shots in edited video sequences.  We now detail the designed motion-based 

segmentation of the video.  

a. Global Motion Estimation 

Since the camera is worn by the person, the global motion observed in an image 

plane can be called the “ego-motion”. We model the ego-motion by the first order 

complete affine model and estimate it with a robust weighted least squares by the 

method we reported in [20]. The parameters of (1) are computed from the motion 

vectors extracted from the compressed video stream (H.264 in the current 

recording device) where one motion vector               is extracted per i-th 

image block and is supposed to follow the model 

  
   

   
   

  

  
   

    

    
  

  

  
  (1)  

with         being the coordinates of a block center. 

b. Corners Trajectories 

To split the video stream into segments we compute the trajectories of each corner 

using the global motion estimation previously presented. For each frame the 

distance between the initial and the current position of a corner is calculated. We 

denote   as the image width and   as a threshold on the frame overlap rate. A 

corner is considered as having reached an outbound position once it has had a 

distance greater than     from its initial position in the current segment. These 
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boundaries are represented by green and red (when the corner has reached an 

outbound position) circles in Figure 4. 

 

(a) Corner trajectories while the person is static. 

 

(b) Corner trajectories while the person is 

moving. 

FIGURE 4: Example of corners trajectories. 

c. Definition of Segments 

Each segment    corresponds to a temporal interval       
      

     which aims 

to represent a single “viewpoint”. The notion of viewpoint is clearly linked to the 

threshold  , which defines the minimal proportion of the first frame of a segment, 

which should be contained in all its frames. We define the following rules: a 

segment should contain a minimum of 5 frames and a maximum of 1000 frames. 

These boundaries on segment duration are defined to avoid an over-segmentation 

of the video by setting a minimal duration corresponding to a sixth of second, and 

to avoid having a long static activity represented by a single segment [34]. The 

end of the segment is the frame corresponding to the time when at least 3 corners 

have reached at least once an outbound position. The key frame is then chosen as 

the temporal center of the segment, see examples in Figure 5. Hence the estimated 

motion model serves for two goals: i) estimated motion parameters are used for 

the computation of dynamic features in the global description space, and ii) the 

key frames extracted from motion-segmented “viewpoints” are the basis for 

   

FIGURE 5: An example of key frame (center) with the beginning (left) and ending (right) frames 

of the segment. 
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extraction of spatial features. We will now focus on the definition of all features 

and the design of the global description space candidates. 

5. Audiovisual Information Extraction 

The description space aims to describe the different modalities that can be 

extracted from the video stream. We first introduce descriptors that characterize 

the motion within the video recorded, then define the audio analysis and finally 

present static descriptors that gather the context of the patient’s environment. The 

fusion of all these features will be presented in the last sub-section of this section. 

a. Motion description 

The motion contains interesting information that can be used to characterize an 

activity. The camera being worn by the patient, the global motion corresponds to 

the ego-motion. Thus, the parameters of the global motion model are directly 

linked to the instantaneous displacement of the patient and can help to distinguish 

between static or dynamic activities. However, the instantaneous motion may be 

limited to describe highly dynamic activities such as hoovering. We therefore seek 

a description of motion history defining the dynamics on a longer term. Finally, 

the local motion is also important and may characterize a moving object or an 

interaction with an object. Therefore, a set of descriptors for these several 

properties of the motion will be defined. 

i. Global and Instant Motion 

The ego-motion is estimated by the global motion analysis presented in 

section  4 a. The parameters a1 and a4 are the translation parameters. We limit our 

analysis to these parameters, since as in the case of wearable cameras, they better 

express the dynamics of the behavior, and pure affine deformation without any 

translation is practically never observed.  

The instant motion histogram is defined as the histogram of the log-energy of 

each translation parameter Htpe, as expressed in  (2), defining a step sh and using a 

log scale. Since this histogram characterizes the instant motion it is computed for 

each frame. This feature is designed to distinguish between “static” activities e.g. 

“knitting” and dynamic activities, such as “sweeping”. 
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 (2)  

Eq.  (2): Translation parameter histogram, associated to a segment  , aj is either a1 

or a4. 

The feature for a video segment    is an averaged histogram on all its frames: 

      
       , j=1,4 for horizontal and vertical translations parameters, respectively a1 

and a4. The global instant motion feature is the concatenation of both:     
       

       
               

         . 

We denote                the histogram of the log-energy of horizontal 

translation, and                the histogram of the log energy of vertical 

translation observed in image plane. The number of bins is chosen empirically and 

equally with regards to   and  , Ne = 5, the threshold    is chosen in such a way 

that the last bin corresponds to the translation of the image width or height 

respectively. 

ii. History of Global Motion  

Another element to distinguish static and dynamic activities is the motion history. 

On the contrary to the instant motion, we design it to characterize long-term 

dynamic activities, such as walking ahead, vacuum cleaning, etc. The estimation 

of this is done by computing a “cut histogram” Hc. The i-th bin of this histogram 

contains the number Hc(i) of cuts (according to the motion based segmentation 

presented in section 5a) that happened in the last 2
i
 frames, see Figure 6. The 

number of bins Nc is defined as 8 in our experiments providing a history horizon 

of 256 frames. This represents almost 9 seconds of our 30 fps videos. The history 

horizon was chosen to be the highest power of two lower than the minimal 

average duration of an activity. Such a definition is a good trade-off between long 

term history and potential overlapping of activities. Thus defined, the cut 

histogram is associated to each frame in the video. The descriptor associated to a 

segment is the average of the cut histograms of the frames belonging to the 

segment. 
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FIGURE 6: The number of cuts (black lines) is summed to define the value of each bin. In this 

example: Hc[1]=0, Hc[2]=0, Hc[3]=1, Hc[4]=1, Hc[5]=2, Hc[6]=7. 

iii. Local Motion 

All the previous motion descriptors focus on the global motion which is very 

important as it provides a characterization of the ego-motion. However, the 

residual motion may reveal additional information, such as the occurrence of a 

manual activity or the presence of a moving object or a person in the visual field 

of the patient. We introduce a descriptor which is computed on each block of a 

4x4 grid partitioning of an image. The value representing each block (3) is 

computed as the Root Mean Square (RMS) of the difference             

               
 
 between motion vector extracted from compressed stream and 

the one obtained from the estimated model (1). The residual motion descriptor 

RM of the whole has therefore a dimensionality of 16. 

      
        

        
         

       

   
 (3)  

Eq.  (3): Residual Motion value for block   of width   and height  . 

b. Audio 

The particularity of our contribution in the design of a description space consists 

in the use of low-level audio descriptors. Indeed, in the home environment with 

ambient TV audio track, noise produced by different objects that the patient is 

manipulating, conversations with the persons, etc. All are good indicators of 

activity and its location. In order to characterize the audio environment, different 

sets of features are extracted. Each set is characteristic of a particular sound: 

speech, music, noise and silence [28]. Energy is used for silence detection. 

4 Hertz energy modulation and entropy modulation give voicing information, 

being specific to the presence of speech. The number of segments per second and 

the segment duration, resulting from a “Forward-Backward” divergence 

algorithm [27], are used to find harmonic sound, like music. 
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Spectral coefficients are proposed to detect noise: percussion and periodic sounds 

(examples: footstep, home appliance, flowing water, vacuum cleaner, etc.). An 

original low level descriptor called “spectral cover” is used and allows 

recognizing two specific sound events: water flow and vacuum cleaner [35]. 

Finally, the complete set of audio descriptors is composed of 7 possible events: 

speech, music, noise, silence, periodic sounds, water flow and vacuum cleaner. 

c. Static descriptors 

Static descriptors aim to characterize the instantaneous state of the patient within 

his/her environment. The first static descriptor is the localization estimation. As 

many activities are linked to a specific location e.g. cooking in the kitchen, it can 

be helpful to have a estimation of the localization. The second defines the local 

spatial and color environment using the MPEG-7 descriptor “Color Layout”. This 

descriptor aims at capturing the spatial and color organization of local pattern 

when facing a sink or a gas cooker for example. 

i. Localization 

We use the method of Bag of Visual Words [21] for representing an image as a 

histogram of visual words. Low level visual information contained within an 

image is captured using local features SURF [24] descriptors. Descriptors are 

quantized into visual words using a pre-built vocabulary which is constructed in a 

hierarchical manner [22]. The Bag of Words vector is built by counting the 

occurrence of each visual word. Due to rich visual content, the dimensionality of 

such histograms is very high (we used a 1111 word dictionary in our context). A 

kernel based approach based on the SVM classifier [26] was therefore chosen to 

obtain location estimates. The histograms were compared with the intersection 

kernel, which is adapted to such features. In practice, the feature extraction step 

can be done without annotation, and can be run as a preprocessing routine. 

Dimensionality reduction through non-linear Kernel PCA [23] with intersection 

kernel was included in this routine to reduce the size of the stored descriptors to 

several hundred linear dimensions [25]. Classification was then applied directly 

on these simplified descriptors. A one-vs-all approach was used to address the 

multi-class classification problem. The final location was represented as a vector, 

containing a 1 for the detected class, and 0 for other classes. 
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ii. Spatial and color description 

Using the extracted key frames representing each segment, a simple description of 

the local spatial and color environment is expected. In this choice we seek for the 

global descriptors which characterize the color of frames while still preserving 

some spatial information. The MPEG-7 Color Layout Descriptor (CLD) proved to 

be a good compromise for both [29]. It is a vector of DCT coefficients computed 

on a roughly low-passed filtered and sub-sampled image. We compute it on each 

key frame and retain 6 parameters for the luminance and 3 for each chrominance 

as in [30]. This descriptor gives a coarse but yet discriminative visual summary of 

the local environment. 

d. Descriptors fusion 

Hence, for description of the content recorded with wearable cameras we designed 

three description subspaces: the “dynamic” subspace has 34 dimensions, and 

contains the descriptors                           ; the “audio” subspace 

contains the k = 7 audio descriptors              ; the “static” subspace 

contains 19 coefficients, more precisely l = 12 CLD coefficients                 

and m = 7 localization coefficients                . 

We design the global description space in an “early fusion” manner concatenating 

all descriptors in an observation vector   in R
n
 space with n = 60 dimensions 

when all descriptors are used, thus, the designed description space is 

inhomogeneous. We will study the completeness and redundancy of this space in 

a pure experimental way with regard to the indexing of activities in Section  6, by 

building all the possible partial fusions. 

6. Experiments 

a. Corpus 

The experiments are conducted on corpora of videos recorded with our wearable 

device by patients in their own houses. A video recording is of an average 

duration of 40 minutes and contains approximately 10 activities; not all activities 

are present in each video. Each video represents an amount of 50 to 70 thousands 

frames, which induces hundreds to a thousand segments according to our motion-

based temporal segmentation, see section  4. The description spaces are built using 
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each descriptor separately and with all possible combinations of descriptors where 

order is not considered. Therefore, a total of 63 different descriptions spaces are 

considered. 

The experiments are conducted in two stages. First, on a corpus of 5 videos 

recorded with 5 different patients. The aim of this first experiment is to analyze 

the overall performances of all the descriptors combinations and of the HMM 

configurations. The influence of the proposed motion-based temporal 

segmentation is also discussed in the first experiment. The second experiment use 

a subset of all the descriptors combinations, selected as the 13 best performances. 

The HMM configurations are also limited to those who have shown the best 

performances on the first experiment. In this experiment the corpus is larger as it 

contains 26 videos. The latter constitutes a unique corpus which has been 

recorded on healthy volunteers and patients during two years since the beginning 

of the research. The analysis of the performances is also two-fold: we evaluate in 

terms of global accuracy and for singular activities. 

b. Evaluation metrics 

To evaluate the overall performance of the proposed model we used the global 

accuracy metric, which is a ratio between the number of correct estimations and 

the total number of observations. Any misclassification of an activity, which will 

correspond to a false negative with regard to the ground truth activity and to a 

false positive with regard to the detected activity, will decrease the global 

accuracy metric. 

Table 1: Evaluation metrics. 

           
  

     
         

  

     
 

          
     

           
          

 

 
            

       
 

 

When the analysis is aiming for detailed performances for particular activity 

recognition the precision, recall and F-score metrics are used. True positives (TP), 

true negatives (TN), false positives (FP) and false negatives (FN) values 
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corresponds to the correct detection, correct absence, misdetection and missed 

detection respectively for a given activity. According to these definitions, we can 

now evaluate the metrics as presented in Table 1. These metrics can only be used 

when computed for each activity separately. For the global performance 

evaluation a detection is either true or false, the notions of false positive or true 

negative are irrelevant. 

c. Learning and testing protocol 

The experiments are conducted in a leave-one-out cross validation scheme, i.e. the 

HMMs are learned using all videos except one which is used for testing. The 

results are presented in terms of global accuracy of recognition averaged over the 

cross validation process. The learning is performed over a sub sampling of 

smoothed data extracted from frames. The smoothing substitute the value of each 

frame descriptor by the average value on the 10 surrounding frames, then one of 

ten samples is selected to build ten times more learning sequences. The testing has 

been done on frames or segments of the last video. 

In the first experiment presented here, the bottom level HMM of each activity has 

3 or 5 states. For one evaluation all activities have the same number of states, 

except the “None” which may be modeled with more or fewer states, here 9 or 

only one. All HMMs observation models are 5 Gaussians mixtures except the 

“None” one state-HMM which has only one Gaussian. The activities of interest 

for the first experiment are the ADL: “Plant Spraying”, “Remove Dishes”, 

“Wipe Dishes”, “Meds Management”, “Hand Cleaning” , “Brushing Teeth”, 

“Washing Dishes”, “Sweeping”, “Making Coffee”, “Making Snack”, 

“Picking Up Dust”, “Put Sweep Back”, “Hair Brushing”, “Serving”, “Phone” and 

“TV”. In the following we report the results of the evaluation for all activities, i.e. 

“global” evaluation and for some activities of interest. In figures the results per 

descriptor are sorted in decreasing order. 

d. Evaluation of the influence of temporal segmentation 

The proposed temporal segmentation reveals three main advantages. First, the 

amount of data to process in the recognition process is divided by a factor 

between 50 and 80 since one observation is defined for a segment and not for a 

frame. Second, the key frames may be used as a summary of the whole video 
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which is relevant as it gathers the evolution of the patient in successive places. 

Finally, the evaluation of recognition performance presented in Figure 7 shows 

that the results are better when the recognition process is run on segments. In this 

figure the results are sorted in decreasing order. The best results are always 

obtained with segments as observations and other results are similar using frames 

or segments. 

e. Global evaluation of the description space 

Figure 7 also shows which configurations are the most successful for the task. All 

the 33 best configurations are actually all the configurations including the     

descriptor. We will therefore in the following only consider configurations which 

include    , and evaluate all possible combination of it with the other 

descriptors. The results are presented in Figure 8. Once again, a significant gain in 

performance can be observed when using segments instead of frames 

observations, the best accuracy for segments is 0.31 while the best accuracy for 

frames is 0.17. Here, the best global performance is obtained for the fusion 

         and good performances are also obtained for description spaces 

     ,         ,               and 

 

FIGURE 7: Global accuracy evaluation of recognition using frames (blue curve and square points) 

and segments (red curve and diamond points) over all the description spaces fusion tested (sorted 

by decreasing accuracy with respect to segments approach). 

NB: For a better readability of the figure, results are shown for a selected configuration 

(3statesNone1State) of the HMMs but are similar for other configurations. 
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(a) Results using frames as observations 

 

(b) Results using segments as observations 

FIGURE 8: Global accuracy evaluation of recognition using segments over CLD and all possible 

fusion with CLD description spaces using frames (a) or segments (b) as observations. The curves 

represent 6 different HMM configuration: 3 states (blue curve and square points), 3 states with 

“None” class being modeled with only one state (red curve with circle points), 3 states with 

“None” class being modeled with 9 states (yellow curve with triangle pointing down points), 5 

states (green curve and triangle pointing up points), 5 states with “None” class being modeled with 

only one state (purple curve with triangle pointing right points), 5 states with “None” class being 

modeled with 9 states (pale blue curve with triangle pointing left points). 
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               . The       descriptor seems efficient to capture some of 

the characteristic noises of activities which may occur for “Washing Dishes” or 

“Brushing Teeth” for example. 

f. Global evaluation of the reject class model 

We have also investigated the influence of modeling the reject class “None” in a 

different way than all the ADL classes. We have performed experiments when 

modeling this “None” class by a single state HMM or by a much more complex 9 

states HMM. From the same Figure 8, we can see that performances with the 

reject class being modeled as a single state are clearly poorer and using 9 states 

does not significantly improve or degrade the performance. However, this 

configuration with 9 states for the “None” class shows good performances in high 

dimensionality description spaces built upon video segments.  

g. Evaluation recognition of activities on the whole corpus 

Finally, the second experiment is run on a corpus of 26 videos following the same 

leave-one-out cross validation scheme. The description space candidates are the 

13 best configurations from the first experiment. The number of states at the 

bottom-level   is fixed to 3. In this experiment, the 23 different activities are 

“Food manual preparation”, “Displacement free”, “Hoovering”, “Sweeping”, 

“Cleaning”, “Making a bed”, “Using dustpan”, “Throwing into the dustbin”, 

“Cleaning dishes by hand”, “Body hygiene”, “Hygiene beauty”, “Getting 

dressed”, “Gardening”, “Reading”, “Watching TV”, “Working on computer”, 

“Making coffee”, “Cooking”, “Using washing machine”, “Using microwave”, 

“Taking medicines”, “Using phone”, “Making home visit”. 

An overview of the results in this larger scale experiments are given in Figure 9. 

The best median accuracy (0.42) is obtained for the complete description space 

                   . The gain of performance compared to the first 

experiment can be explained by the larger amount of training data. However, it is 

important to state the large variance of accuracy between 0.1 and 0.9. This shows 

the difficulty of our task. 
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h. Evaluation for specific activities 

A more in depth analysis of the performances for activities recognition is given in 

Figure 10. We have selected a subset of four activities (“Hoovering”, “Making a 

bed”, “Reading” and “Working on computer”) where the performances wary 

strongly when different description spaces are used. The performances are given 

in terms of accuracy, recall, precision and F-score, see Table 1. Note, the accuracy 

when computed by activity can easily be high since true negatives have positive 

impact on the performance. The results are sorted by decreasing precision as 

exchanges with the doctors have led to the conclusion that it was better to have 

less but more accurate detections, which is exactly what good precision metric 

values represent. 

For the activity “Hoovering” the       is essential as the 7 best performances 

contains the       descriptor, see Figure 10a. This can be clearly linked with the 

fact that one of the coefficients of the       descriptor corresponds to the 

detection of a “hoover” sound. The best trade-off between recall and precision, i.e. 

the best F-score, is obtained for the description space                which 

contains global and local instantaneous motion descriptors in addition to       

 

FIGURE 9: Global accuracy with regards to all description space candidates. The results are sorted 

by decreasing median accuracy. 
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and    . The complete description space                     is also a 

good trade-off between recall and precision. 

The second activity studied is “Making a bed”, the results are presented in 

Figure 10b. For this activity the four top results contains the three descriptors   , 

    and    , the best results being obtained for the description space         . 

This activity will always happen in the bedroom, thus the presence of the     

descriptor in the best description spaces is not surprising. The    descriptor is 

helpful to characterize the fact that a patient moves around the bed while 

performing this activity. 

The third activity “Reading” is more static and involves localized residual motion 

while turning the pages of the book being read. This is confirmed as the 5 top 

description spaces incorporate the    descriptor, see Figure 10c. The static 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

FIGURE 10: Performances according to the four metrics: recall (red curves, “+” points), precision 

(green curves, “x” points), F-score (blue curves, “*”points) and accuracy (pink curves, square 

points). The results are sorted by decreasing precision. a) “Hoovering”, b) “Making a bed”, c) 

“Reading” and d) “Working on computer”. 
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component of the activity is captured by the motion descriptors, both    and      

seem efficient for capturing this characteristic. The activity “Reading” being more 

likely in a limited set of locations, the     descriptor is also present in most of the 

best configurations. 

Figure 10d depicts the results for the last activity we studied: “Working on 

computer”. The best description spaces contain the     and     descriptors 

combined with at least one motion descriptor. Once again, the complete 

description space gives one of the best performances. 

7. Conclusions and perspectives 

Hence in this paper we tackled the problem of recognition of activities in videos 

acquired with cameras worn by patients for study of dementia disease. These 

videos are complex, with strong and irregular motion and lighting changes, the 

presence of activities of interest in the recordings is rare. 

We solved the problem using HMM formalism. A Hierarchical two level HMM 

was proposed modeling both semantic activities from the taxonomy defined by 

medical doctors and non-semantic intermediate states. In order to define the 

observations of HMM we introduced a new concept of camera “viewpoint” and 

proposed a temporal segmentation of video thanks to analysis of apparent motion 

in it. 

For the video frames and viewpoints we defined multimodal description spaces 

comprising motion features, static visual features and audio descriptors. The 

observations for training and recognition with HHMM were obtained by 

combination of proposed features in an early fusion manner with a reasonable 

dimension of the most complete space. 

In the definition of the set of states of upper-level HMM we introduced a “None” 

state modeling a rejection class, which is necessary for description of our natural 

content namely transitions between activities and non-relevant actions of patients. 

The proposed model was tested on the unique-in-the-world video corpus acquired 

with healthy volunteers and patients in “ecological” environment, i.e. at their 

homes. The taxonomy of activities was defined by medical researchers and the 

proposed framework was tested with cross-validation to recognize them. In these 

tests the optimal configurations of description space ensure performance which is 

nearly 8 times better than chance. 
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Detailed studies of different description spaces; HHMM states configurations and 

observation collection highlight that: 

 (i) temporal segmentation into view-points improves the performances 

due to the filtering of the descriptors within meaningful unit of time; 

 (ii) for the bottom-level HMM in our hierarchical model three states are 

sufficient to model the internal structure of each semantic activity; 

 (iii) as far as the description space is concerned, the complete description 

space combining all available features performs the best in terms of 

median accuracy. Even if it is difficult to chose an absolute winner for 

description space composition, the best overall performances are ensured 

when static color descriptor of a scene content is present; 

 (iv) the optimal description space varies per activity, each descriptor 

brining more information for a specific activity; the statement which often 

correlates with a “common sense”: e.g. the hovering activity is the best 

recognized with audio features in description space. 

The last statement makes us think that despite we settled an acceptable framework 

for this challenging application; the future is in incorporation of more semantic 

features in the description space. Events from more complete sets of wearable 

sensors can be used, such as accelerometers and other sensors, the combination of 

which with wearable video has not been explored yet for medical purposes 

according to our best knowledge. In video, we think about defining a concept flow 

related to the recognition of objects the person manipulates. This would leverage 

the fusion of information from video and other sources. Last, but not least, the 

acceptability of the service with wearable sensors by patients, let us hope that the 

proposed approach has a direct clinical perspective. 
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