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Abstract

Source-sink systems are metapopulations of habitat patches with different, and possibly
temporally varying, habitat qualities, which are commonly used in ecology to study the
fate of spatially extended natural populations.

We propose new techniques that allow to disentangle the respective contributions of
demography and dispersal to the dynamics and fate of a single species in a source-sink
metapopulation. Our approach is valid for a general class of stochastic, individual-based,
stepping-stone models, with density-independent demography and dispersal, provided the
metapopulation is finite or else enjoys some transitivity property.

We provide 1) a simple criterion of persistence, by studying the motion of a single
random disperser until it returns to its initial position; 2) a joint characterization of the
long-term growth rate and of the asymptotic occupancy frequencies of the ancestral lineage
of a random survivor, by using large deviations theory. Both techniques yield formulae
decoupling demography and dispersal, and can be adapted to the case of periodic or random
environments, where habitat qualities are autocorrelated in space and possibly in time.

In this last case, we display examples of coupled time-averaged sinks allowing survival,
as was previously known in the absence of demographic stochasticity for fully mixing [27]
and even partially mixing [12, 37] metapopulations.
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1 Introduction

1.1 Ecological background

Stochastic models of population dynamics play a prominent role in epidemiology and in ecology
[29], in predicting the fate of natural populations (persistence vs extinction, disease outbreak,
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species invasion, competitive coexistence,...), and in computing some related quantities of in-
terest (extinction probability, long-term growth rate, mid-term equilibrium distribution, stable
age distribution, parameter elasticities).

Detailing these models is indispensable to understand the effect on these predictions of
internal or external characteristic features, like spatial structure, age structure, intra- and
interspecific interactions, or environmental change. In particular, metapopulation models [19],
where the spatial structure is explicit, are used to infer the processes which have shaped
contemporary range distributions, to predict migration trends or invasion fronts in response to
biotic or abiotic changes, to understand the evolution of dispersal, to design protected areas
and natural reserves, etc.

When the landscape is heterogeneous in terms of habitat suitability, even the mere question
of predicting persistence can be a complicated task, since persistence is the result of the intricate
interplay between population growth in suitable habitats, population depletion in unsuitable
habitats and of how dispersal connects different habitat patches. In ecology, metapopulation
models where habitat suitability is spatially heterogeneous are commonly referred to as source–
sink systems [11, 22, 34]. Roughly speaking, even if the definition of sources and sinks have
been subject to debate [34, 36], sources designate habitat patches where the habitat is suitable
enough for the population to persist in the absence of dispersal (fundamental niche), and sinks
are habitat patches where the population would become extinct in the absence of dispersal, or
from which mortality during dispersal is too high to compensate growth. Spatial heterogeneity
can be due to biotic environmental variables (predation risk, resource availability) or to abiotic
environmental variables, which can either be constant through time (altitude or depth, latitude)
or variable through time (precipitation, moisture, irradiance, pH, salinity).

To study the persistence of a single species in a metapopulation, it is common to further
assume that population dynamics are density-independent. This assumption does certainly not
hold for all natural populations, but can at least be used for populations whose persistence is
guaranteed whenever their abundance is large enough to make this approximation unrealistic.
It is also particularly relevant when asking about the establishment success of a new variant
arising in few copies (immigrants, genetic mutants, infectives).

The assumption of density-independence allows theoretical ecologists to make use of linear
models: matrix population models [7] for deterministic dynamics, multitype branching processes
[1, 4, 17, 24] for stochastic dynamics. These models are parsimonious in the number of pa-
rameters, and the associated mathematical theory is extremely well developed. The extinction
probability has a very simple power dependence upon initial population size and composition,
and under suitable assumptions, conditional on long-term survival, the geographic distribution
of the population stabilizes over time, whereas its overall abundance grows exponentially with
an exponent called the Malthusian growth rate, or long-term growth rate, or simply growth rate.
In addition, the stable geographic distribution and the long-term growth rate are solutions to a
well-known spectral problem. Namely, the growth rate is the maximal eigenvalue of the mean
offspring matrix (encompassing both demography and dispersal), and the stable distribution
is an associated eigenvector [32, 39].

A lot of work has been dedicated to extend these results to more complicated situations, like
infinite metapopulations [33], or, as earlier stressed, because spatial heterogeneity can itself be
time-variable, to multitype branching processes in random environment [2, 3, 6, 16, 18, 28, 40].
More ecologically-related work has investigated which dispersal strategies are more likely to
persist in metapopulations with random environment [15, 37, 38], which such metapopulations
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are more prone to persistence [5], and which introduction strategies are more successful (single
large vs several small) [18, 41]. Specific attention has been given to coupled sinks, that is,
metapopulations where each habitat patch is a (time-averaged) sink, but where populations
might still persist thanks to dispersal in sparse favourable periods [12, 27, 35, 37].

1.2 Goals and outline of the paper

In the present paper, our aim is to develop new methods in order to disentangle the contribu-
tions of demography and dispersal to the dynamics and outcome of source-sink systems with
possibly varying environment. We will be interested in criteria for global persistence and in
the computation of the long-term growth rate, and of the occupation frequencies of long-lived
lineages.

One of the main problems of the spectral approach to the study of metapopulations is that
the computation of eigenvalues and eigenvectors is totally opaque to biological interpretation.
In particular, the respective contributions of dispersal and demography to the value of the
long-term growth rate are very hard, if not impossible in general, to disentangle. As regards
the question of persistence, we could ask for an alternative criterion, equivalent to, but simpler
than, the positivity of this growth rate, which would avoid computing directly this eigenvalue.
Similarly as in [12, 20, 30, 36, 38], we will first seek to provide such an alternative criterion.

For example, in (st)age-structured models, it is easy to compute the net reproductive num-
ber R0, which is the expected total progeny produced in the lifetime of a single individual.
Then thanks to a simple renewal argument, the condition R0 > 1 is seen to be equivalent to
possible survival. More rigorously, the set of juvenile offspring of a focal juvenile ancestor forms
what is called a stopping line, for which it is known that an extended branching property holds
[8]. This idea of the next generation-stopping line has been adapted to the spatial context in
[30, 36], but remains of limited applicability. In the first part of this work, the key idea is to
use as an alternative stopping line the set of descendants of a focal ancestor who are the first
to return to the ancestor patch. Then by the extended branching property, the population will
persist with positive probability iff the expected number, say R, of individuals on the stopping
line is larger than 1.

If, as we first assume, the dispersal scheme does not depend on the state of the environment,
then R can be expressed separately in terms of the mean offspring numbers in each patch (and
in each environmental state) and of the motion of a single random disperser. More specifically, a
random disperser is a single walker on the metapopulation which follows the dispersal stochastic
scheme. We denote byXn its position at time n, so that (Xn) is a Markov chain with transitions
given by the dispersal matrix which will be denoted by D. In the case when the environment
is constant, we let mi be the mean number of offspring begot in patch i, and we prove that

R = m1E

(

T−1
∏

n=1

mXn

)

,

where T is the first time the random disperser returns to patch 1 (assumed to be the initial
patch). The population persists with positive probability iff R > 1. This way, our formulae are
seen to disentangle the effects of demography and dispersal. If all other habitat patches than
patch 1 have the same mean offspring m, then the last equality specializes into

R = m1E
(

mT−1
)

,

4



where the expectation in the last display can now be seen as the probability generating function
of the random variable T − 1 evaluated at m. We will also compute this expectation in some
special cases of interest. It is interesting to note that the formulae obtained in [20] by a totally
different method (expanding principle minors of the mean offspring matrix minus the identity
matrix) feature numerous multiplicative terms also evoking closed reproductive paths.

In a second part, we will use large deviations techniques to prove that the logarithm of the
long-term growth rate ρ and the asymptotic fraction (ϕi) of time spent in each patch of the
ancestral lineage of a random survivor, are given respectively by the maximum and the unique
argmax of a functional R−I defined on the set F of frequencies indexed by the metapopulation,
where R only depends on the reproduction/survival scheme and I only depends on the dispersal
scheme. Our formulae are then seen to decouple once again demography and dispersal. Namely,

log(ρ) = sup{R(f)− I(f) : f ∈ F} = R(ϕ)− I(ϕ),

where R is a linear functional of frequencies only depending on the mean offspring numbers in
each patch

R(f) :=
∑

i

fi log(mi),

and I is a (more complicated) functional which only depends on the dispersal matrix D

I(f) := sup

{

∑

i

fi log(vi/(vD)i) : v ≫ 0

}

,

where v ≫ 0 denotes a positive row vector, that is, vi > 0 for each i. We find that (ϕi) never
equals the stationary distribution of the single disperser, except in the case when all habitat
qualities are identical (i.e., mi = m for all i). We compute ρ and ϕ in the case of a fully mixing
metapopulation, i.e., when the probability for an individual to migrate from patch i to patch
j does not depend on i, a case also referred to as parent-independent migration.

Addressing those questions is much more difficult when the model is enriched with a variable
environment affecting simultaneously all habitat qualities. We can nevertheless adapt our
arguments to the case when the environment is periodic or given by an ergodic sequence of
random variables. We illustrate our speculations with two-patch metapopulations and a two-
state environment. We make computations for fully mixing metapopulations.

Finally, we prove that for both periodic and ergodic environments, we can find parameters
for which there is possible survival in coupled sinks, a result which was previously known in the
absence of demographic stochasticity for fully mixing [27] and even partially mixing [37, 12]
metapopulations.

Finally, we extend naturally our approach to a wide class of infinite metapopulations, called
finitely transitive, in the sense that they can be naturally built by connecting copies of a finite
subgraph called motif.

The paper ends with a short discussion on the uses of and possible extensions to our method
(other models, local vs global persistence).
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2 Preliminaries

2.1 Model

We consider a stochastic, individual-based model of spatially structured population dynamics.
The spatial structure is a metapopulation of patches that can be of different habitat qualities.
We label by i = 1, . . . ,K the patches so that the model can be described by a labeled finite
graph with weighted oriented edges. Vertices represent the patches, an oriented edge from
vertex i to vertex j bears a weight dij equal to the probability of dispersal from patch i to
patch j. We let D be the square matrix with generic element dij and we call it dispersal matrix.
When D has identical columns, we will speak of parent-independent migration, or of a fully
mixing metapopulation.

We assume a simple asexual life cycle with discrete non-overlapping generations and no
density-dependence. At each generation, as a net result of reproduction and survival (including
survival to possible migration), all individuals of patch i, independently from one another, leave
to the next generation a random number of individuals, called offspring, all distributed as some
random variable Ni. The mean per capita number of offspring in patch i will be denoted by
mi = E(Ni). In the second part of the paper, we will also enrich the model with a variable
environment affecting simultaneously all patches. When the environment is in state w, we will
denote by mi(w) the mean offspring in a patch of type i.

Immediately after local growth, each individual from the new generation migrates indepen-
dently, from patch i to patch j with probability dij . Since we assumed that mortality during

dispersal is encompassed in the growth phase (see Discussion), we have
∑K

j=1 dij = 1 for all i,
i.e., D is a stochastic matrix.

Reproduction, survival and dispersal probabilities are assumed not to depend on local
densities. Thanks to this assumption of density-independence, and because the mean offspring
numbers encompass migration-induced mortality, we have the following classification. If mi >
1, we say that patch i is a source, and if mi ≤ 1, we say that patch i is a sink.

It will be convenient to assume that m1 ≥ m2 ≥ · · · ≥ mK . In addition, the problem of
persistence is more interesting in the case when m1 > 1 ≥ mK . Indeed, even in the presence of
sinks, the metapopulation might persist thanks to local growth on sources replenishing sinks
by dispersal. The case mK ≤ . . . ≤ m1 ≤ 1 (resp. 1 < mK ≤ . . . ≤ m1) leads trivially to
extinction (resp. to persistence with positive probability).

2.2 Two natural examples with one source type and one sink type

Let us describe two examples with two possible habitat qualities, one source type and one sink
type, that will be treated as a special case throughout the paper:

M := m1 > 1, m := m2 = · · · = mK ≤ 1.

First, we will be interested in the simple case with two patches, patch 1 with mean offspring
M , and patch 2 with mean offspring m. In this case, we will always use the simplified notation
p = d12 and q = d21 (see Figure 1).

6



�

-

�

-

p

q

1− p 1− q

Figure 1: Two patches of different qualities. The filled circle is a source and the empty circle
is a sink. The arrow labels are the dispersal probabilities.

Second, we will consider the case when each source is only connected to sinks and two
adjacent sources are separated by an array of n identical sinks. An example of such graph is
the cyclic finite graph with one source and n sinks, or two sources connected by n sinks, or an
infinite array with period n (see Figure 2)...
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Figure 2: Three examples where sources are only connected to sinks and two adjacent sources
are connected by n sinks; a) cyclic graph with one source, n = 7; b) two sources, n = 3; c)
infinite periodic array, n = 2, arrow labels (not represented) are also assumed periodic.

2.3 Method

The number of individuals located in patch i in generation n is denoted by Z
(i)
n . The process

Z = (Z
(i)
n , i = 1, · · · ,K, n ≥ 0) is a multitype Galton–Watson process. It is known from the

mathematical literature [1, 4] that either the population becomes extinct or it grows exponen-
tially (under Assumption (A1) below). More specifically, we see that midij is equal to the
mean number of offspring of an individual living in patch i which will land into patch j in one
time step, and therefore we call mean offspring matrix the matrix A defined as

A := (midij : i, j = 1, · · · ,K).

The maximal eigenvalue (see e.g. [39]) of A is the long-term growth rate, or simply growth rate
of the metapopulation. Indeed [1, 4], if ρ ≤ 1, the metapopulation dies out with probability 1,
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Notation Interpretation

vertex i patch

oriented edge probability of dispersal from patch i to patch j
with weight dij

mi mean number of offspring in a patch with habitat type i

M = m1 mean growth rate in a source habitat (case m1 > 1 ≥ m2 = · · · = mK)

m = m2 mean growth rate in a sink habitat (case m1 > 1 ≥ m2 = · · · = mK)

p = d12 probability of dispersal from the source to the sink (case of 2 patches)

q = d21 probability of dispersal from the sink to the source (case of 2 patches)

X random walk on the graph following the dispersal probabilities

Table 1: Notation.

and if ρ > 1, the metapopulation can survive with positive probability, in which case

Zn

ρn
n→∞
−→ W,

where W is a component-wise non-negative and finite random vector (under Assumption (A2’)
below).

In the case of a fully mixing metapopulation, all column vectors of D are identical to some
vector δ, say. Then A is the rank 1 matrix A = δµ, where µ is the row vector µ := (m1, . . . ,mK).
In this case, the spectral approach is straightforward, since An = (µδ)n−1A, so that ρ = µδ =
∑K

j=1mjδj , and δ and µ are respectively right and left eigenvectors of A associated with ρ.
We call random disperser a single individual who moves on the graph at discrete time

steps following the dispersal probabilities. In other words, if Xn denotes the position of such a
random disperser after n time steps, then (Xn) is the Markov chain with transition matrix D

P(Xn+1 = j | Xn = i) = dij .

The goal of this paper is to display new persistence criteria, along with results regarding the
asymptotic growth rate and the asymptotic fraction of time spent in each patch (by an indi-
vidual taken at random in the surviving population). In contrast with the method involving
the maximal eigenvalue of the mean offspring matrix, this one can yield quite simple, inter-
pretable and partially explicit criteria. In addition, these criteria decouple the contributions of
dispersal and demography on population survival. In a number of remarks, we will also provide
sufficient conditions for survival which are explicit, in particular in the case of a fully mixing
metapopulation.

This approach is still valid when the graph is an infinite graph which can be reduced to
a finite graph by transitivity. It is then called finitely transitive. The associated finite graph
is called a motif, which is repeated to obtain the whole graph in such a way that the graph
seen from any motif looks the same. A practical example is given by sources with the same
quality connected by corridors of identical sinks and of the same length (see Figure 2 for an
example). A finite-transitive graph could also be an (infinite) chessboard where whites are
sinks and blacks are sources, the square lattice Z

2 where sources have coordinates of type
(n, n) (diagonal) or of type (n, 0) (horizontal array), and so on (see Figures 3 and 4)...
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Figure 3: Two examples of finite-transitive graphs ; a) the chessboard; b) a square grid where
four-degree vertices are sources separated by n sinks (here n = 1).

2.4 Assumptions

Here, we list the assumptions we will use throughout the paper.

(A1) For convenience, we do not consider the degenerate case when any individual in patch
1 leaves one single offspring a.s. Thus, we assume that P(N1 = 1) < 1.

(A2) We assume that in each habitat i the offspring number Ni has a finite first moment,
i.e., E(Ni) < ∞. It ensures that the total size of the population has a finite first moment in
every generation.

(A2’) We assume that the offspring number Ni of any individual living in patch i satisfies
E(Ni log

+Ni) < ∞ (finite N logN moment).

(A3) To get the growth rate of the population, we will need to assume that mi 6= 0 for all
i = 1 . . . K.

(A4) Irreducibility. For any ordered pair (i, j) of habitat patches, there is an integer n,
such that P(Xn = j | X0 = i) 6= 0. That is, the random disperser can go in finite time from
any patch to any other patch by using edges with positive weight.

(A5) Aperiodicity. For any patch i, the greatest common divisor (GCD) of the set of times
n such that P(Xn = i | X0 = i) 6= 0, is equal to one. As a simple example, we mention the case
when the graph is irreducible and at least one loop-edge has a positive weight, that is, there is
at least one patch in which the probability of staying put is nonzero.

When the graph is both irreducible and aperiodic, we say that it is strongly irreducible or
primitive. Then the Markov chain (Xn;n ≥ 0) is strongly irreducible and both the matrices D
(and A if (A3) holds) are strongly irreducible, which is equivalent to the existence of n0 > 0
such that all the coefficient values of Mn0 are positive [39].

Assumption (A2’) ensures the convergence of Zn/ρ
n to a non degenerate r.v. W which is

non-negative on the survival event. This r.v. has only positive components if (A3) and (A4)
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Figure 4: Two examples of graphs embedded in Z
2 which have an infinite motif (they still

enjoy transitivity, but not finite) ; a) a diagonal of sources; b) a horizontal array of sources.

are also in force.

3 A first result on global persistence

3.1 General case

We now give a criterion for metapopulation persistence in terms of the random disperser X.
For that purpose, we assume from now on that the random disperser starts in patch 1 (X0 = 1)
and we denote by T the first return time of the random disperser into patch 1,

T := min{n ≥ 1 : Xn = 1}.

Theorem 3.1 We assume (A1, A2, A4). Then the population persists with positive proba-
bility iff

m1E

(

T−1
∏

n=1

mXn

)

> 1.

In the case of a fully mixing metapopulation, D has all its columns equal to some column
vector δ and it is known that ρ =

∑K
j=1 δjmj (see previous section). It is easy to see that in

this case, (Xn) is a sequence of i.i.d. random variables whose common distribution is given by
δ, so that T is geometrically distributed with success parameter δ1, and

m1E

(

T−1
∏

n=1

mXn

)

= m1

∑

n≥0

δ1(1− δ1)
n

(

∑K
j=2 δjmj

1− δ1

)n

=
δ1m1

1−
∑K

j=2 δjmj

which is larger than 1 iff
∑K

j=1 δjmj is larger than 1. Thus, we recover the criterion obtained
with the spectral approach.
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Remark 1 Observe that the expression given in the theorem can also be expressed as
∏T−1

n=1 mXn
=

∏K
i=2m

ST−1(i)
i , where Sn(i) := #{1 ≤ k ≤ n : Xk = i} is the time spent in habitat i by time n,

that is ST−1(i) is the number of times the random disperser has visited patches of habitat type
i strictly before time T . The advantage of this alternative formulation is that it carries over to
models expressed in continuous time.

Let us prove this result and then give more challenging applications.

Proof. Let a (ancestor) be some individual placed at time 0 in patch 1. Define Y1 as the
number of offspring of a staying put in patch 1. Now for any integer n ≥ 2, let Yn denote the
number of descendants of a at generation n living in patch 1 and whose ancestors at generations
1, 2, . . . , n− 1 have all lived outside patch 1. Then set

Y :=
∑

n≥1

Yn,

that can be seen as the total number of descendants of a who live in patch 1 for the first time
in their lineage (except a).

In the theory of random trees, this set of individuals belonging to one of the Yn individuals
for some n, is called a stopping line. It is known [8] that a stopping line enjoys the extended
branching property, in the sense that all the subtrees descending from distinct elements of a
stopping line are i.i.d. copies of the tree (conditional on their types). Then the total numbers of
descendants of each of the individuals of this stopping line who live in patch 1 for the first time
in their lineage, are independent and all follow the same law as Y . In addition, any individual
in the tree is either an ancestor or a descendant of some element of the stopping line. Therefore,
the total number of descendants of a living in patch 1 is finite iff the branching process with
offspring number distributed as Y is finite, which is equivalent to the a.s. extinction of Y . The
bottomline is that the population persists in habitat 1 with positive probability iff E(Y ) > 1.
Indeed, we have excluded the critical case when P(N1 = 1) = 1. But this local persistence in
habitat 1 is equivalent to the global persistence since the graph is irreducible.

Let us then compute E(Y ) to conclude. We first note that for every i = 1, . . . ,K,

E(Z(i)
n ) =

K
∑

j=1

E(Z
(j)
n−1)mjdji,

where Z
(i)
n denotes the number of individuals located in patch i at generation n. We prove

easily by induction that the number of individuals Y
(i)
n in patch i at generation n which have

avoided patch 1 at generations k = 1, 2, · · · , n− 1 satisfies

E(Y (i)
n ) =

K
∑

j=2

E(Y
(j)
n−1)mjdji =

∑

j1,...,jn−1∈{2,...K}

d1j1dj1j2 . . . djn−2jn−1djn−1im1mj1 · · ·mjn−2mjn−1 .

As Yn = Y
(1)
n , we get

E(Yn) =
∑

j1,...,jn−1∈{2,...K}

d1j1dj1j2 . . . djn−2jn−1djn−11m1mj1mj2 · · ·mjn−2mjn−1

= m1E(1T=nmX1mX2 · · ·mXn−2mXn−1).

11



Adding that Y =
∑

n≥1 Y
(1)
n , we have

E(Y ) = m1

∑

n≥1

E(1T=nmX1 · · ·mXn−1) = m1E(mX1 · · ·mXT−1
).

This yields the result. 2

3.2 Case of two habitat types

Let us focus now on the special case when there are 2 habitat types and the source is solely
connected to sinks:

M := m1 > 1, m := m2 = · · · = mK < 1.

We denote by

p =

K
∑

j=2

d1j

the probability of dispersing for an individual living in patch 1. The per capita mean offspring
number sent out from a source at each generation is Mp. Let σ be the time of first visit of a
sink by the random disperser

σ := inf{n ≥ 0 : Xn 6= 1},

so that σ is a geometric random variable with success probability p. Next, let S denote the
waiting time (after σ) before the random disperser visits a source (this source might or might
not be the initial source patch X0)

S := inf{n ≥ 0 : Xσ+n = 1}.

The duration S can be seen as the time spent in sinks between two consecutive visits of sources.
By using the first transition of the random disperser, we get

E

(

T−1
∏

i=1

mXn

)

= 1− p+ p E
(

mS
)

,

so that the previous theorem reads as follows.

Proposition 3.2 We assume (A1, A2, A4). Then the population persists with positive
probability iff

M(1− p) + eMp > 1, (1)

where e is the depleting rate due to the sink habitat in the graph, defined as

e := E
(

mS
)

=
∑

k≥1

mk
P(S = k).

Remark 2 If the average time spent in sinks has

E(S) <
M − 1

Mp(1−m)
,

12



then the population persists with positive probability. Indeed, the mapping f : x 7→ E(xS) is
convex so

e = f(m) ≥ 1 + f ′(1)(m − 1) = 1− (1−m)E(S) > 1−
M − 1

Mp
=

1−M(1− p)

Mp
,

which yields eMp+M(1− p) > 1.

Let us check, in the simple case when there are only one source and one sink (K = 2
vertices), that criterion (1) is equivalent to the condition that the maximal eigenvalue ρ of A
exceeds unity. Here the mean offspring matrix A is

A =

(

M(1− p) Mp
mq m(1− q)

)

.

The characteristic polynomial C of this square matrix is

C(x) = (M(1− p)− x)(m(1− q)− x)−Mmpq.

Either M(1 − p) > 1 and the population living in the source ensures the persistence. Or
M(1 − p) ≤ 1 and the quadratic polynomial is convex and has non negative derivative at 1.
Thus, its leading eigenvalue is greater than 1 iff C(1) < 0, which reads

Mp

1−M(1− p)
>

1−m(1− q)

mq
.

We recover (1) since here S is geometric with success probability q, which yields

e =
∑

k≥1

q(1− q)k−1mk =
mq

1−m(1− q)
.

Notice that even in this simple case where A is a 2 × 2 matrix, the computation of the lead-
ing eigenvalue is cumbersome, and we have used a trick to explicitly specify the persistence
criterion.

3.3 Example with pipes of identical sinks

Assume that the source is a vertex of degree 2 in the graph, connected to a left sink and a right
sink. The probability of staying put on a source is still 1− p, the probability of dispersing onto
a left sink is pL, and the probability of dispersing onto a right sink is pR (so that L+R = 1).
The sinks form a pipeline of n adjacent sinks linking adjacent sources. The probability of
staying put on a sink is always s, the probability of dispersing from a sink onto one of its two
neighboring sinks is r in the left-to-right direction of the pipe, and l in the right-to-left direction
of the pipe (so that q = l + r = 1 − s). See Figure 5 for an example. This example will be
directly extended in the last Section to infinite graphs, where pipelines of n sinks periodically
connect sources (see Figure 6).
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Figure 5: A pipeline where n identical sinks (n = 7) connect the source to itself.
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Figure 6: A periodic pipeline where adjacent sources are separated by n identical sinks (n = 3).

We can compute exactly the depleting rate e of the above kind of the corresponding infinite
graph (finitely transitive). Let λ > 1 > µ be the two ordered solutions to

mrx2 − (1−ms)x+ml = 0 x ≥ 0.

Then

λµ =
l

r
and λ+ µ =

1−ms

mr
.

Proposition 3.3 The depleting rate e is equal to

e =
λn − µn

λn+1 − µn+1
(L+Rλµ) +

λ− µ

λn+1 − µn+1
(R + L(λµ)n).

Remark 3 In the two-patch case case (n = 1), we recover

e =
(1− s)m

1−ms
.

In the case when dispersal is isotropic (l = r), we get

e =
λn − µn + λ− µ

λn+1 − µn+1
.

Notice that in both previous cases, the depleting rate does not depend on L or R. In the case
of one single source and a large number of sinks (n → ∞), we get

e = Lλ−1 +Rµ.

In the case of one single source and isotropic displacement, we then get e = λ−1 = µ.
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Proof. Consider a random walk Y on {0, 1, . . . , n + 1}, with displacement at each time step
being −1 with probability l, 0 with probability s, and +1 with probability r. Let Ti denote
the first hitting time of i by Y , and set T := min(T0, Tn+1) as well as

ak := E(mT | Y0 = k).

Returning to the random disperser X on the graph, it is easily seen that

E(mS | Xσ is a left neighbour) = a1,

while

E(mS | Xσ is a right neighbour) = an,

so that

e = La1 +Ran.

Computations of a1 and an rely on the following recurrence relationship

ak = msak +mlak−1 +mrak+1 k ∈ {1, . . . , n},

with boundary conditions a0 = an+1 = 1. This relation is obtained easily by considering the
first transition of the walk X. 2

4 Growth rate and habitat occupation frequencies

4.1 General case

If u denotes an individual in generation n, we define Hk(u) as the patch occupied by the
ancestor of u in generation k ≤ n. Then, for every i ∈ {1, . . . ,K},

Fi(u) :=
1

n
#{0 ≤ k ≤ n : Hk(u) = i}

is the occupancy frequency of patch i by the ancestral line of u. We further denote by Un an
individual chosen randomly in the surviving population at generation n. We will see that the
dispersal history of Un, as described by (Fi(Un) : i = 1, . . . ,K) can be very different from
that of a random disperser, since the ancestors of surviving individuals have better chance of
having spent more time in sources than in sinks.

It is known that the growth rate ρ of the metapopulation is equal to the maximal eigenvalue
of A (see [1, 4, 31]). Moreover, the asymptotic occupancy frequencies of Un are deterministic
and can be expressed as the product of the right and left maximal eigenvectors associated to
ρ. We refer to [25, 26, 21], to Theorem 3.1 and 3.2 in [14] in continuous time and to [31] in
discrete time. In this section, we want to give an alternative characterization to these quantities
in terms of the random disperser and show an application.

To that purpose, we use the transition matrix D of the random disperser X on the graph.
We denote by Fi(Xn) the occupancy frequency of patch i by the random disperser X by time n

Fi(Xn) :=
1

n
#{0 ≤ k ≤ n : Xk = i}.
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By assumptions (A4, A5), the random disperser has a stationary probability on V (stochastic
equilibrium), that we denote by u = (ui : i = 1, . . . ,K), which is the unique positive solution
to uD = u. By the ergodic theorem, we also know that with probability 1,

Fi(Xn)
n→∞
−→ ui.

A typical single disperser will therefore occupy patch i with asymptotic frequency ui. This
may not be the case of the ancestors of surviving individuals, whose paths must have favoured
source patches. There is a trade-off between the pay-off in terms of fitness, gained by visiting
source patches, and the cost in terms of likelihood, paid by deviating from the typical dispersal
behavior. This trade-off is particularly obvious if we consider the case of a perfectly unsuitable
habitat patch where the mean offspring is zero. In this case, the path followed by the ancestors
of a surviving individual will necessarily have avoided this patch. Nevertheless, the asymptotic
occupancy of this patch by a random disperser must be nonzero by the irreducibility assumption
(A4).

There is a way of quantifying both the cost and pay-off of deviating from the typical
dispersal behavior, that is, of having asymptotic occupancy frequencies f = (fi : i = 1, . . . ,K),
where f is a given element of the set F of non-negative frequencies on the graph

F :=







f = (fi : i = 1, . . . ,K) : fi ≥ 0,
∑

i=1,...,K

fi = 1







.

First, the probability that a random disperser has occupancy frequencies close to some
given f by time n decreases exponentially with n at rate I(f), which can thus be interpreted
as the cost of the f -occupancy scheme:

I(f) := sup







∑

i=1,...,K

fi log(vi/(vD)i) : v ≫ 0







, (2)

where v ≫ 0 denotes a positive row vector, that is, vi > 0 for each i = 1, . . . ,K. Indeed, large
deviations theory [9, 10] ensures that for any ǫ ≪ 1, as n → ∞, we have

P(fi − ǫ ≤ Fi(Xn) ≤ fi + ǫ for all i = 1, · · · ,K) ≍ exp(−nI(f)). (3)

We refer the reader to Section A for a more rigorous formulation. Taking v = u in (2) shows
that I(f) is of course always non-negative. This function is also convex. When f = u, one can
easily check that each partial derivative of I is zero and it can be proved that the supremum
in (2) is attained for v = u, so that I(u) = 0. This was indeed expected, since f = u is the
natural occupancy scheme of the random disperser.

Second, the reproductive pay-off of f can be defined as the fitness of a non-random disperser
with given f -occupancy scheme, that is

R(f) :=
∑

i=1,...,K

fi log(mi).

Indeed, the total size of a population of individuals all adopting this dispersal behavior can be
seen to grow like

K
∏

i=1

mnfi
i = exp(nR(f)).
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Thus the cost (in terms of likelihood) for a population to follow some occupancy scheme is
quantified by I and the reproductive pay off by R. The best strategy (regarding the growth of
the population) is to have an asymptotic occupancy frequency ϕ which maximizes the difference
R − I. If this optimum is positive, then the population survives with positive probability. In
addition, the ancestral line of a randomly chosen surviving individual will have visited patch i
with frequency ϕi. These results are stated below. The last assertion indicates that this optimal
occupancy scheme ϕ = (ϕi, i = 1 . . . ,K) is always different from the natural occupancy scheme
u of one single random disperser, except when all habitat types have the same quality.

Theorem 4.1 We assume (A2’, A3, A4, A5).
The growth rate ρ of the metapopulation is given by

log(ρ) = max {R(f)− I(f) : f ∈ F} .

In addition, if ρ > 0, for any patch i = 1, . . . ,K, conditional on the population being alive at
time n, the occupancy frequency of patch i by the ancestral line of a randomly chosen individual
Un in the surviving population at time n, converges to ϕi in probability :

Fi(Un)
n→∞
−→ ϕi,

where the frequency vector ϕ = (ϕi) ∈ F is uniquely characterized by

log(ρ) = R(ϕ) − I(ϕ).

The occupancy frequency ϕ coincides with the stationary distribution u of X (if and) only if

m1 = m2 = . . . = mK .

In the same vein, we refer to Theorem 3.3 in [14] for a description of the lineage of surviving
individuals for multitype branching processes in continuous time. The irreducibility assump-
tion (A4) is required to use Sanov’s large deviation theorem. The first result is actually a
consequence of the functional version of Sanov’s theorem. The aperiodicity assumption (A5)
and the exclusion of the degenerated cases by (A3) are used for the two additional results. The
assumption (A2) would be enough for the first part but (A2’) is required for the additional
results.

The proof is deferred to Section A.

4.2 The fully mixing case

In the case of a fully mixing metapopulation, D has all its columns equal to some column vector
δ and we have already seen that ρ =

∑K
j=1 δjmj . It is also easy to see that δ is the stable

geographic distribution of the population. As a first observation, note that here the stable
geographic distribution δ is also the stationary distribution of the random disperser. Then
the last part of the previous theorem ensures that, except when all mj ’s are equal, the stable
geographic distribution is different from the occupation distribution ϕ of random long-lived
lineages.
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We now use the approach developed in the previous subsection for an alternative compu-
tation of ρ. We will also determine the occupation frequency ϕ of ancestral lineages. We first
compute the functional I. Here, for any row vector v ≫ 0,

K
∑

i=1

fi log(vi/(vD)i) =
K
∑

i=1

fi log(vi/|v|δi),

where |v| =
∑K

j=1 vj . Then, differentiating this functional with respect to vj yields (fj/vj) −
1/|v|. As a result,

I(f) =

K
∑

i=1

fi log(fi/δi).

Then differentiating R− I with respect to fj (j 6= 1 for example, and f1 = 1−
∑K

j=2 fj) yields
log(δjmj)− 1− log(fj). The bottomline is

ϕj =
δjmj

∑K
i=1 δimi

.

Plugging this as the argument of R− I yields

log(ρ) = R(ϕ)− I(ϕ) = log

(

K
∑

i=1

δimi

)

,

which was the expected result.

5 Fluctuating environments

5.1 General setting

We now enrich our model with a fluctuating environment. The environment is embodied by a
certain value w which belongs to a finite set of states. We assume that the environment affects
simultaneously all patches, but not necessarily in the same way. We keep on assuming a simple
asexual life cycle with discrete non-overlapping generations and no density-dependence. Now
the environment is assumed to affect reproduction and survival, but not dispersal. Specifically,
at each time step, conditional on the state w of the environment, individuals reproduce inde-
pendently according to some distribution which depends on the habitat type of their dwelling
patch. We denote by mi(w) the mean offspring number of individuals dwelling in patch i when
the environment is in state w.

Except in the last subsection, we will assume that the environment alternates periodically
at each time step between two states (circadian cycle, seasons). Actually, the same method
would allow to deal with any finite number of environmental states varying periodically.

We call e1 and e2 the two possible states of the environment, so now we have 2K habitat

qualities mi(ej), for i = 1, . . . ,K and j = 1, 2. The Markov chain Z = (Z
(i)
n , i = 1, . . . ,K;n ≥

0) is no longer time-homogeneous and is called multitype branching process in varying envi-
ronment [17]. However, restricting the observation of the metapopulation to times when the
environment is in the same state allows to adapt the arguments of the previous section. Indeed,
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(Z
(i)
2n , i = 1, . . . ,K;n ≥ 0) is a multitype branching process with mean offspring matrix A with

generic element

aij =
∑

k=1,...,K

mi(e1)dikmk(e2)dkj i, j = 1, . . . ,K.

This amounts to changing the stopping line of the previous section, which was made of de-
scendants returning to the ancestor patch for the first time in their lineage, for the stopping
line of descendants returning to the ancestor patch for the first even time in their lineage. In
the following subsection, we treat the case of two patches and determine the global persistence
criterion. We then handle the general case using the random disperser.

5.2 Example with two patches and two periodic environments

For convenience, even if the environment is now variable, the two patches are still called
respectively the source (patch 1) and the sink (patch 2). The mean number of offspring in
the source are denoted by M1 = m1(e1) and M2 = m1(e2). In the sink, they are denoted by
m1 = m2(e1) and m2 = m2(e2).

Theorem 5.1 A necessary and sufficient condition for global persistence is

M1M2(1− p)2 + (M1m2 +m1M2)pq +m1m2(1− q)2 > min
(

2, 1 +M1M2m1m2(1− p− q)2
)

.

Remark 4 It is easy to find examples where both patches are sinks on average but the metapop-
ulation survives with positive probability thanks to dispersal. Indeed, each patch is a sink if (and
only if) M1M2 ≤ 1 and m1m2 ≤ 1. Assuming for example that p = q = 1/2 and m1 = m2 = m,
the global survival criterion becomes M1M2 +m(M1 +M2) +m2 > 4, which holds as soon as
m(M1 +M2) > 4.

Proof. The mean offspring matrix of (Z2n;n ≥ 0) is given by

a(1, 1) = M1M2(1− p)2 +M1m2pq

a(1, 2) = M1m2p(1− q) +M1M2(1− p)p

a(2, 1) = m1M2q(1− p) +m1m2(1− q)q

a(2, 2) = m1m2(1 − q)2 +m1M2qp.

The maximum eigenvector of the matrix A = (a(i, j) : 1 ≤ i, j ≤ 2) is the largest root of the
polynomial

x2 − (a(1, 1) + a(2, 2))x + a(1, 1)a(2, 2) − a(1, 2)a(2, 1).

So it is less than 1 iff

a(1, 1) + a(2, 2) +
√

(a(1, 1) − a(2, 2))2 + 4a(1, 2)a(2, 1) ≤ 2

Then the criterion for a.s. extinction of (Z2n : n ∈ N) is

a(1, 1) + a(2, 2) ≤ 2 and (a(1, 1) − a(2, 2))2 + 4a(1, 2)a(2, 1) ≤ (2− a(1, 1) − a(2, 2))2.

The second inequality becomes a(1, 1) + a(2, 2) ≤ 1+ a(1, 1)a(2, 2)− a(1, 2)a(2, 1), which gives

M1M2(1− p)2 +M1m2pq +m1m2(1− q)2 +m1M2qp ≤ 1 +M1M2m1m2(1− p− q)2.

This completes the proof. 2
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5.3 Global persistence for more than two patches

Here, we extend the previous result to the case of a general, finite graph. We want to state
a global survival criterion which generalizes Theorem 3.1 to periodic environments. Assume
again that the random disperser starts at time 0 in patch 1 and set T the first even time when
the random disperser goes back to habitat 1

T := min{n ≥ 1 : Xn = 1 and n is even}.

By a direct adaptation of the proof of Theorem 3.1 replacing Zn with Z2n, we get the following
statement.

Theorem 5.2 We assume (A1) holds for at least one environment, (A2) holds for both en-
vironments and (A4) holds. Then the population persists with positive probability iff

m1E

(

T−1
∏

n=1

mXn
(wn)

)

> 1,

where the sequence (wn : n ≥ 1) can take one of the two values (e1, e2, e1, . . .) or (e2, e1, e2, . . .),
depending whether the initial environment is e1 or e2.

5.4 Rate of growth and habitat occupation frequency

The generalization to periodic environments of the results of the previous section can be
achieved by changing the state-space {1, . . . ,K} of the random disperser to the state-space
of oriented edges of the graph, i.e., ordered pairs of vertices

E := {1, . . . ,K}2.

Denote by B the transition matrix of the Markov chain (X2n,X2n+1;n ≥ 0), which indeed
takes values in E . Then denote by F the set of frequencies indexed by E

F :=
{

(fE, E ∈ E) : fE ≥ 0,
∑

E∈E

fE = 1
}

,

and define the new cost function I : F → R as

I(f) := sup

{

∑

E∈E

fE log(vE/(vB)E) : v ≫ 0

}

,

where v denotes a non-negative vector indexed by E , such that v ≫ 0, that is, vE > 0 for all
E ∈ E . Also define the new pay-off function R : F → R as

R(f) :=
∑

E=(i,j)∈E

fE log(mi(e1)mj(e2)).

We can also provide an expression of I in terms of the entropy function using Theorem 3.1.13
in [9]. The generalization of Theorem 4.1 can be stated as follows.
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Theorem 5.3 We assume that (A2’, A3) hold for both environments and (A4, A5) hold.
The growth rate ρ of the metapopulation is given by

2 log(ρ) = max{R(f)− I(f) : f ∈ F}.

In addition, for any patch i ∈ {1, . . . ,K}, conditional on the population being alive at time n,
the frequencies of occupation of patch i by the ancestral line of a randomly chosen individual
Un in the surviving population at time n, converges in probability :

Fj(Un)
n→∞
−→

∑

i∈{1,...,K}

ϕi,j ,

where the vector (ϕi,j : (i, j) ∈ E) is characterized by

2 log(ρ) = R(ϕ)− I(ϕ).

The proof follows that of Theorem 4.1, with now

E(|Z2n+1|) = E

(

n
∏

k=0

mX2k
mX2k+1

)

= E





K
∏

i=1

K
∏

j=1

mi(e1)
S
(1)
n (i)mj(e2)

S
(2)
n (j)



 ,

where |Zn| is the total number of individuals in source patches at generation n and

S(1)
n (i) = #{k ≤ n : X2k = i}, S(2)

n (i) = #{k ≤ n : X2k+1 = i}.

5.5 Example with fully mixing patches

We extend the computations of the previous section to periodic environments. We focus on
the fully mixing population :

B(i,j)(k,l) = djkdkl = δkδl.

The mean matrix associated to the Galton Watson process Z2n is

Aij = mi(e1)δj

[

K
∑

k=1

δkmk(e2)

]

.

Thus the right and left eigenvectors are still given by δ and (m1(e1), · · ·mK(e1) and the spectral
approach given previously can be followed readily.

Let us now focus on the approach given in the last Theorem. As (vB)E = |v|δE1δE2 , the
differentiation of

∑

E∈E

fE log(vE/(vB)E) =
∑

E∈E

fE log(vE)− log(|vE |δE1δE2)

with respect to vE yields the minimum. As in the previous section, we get

I(f) =
∑

E∈E

fE log

(

fE
δE1δE2

)

.
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Then R(f)− I(f) =
∑

E∈E fE log (mE1(e1)mE2(e2)δE1δE2/fE). We arbitrarily choose E0 ∈ E ,
so we can write

fE0 = 1−
∑

E∈E0

fE

and make all other partial derivatives of R− I equal 0 when evaluated at ϕ. We get for every
E 6= E0 :

log (mE1(e1)mE2(e2)δE1δE2)+1−log(ϕE)−
[

log
(

mE0
1
(e1)mE2

0
(e2)δE0

1
δE0

2
)
)

+ 1− log(ϕ(E0))
]

= 0,

which gives the habitat occupation frequencies

ϕE = δE1δE2mE1(e1)mE2(e2)

[

∑

E∈E

δE1δE2mE1(e1)mE2(e2)

]−1

.

We can also now deduce the growth rate ρ. We get

R(ϕ)− I(ϕ) = log(
∑

E∈E

δE1δE2mE1(e1)mE2(e2))

and

ρ =
1

2
[R(ϕ)− I(ϕ)] =

[

K
∑

i=1

δimi(e1)

]1/2 [ K
∑

i=1

δimi(e2)

]1/2

.

This is the same growth rate as the one computed in [27] for large populations (with two
patches).

5.6 Some comments on random environments

A more natural way of modeling fluctuating environment in ecology is to assume random
rather than periodic environment. The approach developed for periodic environments cannot
be extended to random environments directly. Indeed, since the environment affects the whole
metapopulation simultaneously, the randomness of environments correlates reproduction suc-

cess in different patches. The process (Z
(i)
n , i = 1, . . . ,K;n ≥ 0) counting the population sizes

on each patch is now a multitype branching process in random environment (MBPRE) [2, 3].
Let us denote by A(w) the mean offspring matrix (involving dispersal) in environment w.

Specifically, the generic element aij(w) of A(w) is the mean offspring number of a typical
individual dwelling in patch i sent out to patch j by dispersal, when the environment is w, so
that

Aij(w) = mi(w) dij .

We will now assume that the state-space of environments is finite and that the sequence
(wn : n ≥ 0) of environment states through time is a stationary, ergodic sequence, possibly
autocorrelated, in the sense that the states need not be independent. Under this assumption,
it is proved in [13] (under the further assumption E(log+ ‖ A(w0) ‖) < ∞, where expectation
is taken w.r.t. the environment) that the limit γ of the sequence

1

n
log ‖ A(wn)A(wn−1) . . . A(w0) ‖
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exists with probability 1 and is deterministic, where ‖ . ‖ denotes the maximum row sum of the
matrix. This is interesting to us because it is further shown in [2, 28, 40] (again under some
further assumptions, see Section B), that the extinction criterion and the growth rate of this
MBPRE are respectively given by the sign and the value of γ, more specifically, γ = log ρ.

Unfortunately, this does not give a very explicit condition for global persistence. But again
using the random disperser, we can give some sufficient conditions for survival. For simplicity,
we turn our attention to the example of two patches and two environments e1 and e2. At any
time step, the probability that the environment is in state e1 is denoted by ν ∈ (0, 1) (so the
probability that the environment is in state e2 is 1−ν). We show again that the population may
survive in sinks only. As in the case of periodic environments, the mean number of offspring in
the first patch (the source) is denoted by M1 = m1(e1) and M2 = m2(e1). In the second patch
(sink), they are denoted by m1 = m2(e1) and m2 = m2(e2).

For the sake of simplicity, we state the results for the special case when the sequence is a
Markov chain. We denote by α the transition from e1 to e2 and by β the transition from e2 to
e1. Then it is well-known that ν = β/(α+ β) is the asymptotic fraction of time spent in state
e1. The case of independent environments is recovered when α + β = 1. Note that as soon as
α+ β 6= 1, the sequence of environment states is auto-correlated.

Proposition 5.4 We have the following lower bound for the growth rate of the metapopulation.

log(ρ) ≥ ν log(M1)+(1−ν) log(m2)+να log(pq)+ν(1−α) log(1−p)+(1−ν)(1−β) log(1−q).

Remark 5 Observe that this lower bound does not depend on M2 and m1. Again one can
display examples where both patches are sinks but the metapopulation survives with positive
probability in the presence of dispersal. Each patch is a sink if (and only if) Mν

1M
1−ν
2 ≤ 1

and mν
1m

1−ν
2 < 1. Actually one can manage to keep γ > 0 while Mν

1M
1−ν
2 < 1, m1 < 1 and

m2 < 1, for example with M2 small and M1 large for some fixed p, q,m1,m2. This corresponds
to e2 being a catastrophic environment in the source patch but the population survives in patch
2 when a catastrophe occurs.

Proof. We consider only the subpopulation avoiding patch 1 when the environment is equal
to e2. This means that this population reproduces with mean offspring number M1(1 − p) in
patch 1 while the environment is e1. Each time the environment e2 occurs, we consider the
part of this population which has dispersed to patch 2. This corresponds to a mean offspring
number of M1p. This population then stays in patch 2 and reproduces with mean offspring
number m2(1− q) until the environment is again equal to e1. We then consider the part of this
population which goes back to patch 1. This corresponds to a mean offspring number of m2q.

Thus the patch of the ancestors of the individuals we keep is equal to 1 (resp. 2) if it lived
in environment e1 (resp. e2). Then at time n, the mean size of the population we consider is
equal to

M
N1(n)
1 m

N2(n)
2 (1− p)N11(n)(1− q)N22(n)pN12(n)qN21(n)

where Ni(n) (i ∈ {1, 2}) is the number of times before generation n when the environment is
equal to ei and Nij(n) (i, j ∈ {1, 2}) is the number of one-step transitions of the environment
from ei to type ej until time n. By ergodicity, we know that these quantities have deterministic
frequencies asymptotically. In the case of a Markovian sequence of environments, as n → ∞,

N1(n) ∼ νn, N2(n) ∼ (1− ν)n,
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and

N11(n) ∼ ν(1− α)n, N12(n) ∼ ναn, N21(n) ∼ (1− ν)βn, N22(n) = (1− ν)(1− β)n.

Using the growth of this particular part of the whole population directly gives us a lower bound
for γ:

γ ≥ ν logM1+(1−ν) logm2+να log p+(1−ν)β log q+ν(1−α) log(1−p)+(1−ν)(1−β) log(1−q).

Noticing that (1− ν)β = να completes the proof. 2

Remark 6 We could improve these results by considering more sophisticated strategies. For
example, we could consider the subpopulation which stays in patch 1 if (and only if) the number
of consecutive catastrophes is less than k and then optimize over k.

Actually, the proof relies on a stochastic coupling. Roughly speaking, the subpopulation we
consider avoids the bad patches at the bad times and follows a (one type) branching process in
random environment e11, e12, e21 and e22 respectively with stationary probabilities ν(1−α), να,
(1− ν)β and (1− ν)(1− β)and mean offspring M1(1− p), M1p, m2q and m2(1− q).

Observe also that we can derive a lower bound using the permanent of the mean matrix M of
the MBPRE from Proposition 2 in [6]. But this lower bound is not relevant for understanding
the survival event in sinks only.

6 Metapopulation on infinite graphs

We now turn our attention to infinite graphs labeled by a countable set F . Each patch P ∈ F
has a type i = (P ) ∈ N which gives its habitat quality, that is, the mean number of offspring
in patch P is equal to m(P ).

To generalize all the previous results, we require that the infinite graph has a finite motif.
Let us first provide the reader with some examples satisfying this assumption, before giving
rigorous definitions. These examples are chosen among source-sink metapopulations with two
habitat qualities (one source type and one sink type).

• An infinite linear periodic array of patches (see Figure 2 for an example). The patches
can then be labeled by P ∈ F = Z and the type of patch P is equal to (P ), for some
integers N,K > 0 and a function  : Z → [1,K] such that (P + N) = (P ) for every
P ∈ Z. The motif is a line of lenght N with one source.

• The chessboard (see Figure 7). The motif is composed of one source and one sink.

• Star sources with 2d pipelines of sinks (see Figure 8 for d = 2). The motif is built by a
source with d pipelines of sinks of the same length.

Let us now specify mathematically these definitions. The oriented edges from P to Q are
weighed by dPQ. A mapping T of the graph is called an isomorphism if it conserves the types
of the vertices as well as the weights of the oriented edges: T is a bijection of F such that for
all P,Q ∈ F ,

dT (P )T (Q) = dPQ, (T (P )) = (P ).
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The associated equivalence relation ∼ between the patches of the graph is defined by

P ∼ P ′ iff there exists an isomorphism T of the graph such that T (P ) = P ′.

The class of a patch P is defined as the equivalence class Cl(P ) = {P ′ : P ′ ∼ P}. Every patch
of this class has the type of P . A graph for which there exists an isomorphism which is not
the identity is called transitive.

The collection of the distinct classes (Cl(i) : i ∈ V ) of a transitive graph form a partition of
the patches of the graph. Such subsets V of patches are called motifs. With a slight abuse of
notation, the transition probabilities on a motif V are denoted by (dPQ : P ∈ V,Q ∈ V ) where

dPQ =
∑

Q′∈Cl(Q)

dPQ′

is constant in the same equivalence class.
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Figure 7: a) The chessboard (with periodic arrow labels - not represented) is a graph that can
be collapsed into: b) a two-vertex graph (loop edges are not represented).

The initial graph can be seen as a family of copies of a motif properly connected. Observe that
not all graphs with a regular structure are finitely transitive. For example, the cases illustrated
by Figure 3 can be collapsed into a finite motif, but those given in Figure 4 (a diagonal or
a horizontal array of sources in Z

2) cannot. We can easily extend the results of Section 3 to
infinite graphs whose motifs have a finite number of sources. Thus, we consider the random
disperser Xn on the graph which follows the dispersal probabilities (dPQ : P,Q ∈ F 2). To that
purpose, we assume that the random disperser starts in a patch of type 1 ((X0) = 1) and we
denote by T the first return time of the random disperser into a (possibly different) patch of
type 1.

T := min{n ≥ 1 : (Xn) = 1}.
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Figure 8: Star sources with 2d pipelines of sinks a) (and periodic arrow labels - not represented,
here d = 2) form a graph that can be collapsed into b) (a single source with d pipelines, loop
edges are not represented).

Notation Interpretation

vertex P patch

set V of vertices motif

type of P (P ) = i habitat quality of patch P is i

oriented edge with weight dPQ probability of dispersal from patch P to patch Q

mi mean number of offspring in a patch with habitat type i

Table 2: Notation.

Theorem 6.1 Assume that the metapopulation graph is transitive and that there is a motif
with a finite number of sources. Assume (A1, A2, A4) hold for this motif. Then the population
persists with positive probability iff

m1E

(

T−1
∏

n=1

m(Xn)

)

> 1.

We provide the idea of the proof. The number of individuals located in patch P in generation

n is denoted by N
(P )
n . Collapsing the graph into some motif V , we denote by

Z(P )
n =

∑

P ′∈Cl(P )

N (P ′)
n

the total number of individuals in some habitat of the class of patch P ∈ V . Then Z =

(Z
(P )
n , P ∈ V ;n ≥ 0) is a multitype Galton–Watson process (with possibly an infinite number
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of types). We see that m(P )dPQ is equal to the mean number of offspring of an individual
living in patch P which will land into patch Q in one time step, and therefore we call mean
offspring matrix

A := (m(P )dPQ : P,Q ∈ V ),

Then, everything happens as if the metapopulation evolves on a graph given by the motif. We
follow then the proof of Theorem 4 to prove that the criterion m1E(

∏T−1
n=1 m(Xn)) > 1 is the

persistence criterion in the source habitat 1. But using the facts that the number of sources
in a motif is finite and that a motif is irreducible ensures that it is a global persistence criterion.

When the motif is finite, we get exactly the model described in the introduction and derive
the following counterpart of Theorem 4.1. We denote now by D the transition matrix of the
Markov chain (Xn), and still use for f = (fP : P ∈ V )

I(f) := sup
{

∑

P∈V

fP log(vP /(vD)P ) : v ≫ 0
}

,

and
R(f) :=

∑

P∈V

fP log(m(P )).

Theorem 6.2 Assume that the metapopulation graph is transitive with a finite motif. Assume
(A1, A2’, A3, A4, A5) hold for this motif. The growth rate ρ of the metapopulation is given
by

log(ρ) = max

{

R(f)− I(f) :
∑

P∈V

fP = 1, fP ≥ 0

}

.

In addition, for any P ∈ V , conditional on the population being alive at time n, the occupancy
frequency of a patch with type (P ) by the ancestral line of a randomly chosen individual Un

in the surviving population at time n, converges to ϕi in probability

Fi(Un)
n→∞
−→ ϕi,

where the vector ϕ belongs to F and is characterized by

log(ρ) = R(ϕ) − I(ϕ).

The occupancy frequency ϕ coincides with the stationary distribution u of X only if m(P ) =
m(P ′) for all patches P,P ′.

The results obtained for the periodic and random environments can be derived similarly
for transitive graphs.

7 Discussion

We have proposed two new techniques to derive simple criteria of persistence (by using the
path of a random disperser) and to characterize the long-term growth rate of a single species in
a source-sink metapopulation (by using large deviations for the path of the random disperser),
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as well as the occupancy frequencies of long-lived ancestral lineages. The expressions obtained
thanks to these techniques decouple the contributions of reproduction/survival vs dispersal to
the past, growth and persistence of these metapopulations. These techniques apply to a general
class of stochastic, individual-based, stepping stone models of source-sink metapopulations,
even when habitat quality is (not only variable in space but) variable through time, and even
for (some) infinite metapopulations.

Growth rate and stable geographic distribution could have as well been computed respec-
tively as the maximal eigenvalue and associated eigenvector of the mean offspring matrix (en-
compassing dispersal). This well-known spectral approach can still more efficiently be used in
general for the numerical computation of these quantities than the techniques presented here.
However, the solution presented here has the advantage of giving a clear biological interpre-
tation of the contributions of demography and dispersal to growth and stable distribution. In
particular, we hope that this new presentation will help researchers in conservation biology
to make informed decisions in planning reintroduction strategies or in designing successfully
protecting areas. Indeed, the benefit of our approach is to enable the ecologist to separate the
effect on source-sink dynamics of changing the suitability of habitats (reproduction/survival
scheme) or of changing the connectivity of the metapopulation (dispersal scheme).

Last, we want to indicate possible extensions of our ideas.

First, we explain how migration-induced mortality has been encompassed in the growth
phase, so that habitat patches i with mi > 1 are sources in the strict sense of the word.
Indeed, let m′

i denote the mean number of offspring produced in patch i before dispersal, and
d′ij denote the probability of migrating from i to j and to survive to this migration event. Then

pi =
∑K

i=1 d
′
ij is the probability of survival to migration starting in patch i. It is easily seen that

mi = pim
′
i is the mean offspring number including survival to migration and that dij = p−1

i d′ij
are the dispersal probabilities of surviving individuals, so that considering only individuals
surviving migration, everything happens as if growth with mean mi preceded dispersal with
weights dij . These parameters mi and dij are the ones we have used throughout the paper.
Note that the matrix A′ with generic element m′

id
′
ij is obviously equal to A.

On the other hand, we could as well have sticked to the framework where mortality-induced
migration is not encompassed in the growth phase, in which case the dispersal matrix D′ is
now sub-stochastic. Then the associated random disperser X ′ would die with probability 1− p
at each time step, and the criterion for persistence would have remained

m′
1E

(

T ′−1
∏

n=1

m′
X′

n

)

> 1,

where T ′ is the first return time to patch 1 of the killed random walk X ′, with the convention
that the term inside the expectation is set to 0 when T ′ is infinite (death of the walker before
returning home).

Second, we can relax the assumption that dispersal behaviors of siblings are independent,
provided there is no correlation between dispersal behaviors of different groups of siblings.
Indeed, in this case, we just need to consider the mean number mij of offspring of an individual
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living in patch i which go into patch j. Setting

mi =
K
∑

j=1

mij, dij = mij/mi

allows us to come back to our framework. In the case of finite multitype branching processes,
the questions handled here are only linked to the mean offspring matrix. It makes such a
procedure valid.

Third, if the model was expressed in continuous time then the disperser X would be a
time-continuous random walk, and the criterion for persistence to generalize is the criterion
involving occupation times (see Remark 1).

Fourth, we mention that our ideas could also be adapted to age-structured populations,
by considering the stopping line of descendants of a focal juvenile ancestor who are the first
descending juveniles to be born in the ancestor patch. Similarly, we can consider different (but
a finite number) phenotypes or genotypes just by increasing the state space of the type of the
branching process. Roughly speaking, habitat types are now replaced with a new composite
type encompassing habitat, age, phenotype, genotype...

There is one further question that our methods could possibly solve. In infinite metapopu-
lations, persistence can occur with the population failing to fill out the whole space, as in cases
where dispersers always follow the same direction. This phenomenon is known as a dichotomy
between local extinction and local exponential growth (conditional on global persistence). Our
prediction of global persistence in infinite metapopulations relies on the study of the path of
a random disperser started in a source patch, until the first time when it returns to a (pos-
sibly different) source patch. By making the difference between cases when the final patch is
the same source patch or another source patch, we could display criteria for local persistence.
Indeed, we know that there is global persistence in a source-transitive patch iff

m1E

(

T−1
∏

n=1

mXn

)

> 1,

where T is the first return time to a source patch, but we conjecture that in this case there is
local persistence only if we also have

m1E

(

τ−1
∏

n=1

mXn

)

> 1,

where τ is the first return time to the very same source patch as initially.

A Proof of Theorem 4.1

We assume (A2’, A3, A4, A5). Thus the Markov chainX is irreducible and evolves on a finite
state space. The real number I(f) is the cost for the habitat occupation frequencies associated
with the random walk X to equal f . It gives the geometric decrease of the probability that
the portion of time spent in habitat i until generation n is close to fi :

I(f1, . . . , fK) = lim
ǫ→0

lim
n→∞

−
1

n
logP(fk − ǫ ≤ Fk(Xn) ≤ fk + ǫ). (4)
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This result holds when I is finite. It is guaranteed by Sanov’s theorem (see e.g. [9, Theorem
3.1.6 page 62]), which also ensures that I is convex continuous. The function I is called the
rate function associated to the path of the random walk X.

Finally, by (A2’), the offspring distribution Ni for an individual living in patch i satisfies
E(Ni log

+Ni) < ∞, which ensures that for all i, j = 1, . . . ,K,

E(Zj
1 log

+ Z
(j)
1 | Z

(i)
0 = 1, Z

(k)
0 = 0 for k 6= i) < ∞.

Using (A3, A4, A5), we have both A and D strongly irreducible. Then Zn/ρ
n converges to

a non degenerate variable W , see e.g. [4, Chapter 5, section 6, Theorem 1]. It is positive and
finite on the survival event.

Expression of the growth rate ρ and habitat occupation frequencies. We start with

one individual in patch 1. Recalling that for every i = 1, . . . ,K, E(Z
(i)
n ) =

∑K
j=1E(Z

(j)
n−1)mjdji,

we get by induction

E(Z(i)
n ) =

∑

j0=1, jn=i,
1≤j1,...,jn−1≤K

n−1
∏

k=0

mjkdjkjk+1
= E1

(

1Xn=i

n−1
∏

i=0

mXi

)

.

This yields

E(|Zn|) = E

(

n−1
∏

i=0

mXi

)

Denoting by Sn(i) the number of visits of the random disperser X in patch i = 1, . . . V, :

Sn(i) = #{k ≤ n− 1 : (Xk) = i} = nFi(Xn),

we deduce

E(|Zn|) = E

(

K
∏

i=1

m
Sn(i)
i

)

=

∫

F
exp(n

K
∑

i=1

fi log(mi))P(F1(Xn) ∈ df1, . . . , FK(Xn) ∈ dfK).

Using (4) and Laplace method, we get

log(E(|Zn|)
1/n)

n→∞
−→ max{

K
∑

i=1

fi log(mi)− I(f1, . . . , fK) : f ∈ F}.

This proves the first part of the result.

The maximum of h := R − I is reached for a unique frequency ϕ, which means that there
is a unique ϕ such that log(ρ) = R(ϕ)− I(ϕ). This is the object of Proposition A.1. Moreover
the partial derivatives of h at ϕ are zero. As fK = 1− f1 − . . . fn−1, for every 1 ≤ i ≤ K − 1,

log(mi)− log(mK)−
∂

∂fi
I|f=ϕ = 0.
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If ϕ = p, then the partial derivatives of I at ϕ are zero. This can be directly computed or
deduced from I ≥ 0 and I(p) = 0. This ensures that for every 1 ≤ i ≤ K − 1, log(mi) −
log(mK) = 0, i.e. m1 = m2 = . . . = mK . This proves the third part of the theorem.

Finally, let us prove that the habitat occupation frequencies of a typical individual are
given by the vector ϕ. Let ǫ > 0 and i ∈ {1, . . . ,K}. The individuals alive in generation n are
labelled by uk, k = 1, . . . , Zn.

Following the first part of the proof,

E(

Zn
∑

k=1

1|Fi(uk)−ϕi|≥ǫ) = E

(

1|Fi(Xn)−ϕi|≥ǫ

n
∏

i=0

mXi

)

= E

(

1|Fi(Xn)−ϕi|≥ǫ

K
∏

i=1

m
Sn(i)
i

)

=

∫

F
1|fi−ϕi|≥ǫ exp(n

K
∑

i=1

fi log(mi))P(F1(Xn) ∈ df1, . . . , FK(Xn) ∈ dfK).

Using again (4) and the Laplace method, we get

1

n
logE

(

Zn
∑

k=1

1|Fi(uk)−ϕi|≥ǫ

) n→∞
−→ Ci,ǫ,

with Ci,ǫ = max{
∑K

i=1 fi log(mi)− I(f1, . . . , fK) : f ∈ F , |fi −ϕi| ≥ ǫ}. The uniqueness of the
argmax ϕ ensures that Ci,ǫ < Ci,0. Moreover the growth rate Ci,0 is equal to log(ρ) and

1

n
logE

(

Zn
∑

k=1

1|Fi(uk)−ϕi|≥ǫ

)

−
1

n
log ρn

n→∞
−→ Ci,ǫ − Ci,0 < 0.

Then

E
( 1

ρn
.
Zn
∑

k=1

1|Fi(uk)−ϕi|≥ǫ

) n→∞
−→ 0.

In other words
∑Zn

k=1 1|Fi(uk)−ϕi|≥ǫ/ρ
n goes to 0 in probability. Adding that Zn ∼ Wρn a.s. as

n → ∞ and {W > 0} = {∀n ∈ N, Zn > 0} a.s. ensures that

1Zn>0
1

Zn
.

Zn
∑

k=1

1|Fi(uk)−ϕi|≥ǫ
n→∞
−→ 0

in probability. By dominated convergence,

E

(

1Zn>0
1

Zn
.

Zn
∑

k=1

1|Fi(uk)−ϕi|≥ǫ

)

n→∞
−→ 0.

Then, conditionally on Zn > 0, denoting by Un an individual chosen uniformly in generation
n,

P (|Fi(Un)− ϕi| ≥ ǫ, Zn > 0)
n→∞
−→ 0.

This proves that Fi(Un)
n→∞
−→ ϕi in probability and completes the proof.

31



Study of I and uniqueness of argmax R− I. The supremum I defined by

I(f) = I(f1, . . . , fK) := sup{

K
∑

j=1

fj log(uj/(uD)j) : u ∈ R
K , u ≫ 0},

is reached for a unique unit positive vector. This means that there exists a unique u(f) =
(u1, . . . , uK) such that

I(f) =
K
∑

j=1

fj log(uj(f)/(u(f)D)j), u1(f) + · · ·+ uK(f) = 1, u1(f) > 0, . . . , uK(f) > 0.

Indeed this vector u(f) realizes a maximum for u ∈ R
K , u ≫ 0 and thus satisfies for j =

1, . . . ,K,

fj
uj

−

K
∑

i=1

dji
fi

(uD)i
= 0. (5)

This equation characterizes u, see Exercise IV.9 page 46 in [10], which ensures that u(f) is
uniquely defined. Note also that if fi is the stationary distribution, uj = fj satisfies this equa-
tion since (fD)i = fi, so that I = 0.

Proposition A.1 There exists a unique ϕ ∈ F such that log(ρ) = R(ϕ)− I(ϕ).

Proof. We observe that f 7→ u(f) can be extended from F to [0,∞)K \ {0} and can satisfy
(5) on [0,∞)K \ {0} by setting

u(f) = u(f/ ‖ f ‖), where ‖ f ‖=

K
∑

i=1

fi.

Then R− I can be extended to [0,∞)K \ {0} with

(R− I)(f) =

K
∑

j=1

fj
∑K

k=1 fk
log(mj(u(f)D)j/uj(f)),

and (R− I)(λf) = (R− I)(f) for every λ ∈ (0,∞).
Consider a vector f which realizes the maximum of R − I and does not belong to the

boundary of [0,∞]K . Then the partial derivatives are zero and for every i = 1, . . . ,K,

1
∑K

k=1 fk
.

[

log(mi(uD)i/ui) +
K
∑

j=1

fj

(

∂
∂fi

(uD)j

(uD)j
−

∂
∂fi

uj

uj

)

]

=

∑K
j=1 fj log(mj(uD)j/uj)

[
∑K

k=1 fk]
2

.

Using (5) we get

K
∑

j=1

fj

∂
∂fi

(uD)j

(uD)j
=

K
∑

j=1

fj
(uD)j

K
∑

k=1

dkj
∂uk
∂fi

=

K
∑

k=1

∂uk
∂fi

K
∑

j=1

fjdkj
(uD)j

=

K
∑

k=1

∂uk
∂fi

fk
uk

,
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so that

log(mi(uD)i/ui) =

∑K
j=1 fj log(mj(uD)j/uj)

∑K
k=1 fk

.

Observe that the right hand side does not depend on i, so that for every i = 1, . . . ,K,

(uD′)i = αui,

where D′
ji = djimi and α is a positive constant. Then u is left eigenvector of D′ with positive

entries. Moreover D′ is strongly irreducible since D is strongly irreducible and mi > 0 for every
i by assumption (recall that D is strongly irreducible if it is both irreducible and aperiodic,
that is, if there exists n0 ≥ 1 such that all the coefficients of Dn0 are positive). Now Perron–
Frobenius theory ensures that there is a unique left positive eigenvector u of D′ such that
∑K

i=1 ui = 1. Indeed, it is known [23] that two positive eigenvectors of a primitive matrix
are colinear. This actually comes from the classical decomposition of An using the maximum
eigenvalue and the associated left and right eigenvectors. Moreover, following the literature on
large deviations [10], (5) reads

fj =
K
∑

i=1

D′′
jifi,

with D′′
ji = ujdji/(uD)i. Here again D′′ is strongly irreducible since D is strongly irreducible

and both u and uD are positive vectors. Using again Perron–Frobenius theory guarantees the
uniqueness of the solution f such that

∑K
i=1 fi = 1. This ensures the uniqueness of the argmax

of R− I in the interior of [0,∞)K . We complete the proof by adding that there is at least one
argmax in the interior of [0,∞)K since we recall that the frequency occupation is the product of
the right and left eigenvectors of A associate to ρ, which are both positive (using again Perron
Frobenius theory with assumptions (A3, A4, A5)). If ϕ1 and ϕ2 realize the max of R − I,
the concavity of this function ensures that so do all elements in the segment [ϕ1, ϕ2], which is
in contradiction with the uniqueness in the interior of [0,∞)K and completes the proof. 2

B Classification Theorem for MBPRE

We consider here a multitype branching process in random environment Zn = (Z
(i)
n : i =

1, . . . ,K) whose mean offspring matrix is denoted by A = A(w), where w = (w0, w1, . . .) is the
environment.
We introduce the extinction probability vector in environment w starting from one individual
in habitat i:

qi(w) = lim
n→∞

P(|Zn| = 0 | w, Z
(i)
0 = 1, Zj

0 = 0 if j 6= i).

Proposition B.1 ([40], Theorems 9.6 and 9.10) Assuming that

P(qi(w) < 1 : i = 1, . . . ,K) = 1 or P(qi(w) = 1 : i = 1, . . . ,K) = 1, (∗)

we have

• If γ < 0, then the probability of extinction is equal to 1 for almost every w.

• If γ = 1, then
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– either for every m ≥ 1, w-a.s., there exists 1 ≤ i ≤ K such that

P(|Zm| > 1 | w, Z
(i)
0 = 1, Z

(j)
0 = 0 if j 6= i) = 0.

– or qi(w) = 1 w-a.s..

Assuming that there exist integers N,L > 0 such that P(∀1 ≤ i, j ≤ K, (AN · · ·A0)ij 6= 0) = 1

and |E(log(1− P(ZK = 0 | Z
(L)
0 = 1))| < ∞, then (∗) is satisfied and

• If γ > 0, then w-a.s qi(w) < 1 for every i = 1, · · · ,K, and

P
(

lim
n→∞

n−1 log(|Zn|) = γ | w, Z
(i)
0 = 1, Zj

0 = 0 if j 6= i
)

= 1− qi(w).

Moreover thanks to [40, Theorem 9.11], if all the coefficients of the matrix A are positive and
bounded, i.e.,

∃0 < c, c′ < ∞, c ≤ inf
1≤i,j≤K

Ai,j ≤ sup
1≤i,j≤K

Aij ≤< c′ a.s.,

then

Zn = O(‖An−1 · · ·A0‖) a.s.
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