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Abstract

We study in this work the liquidity, defined as the size of the trad-
ing volume, in a situation when an infinite number of agents with het-
erogeneous beliefs reach a trade-off between cost of a precise estimation
(variable depending on the agent) and expected profit from trading at the
resulting estimate price. The “true” asset price is not known and the mar-
ket price is set at a level that clears the market. We show that under some
technical assumptions the model has natural properties such as monotony
of offer and demand functions with respect to the price, existence of an
overall equilibrium and monotony with respect to cost of information. We
also situate our approach within the Mean Field Games (MFG) framework
of Lions and Lasry which allows to obtain an interpretation as a limit of
Nash equilibrium for an infinite number of players.

1 Introduction

Liquidity risk is a concept that has been well illustrated by the worldwide finan-
cial crisis that started in 2007 (initially centered around “subprime” credits but
then extended to the financial sphere since). The models used to price financial
products did not take this risk into account and many well known institutions
faced substantial looses (some leading to default).

More specifically, when one wants to measure the asset liquidity several
notions have been taken into account:

- the bid-ask spread (which takes into account the difference between the
price at which a security can be bought and sold based on real quotes available
on the market. This notion is useful for operational purposes but is sometimes
too short-sighted;

- market depth: Hachmeister [9] defines the market depth as the amount of
a security that can be bought and sold at various bid-ask spreads.

- immediacy: it indicates the time needed to successfully trade a certain
amount of an asset at a prescribed cost.

∗corresponding author Gabriel.Turinici@dauphine.Fr
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- resilience: Hachmeister refers to this as the speed with which prices return
to former levels after a shock (e.g. a large transaction, etc.) ; this measure
requires a time window.

Several modeling approaches have been proposed, such as a limit order book
modeling and optimal order submission [3] where the authors study the optimal
submission strategies of bid and ask orders in a limit order book. They consider
an agent optimizing his utility with a finite and infinite horizon and obtain
results such as optimal bid/ask spread etc.

Other authors considered not one but several (types of) agents that hold non-
identical estimations (also called heterogeneous beliefs) on the future price of
the asset: Gallmeyer and Hollifield ([5]) study the effects of a market-wide short-
sale constraint in a dynamic economy with heterogeneous beliefs and analyze the
impact on the stock price as generated by the optimistic investors’ intertemporal
elasticity of substitution. Another paper by Emilio Osambela ([19]) presents a
dynamic general-equilibrium economy in which one population of optimistic
investors is subject to endogenous liquidity constraints. On the other hand the
importance of heterogeneous beliefs on asset pricing has been recognized widely
in works by e.g., Jouini et al. [11, 10].

In all these situations the typologies of agents are intrinsically finite as the
authors are not interested in what happens when an infinite number of different
agent are present. We will suppose here that an infinite number of agents are
acting in the market, each having his own methodology to arrive at an estima-
tion of the “true” price of some security. We take the paradigm of heterogeneous
beliefs i.e. we suppose that all agents receive the same (costly, see latter) in-
formation but they differ in the way to interpret it, more precisely in the way
to obtain an estimation out of it. The estimation is obtained in the form of a
random variable with a known mean and variance; the agent cannot change the
result obtained by his methodology; the particularity of our approach is that
he can diminish its variance by paying a price. Each agent optimizes an utility
functional. Also, contrary to some previous works we are not interested in the
dynamics of the price itself (that we will suppose constant to simplify); instead
our focus is on the trading volume (the number of assets traded at the market
price) that we will consider a proxy for liquidity. Such a substitute for liquidity
is adapted to our setting which is a one period game with no dynamics.

Considering an infinite number of optimizing agents is not technically trivial
and we resort to the “Mean Field Games” approach pioneered by Lasry and Li-
ons [16, 14, 15, 17] where an Nash equilibrium with an infinite number of agents
is analyzed. Mathematical properties for special cases of functionals (quadratic
etc.) and examples of applications and numerical approaches are to be found
in several works: in [2] the authors present a finite difference discretization in
a finite an infinite time horizon and prove approximation properties, existence
and uniqueness, bounds on the solutions; they also introduce a Newton method
for the coupled direct-adjoint critical point equations for the finite horizon prob-
lem in a convex setting. In [7] the author studies a prototypical case and its
stability properties. In [12] the authors present a numerical method and apply
to an example of technology change; another modeling example is given in [13].
In [6] MFG are stated in a finite state space. Finally, the so-called “planning
problem” where the final density of agents is prescribed is treated in [1].

Our analysis here needs to take into account a dimension which is particular
to this setting: the “mean field” that couples the actions of all agents appears
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as an equilibrium constraint. Although we only treat a single situation in this
paper we expect that the MFG approach can be coupled with constraints on
the density of agents and refer to future work for technical details.

The summary of the paper is the following: in Section 2 we explain the
basic properties of the model and especially the specific investigation of this
work which is the tradeoff between estimation cost and the trading volume.
In Section 3 we compare our approach and situate it within the MFG model.
Finally in Section 4 we prove the main properties of the model (offer/ demand
monotonicity with respect to price, existence of an equilibrium, anti-monotony
with respect to precision cost, etc.) and give some illustrative examples.

2 The liquidity model

Let us consider a traded security of ”true” value V . The true value is unknown to
market participants and will never be revealed. Instead, each agent x constructs
his own estimation for V in the form of V Ãx where Ãx is a random variable; we
will consider, for simplicity that V Ãx is normal, that Ãx and Ãy are independent
as soon as x 6= y and that the mean of V Ãx is V Ax and variance of V Ãx is
V 2(σx)2 and are known to agent x. It turns out that for technical reasons it
is better to work with “precision” instead of the variance i.e. we introduce
Bx = 1/(σx)2.

We do not try in this model to explain how the agents construct their es-
timation V Ãx but will suppose that each agent has his own (deterministic)
methodology that is specific to himself and fixed in advance; the agent can-
not influence in any way the mean Ax during the process (but the mean can
depend on time); in particular two different agents may (and will in practice)
have different estimations (and average estimations Ax). This is not a collateral
property of the model but the mere reason for which the agents trade: they
trade because they have heterogeneous expectations about the final value of the
security.

The only thing that the agent can do is to try to extract as much precision
as possible from his methodology i.e. he can change Bx. However improving
the precision comes at a cost i.e. the agent has to pay f(b) to arrive at precision
b. The precision cost function f : R+ → R+ is defined on positive numbers (we
can take by convention f(b) = ∞ for any b < 0).

There are many reasons why such a modelisation is realistic, the cost can e.g.
come from the cost of information sources (news broadcasting fees etc.), the pay
of the research personnel, the need for more precise (but costly) computations,
etc.

Based on his estimations the agent will decide to trade θx units i.e. the size
of the position of the agent on the market is V ·θx; note that when θx is positive
this means that the agent is long (buys) and when it is negative it means that
the agent is short (sells) the security.

Thus each agent is characterized by three quantities: his mean estimate
V Ax, the precision Bx of the estimate and the quantity of units traded θx;
denote X = (A, θ,B)T (here T denotes the vectorial transposition); we set the
investment horizon of all the agents to be the final time T = 1.

Remark 1 The “time” here can be physical “wall-clock” time or “eductive
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time” (cf. [8]) i.e. a the mental time required by the agents to reach a deci-
sion.

We denote by m(t,X) the distribution of the agents (a probability measure)
at time t with m(0, X) = m0(X). We will also denote Et the mean with respect
to the measure m(t,X).

Let us denote by ρ(t, A) the marginal of m(t,X) with respect to the variables
θ and B at time t and ρ0(A) = ρ(0, A). Note that θ, B can (and will) depend
on time. However the evolution of Ax is autonomous i.e. not related to B and
θ but imposed by the estimation model chosen by the agent once for all at the
beginning. It is not subject to decision or to control between the initial and
final time. Thus, even when the mean estimation for each agent may depend on
time, it is natural to consider an “ergodic” setting where the distribution ρ(t, A),
depending only on the autonomous evolution of Ax for each x, is stationary i.e.
for all t ∈ [0, T ]: ρ(t, A) = ρ0(A). In particular this is true when Ax is constant.
We can then introduce the expectation value with respect to ρ0 which will be
denoted E

A.
From a theoretical point of view it is interesting to consider the situation

when the mean E
A(A) = 1 which means that the average estimate is V i.e. the

agents are neither overpricing nor underpricing the security with respect to its
(unknown) true value. We will see however that this is not necessarily indicating
that the market price will be V .

In order to describe the model for the market price, we will introduce the
basic notions of total offer (and demand) for a price p ≥ 0. Namely the total
demand at final the time (which sole is of interest to us) will be denoted D(p)
and total offer O(p) and are respectively defined as:

D(p) = E
T (θ+), O(p) = E

T (θ−). (1)

A price p∗ such that O(p∗) = D(p∗) will be said to clear the market. Indeed,
from definitions of D(·) and O(·) this is equivalent to that ET (θ) = 0 i.e. at the
price p∗ the overall (signed) demand is null. Note that such a price may not
exist or may not be unique, cf. Remarks 3, 4 and Figures 1,2 below.

The transaction volume at some price p will be the number of units that can
be exchanged at that price i.e is defined as

TV (p) = min{O(p), D(p)}. (2)

A price p∗ where TV (·) attains its maximum is of interest because if will
maximize the total number of shares exchanged. Note that such a price may
not exists, cf. Remark 4 and Fig. 2 below. It also can be non-unique.

An elementary but important result gives information on the market price
and its properties:

Theorem 2 If O(p), D(p) are continuous, O(p) strictly increasing, O(0) = 0,
limp→∞ O(p) > 0, D(p) strictly decreasing , D(0) > 0, limp→∞ D(p) = 0, then

1/ a unique p∗1 exists such that O(p∗1) = D(p∗1);
2/ a unique p∗2 exists such that TV (p∗2) ≥ TV (p) for all p ≥ 0;
3/ p∗1 = p∗2.

Proof. For 1/ let us note that the continuous, strictly monotone function D−O
is such that in zero its value is strictly positive and at infinity is strictly negative.
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Thus there exists a unique p∗1 where the function vanishes which is the required
result. We note that (D − O)(p) is strictly positive for p < p∗1 and strictly
negative for p > p∗1.

For 2/ note that

TV (p) =







O(p) for p < p∗1
D(p∗1) = O(p∗1) for p = p∗1
D(p) for p > p∗1

(3)

Then TV (p∗1)− TV (p) = O(p∗1)−O(p) for p ≤ p∗1 and D(p∗1)−D(p) for p ≥ p∗1.
In all situations TV (p∗1)− TV (p) is positive hence 2/ and 3/.

Remark 3 Conditions on D(0) = 0 and similar are technical. But mono-
tonicity is important for the equivalence between the two interpretations: as the
maximum of the transaction volume and as matching offer and demand. Indeed
it is enough to take as functions p+ sin(πp) and 1/p (cf. Fig. 1) to understand
that there can be several points that clear the market (there are three of them)
and none maximize the trading volume. Such a situation is very ambiguous for
a market and we want to avoid it.
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Figure 1: An illustration of the Remark 3. Here O(p) = p+sin(πp) and D(p) =
1/p and O(p) is not monotonic. Several prices exist that clear the market. The
first price, situated at about p = 0.684, maximizes the trading volume among
the points that clear the market (with value around 1.541) but it does not
maximize the trading volume TV (p) whose maximum value is around 1.551.

Remark 4 Continuity is also a crucial ingredient to this interpretation. Indeed,
when the offer and demand functions are not continuous a price that maximizes
trading volume may not exist, same for a price that clears the market. To

illustrate this take for instance O(p) = 2p2, D(p) =

{

4− p
1/p for p ≥ 1

(cf. Fig. 2).
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In this situation the supremum of transaction volumes is 2 but is not attained by
any price; also, no price clears the market i.e. there does not exist p such that
O(p) = D(p). We enter in this situation the topic of market microstructure;
a market maker is necessary on such a market that can smooth out offer and
demand through a pricing rule or market making function, cf. [18] for details.
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Figure 2: An illustration of the Remark 4: offer and demand functions are
discontinuous: no price exists that clears the market; the maximum trading
volume is not attained.

The market price at time T , denoted V P equals total offer and demand i.e.
the overall demand / offer balance is null; this will give an implicit equation for
P:

∫

θdm(T,A, θ,B) = 0 or equivalently E
T (θ) = 0. (4)

In order the model the choices of the agents we will take the classical sit-
uation when the agent is maximizing a utility function. Since the uncertainty
appears as a normal variable we have two alternatives which coincide: either
consider that the utility is a function of the mean and variance of the profit or,
equivalently, take an expected utility framework. To keep intuitive understand-
ing we will keep the simplest situation of a utility function U(u, v) = u − λ

2 v
where u is the expected profit and v its variance. Of course, this too simple
utility function has several known drawbacks (not a coherent risk measure etc.)
but this will not play an important role here and the simple choice above will
considerably simplify the results.

Note that all agents have the same utility function.
Of course, the profit itself is a function of θx,Bx; the profit is computed

under the assumption that the agent expects to buy/sell at market price and
expects to sell at a price consistent with his estimation and the uncertainty
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of this estimation. Thus the average profit for agent x, denoted ux is ux =

V θx(Ax −P)− f(Bx); variance of the profit, denoted vx is vx = (θx)2V 2

(Bx)+
where

(Bx)+ is the positive part of Bx with convention that division by zero equals
+∞.

Thus agent x optimizes (at final time T ):

J(Xx) = V θx(Ax − P)− f(Bx)−
λ

2

(θx)2V 2

(Bx)+
. (5)

Let us say more on the precision cost function f(b): it is the “research cost”
to reach the precision b. Conditions for f that seem very natural are f(0) = 0,
f ′(0) = 0 (this is to fix the marginal cost at start; this is a non-trivial choice
but its implications are not important for the technical results of the paper).
We will also consider that f is increasing, strictly convex (this will be seen later
to ensure well-posedness), C2 and limx→∞ f(x)/x = ∞.

Now that the model has been set, several important questions are to be
addressed to justify that the model corresponds to the intuitive picture one
may have of it and also to justify the mathematical well-posedness of the overall
problem:

- is the solution unique i.e. does there exist a unique P that solves the
equilibrium equation (4)

- are the total demand /offer D(p) / O(p) monotonic functions of p (in order
to be within the framework of Thm. 2)?

Note that P (given by Thm. 2) is not necessarily equal to 1 even if E0(A) = 1.

3 Comparison and interpretation as Mean Field
Games (MFG)

The Mean Field Games framework (MFG) is a mathematical model for interac-
tion among a large number of agent / players. An agent can control its situation,
based on a set of preferences and by acting on some parameters. MFG can show
the emergence of a collective behavior (fashion trends, financial crises, real es-
tates valuation, etc.) out of individual optimization by each agent: while an
agent by himself cannot influence the collective behavior (he only optimizes his
own decisions given the environmental situation and his decisions have negligible
impact on the collective parameters) the collective choices of all agents create
an overall environment (the “mean field”) that affects in return the individual
decisions.

We refer to [16, 14, 15, 17] for further information. The MFG theory shows
that a Nash equilibrium for a game of N players will tend, in some specified
sense, when N → ∞, to the so-called MFG equations.

Let Xx
t be the characteristics at time t of a agent/ player starting in x at

time 0. It evolves with SDE:

dXx
t = α(t,Xx

t )dt+ σdW x
t , Xx

0 = x (6)

where α(t,Xx
t ) is the control and can be changed by the agent/ player.

Note that each agent has his own randomness modeled with independent
Brownian. Denote by m(t, x) the density of players at time t and position
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x ∈ E; E is the state space. The optimization problem of the agent is: for a
(fixed) finite horizon T optimize:

inf
α

E

{

∫ T

0

L(Xx
t , α(t,X

x
t )) + V (Xx

t ;m(t, ·))dt+ V0(X
x
T ;m(T, ·))

}

(7)

Operator L encodes constraints or costs on the control while V and V0 encode
the goal. Define H(x, ξ) = supα〈ξ, α〉 − L(x, α); ν = σ2/2.

For a finite number of agents (i.e; when m(t, x) is a sum of N Dirac masses)
critical point equations can be written that describe a Nash equilibrium; these
equations converge (up to sub-sequences) to solutions of the following MFG
system for N → ∞:

∂tm+ div(αm)− ν∆m = 0, (8)

m(0, x) = m0(x),

∫

m = 1, m ≥ 0 (9)

α = −
∂

∂p
H(x,∇u) (10)

∂tu+ ν∆u−H(x,∇u) + V (x,m) = 0, (11)

u(T, x) = V0(x,m(T, ·)),

∫

u = 0. (12)

To model the situation in Section 2 the evolution equations and the initial
probability distribution will be:

dXx
t = d





Ax
t

θxt
Bx

t



 =





α(t, Ax
t )

αθ(t,X
x
t )

αB(t,X
x
t )



 dt+





σA(t, A
x
t )dW

A
t

σθ(t,X
x
t )dW

θ
t

σB(t,X
x
t )dW

B
t



 (13)

m(t,X)
∣

∣

∣

t=0
= m0(X). (14)

We will take operators L and V to be null. Recall that we supposed that
autonomous evolution of Ax is defining a stationary distribution ρ0. To simplify
even more the setting we will take in fact Ax to be unchanged and θx and Bx

to have a deterministic evolution.

d





Ax
t

θxt
Bx

t



 =





0
αθ(t,X

x
t )

αB(t,X
x
t )



 dt (15)

m(t,X)
∣

∣

∣

t=0
= m0(X). (16)

To this we add the equilibrium condition above (eqn.(4)). This framework
allows to expect an interpretation of our setting: a Nash equilibrium for an
infinite number of players. Note that we do not explicitly show the relationship
between the Nash equilibrium of N agents and the results in the next section
corresponding to an infinite number of agents.
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4 Theoretical results

4.1 Existence of an equilibrium

Theorem 5 Suppose that the precision cost function f : R+ → R+ is such that:
f(0) = 0, f ′(0) = 0; suppose also that f is increasing, strictly convex, of C2

class and limx→∞ f(x)/x = ∞. Then:

• the optimal precision cost Bx and trading size θx are

Bx = (f ′)−1

(

(Ax − p)2

2λ

)

(17)

θx =
(Ax − p)Bx

2λV
=

(Ax − p)

2λV
(f ′)−1

(

(Ax − p)2

2λ

)

; (18)

In particular both are explicit functions of Ax.

• offer O(p) and demand D(p) are strictly monotone with respect to p.

• an equilibrium price P that clears the market (eqn.(4)) exists and is unique:

P =
E
A(AB)

EA(B)
. (19)

Proof. An agent only sees the others through the market price P. If we con-
sider now a possibly non-equilibrium price p as given then the agent optimizes
the functional J(Xx(T )) which only depends on the final state Xx(T ) and not
on the controls. Since the controls allow to obtain each possible configuration
for Xx(T ) (compatible with the constraint that Ax is fixed) then the values
Bx(T ) and θx(T ) will be optimum of the function

J (y, z) = V y(Ax − p)− f(z)−
λ

2

y2V 2

z
, for y > 0. (20)

Let us denote y∗, z∗ an optimum candidate. Asking that ∂J
∂y

= 0 one obtains

y∗ = (Ax
−p)z∗

λV
; then z∗ optimizes the function (Ax

−p)2

2λ z−f(z). If is straightfor-
ward to see that under hypothesis taken on f optimal points indeed exist and
satisfy (17)-(18).

In order to prove the strict monotonicity of the offer and demand functions
with respect to p it is enough to prove that e.g. (θx)+ is monotone with respect
to p. This is a consequence of the fact that (Ax−p)+ is (strictly) monotone with

respect to p < Ax and in the same domain (f ′)−1
(

(Ax
−p)2

2λ

)

is also monotone

because of the assumptions on f , namely convexity, regularity and f(0) = 0 =
f ′(0).

The monotonicity, by Thm 2, implies that a unique price that clears the
market exists and this price also maximizes the trading volume.

Note that θx is a function of Ax, that can be written θx = θ(Ax), same
for Bx = B(Ax). Thus equation (4) can be written E

T (θ) = 0 and also

E
A
(

(A−p)B(A)
2λV

)

= 0 which gives the conclusion.

Remark 6 Assumptions on f can be weakened (cf. [4]).
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In general the price P depends on the cost function f(·). But for the par-
ticular case when a symmetry exists the following results proves independence:

Corollary 7 Under assumptions in Thm. 5 on function f if ρ0 is symmetric
around p1 then P = p1 in particular is independent of f(·).

Proof. The proof proceeds from the remark that B(A) is a function sym-
metric around p thus θ(A) is antisymmetric. If the distribution ρ0 is symmetric
then for p = p1 we have EA(θ(A)) = 0 which means, by uniqueness, that P = p1.

Remark 8 Analog results holds for more general utility functions U (cf. [20]).

Thus the relative market price P is solution to the equation:

E
A

[

(A− P)(f ′)−1

(

(A− P)2

2λ

)]

= 0 (21)

We denote by TVf the equilibrium trading volume for precision cost function
f ; it satisfies the relation:

TVf =
P

2λ
E
A

[

(A− P)+(f
′)−1

(

(A− P)2

2λ

)]

. (22)

4.2 Application for a power precision cost function

Let us take a particular case f(b) = µ bα

α
with α > 1, µ > 0. Then we have

B(A) =

(

(A− P)2

2λµ

)

1
α−1

(23)

and P satisfies:

1

2V λ(2µλ)
1

α−1

E
A(A− P)|A− P|

2
α−1 = 0 (24)

and

TVf =
1

2λ(2µλ)
1

α−1

E
A(A− P)+|A− P|

2
α−1 (25)

We note that the trading volume is inversely correlated with the risk aversion
coefficient λ which means the more risk averse agents are, the less they trade.
The same holds for the ”cost of precision” µ: the more expensive the information
is, the less transactions the market has, which is compatible with the situation
of liquidity crisis where a sudden increase in the cost of precision can limit the
market liquidity.

It is also interesting to compute the (optimal) expected profit for an agent
having average estimation A; this profit is:

(

α− 1

2λα(2µλ)
1

α−1

)

|A− P|
2α

α−1 (26)
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Note that for α > 1 the profit is strictly positive. For α = 1 the formula is not
valid and the profit is infinity.

If A tends to infinity then the expected profit also tends to infinity, which
means that the larger A is the more the agent expects to win. But if the
distribution of A decreases when A becomes large (this should necessary be
the case in order for a first moment to exist) then the probability to be in
this situation is small which means that large profits are only expected by a
negligible amount of agents involved. Of course the real profit of each agent is
zero because the price does not change in our model.

By using this strategy, total expected profit of the entire market is finite as
soon as the distribution ρ0(A) has moments of order 2α

α−1 i.e.

E
A

(

α− 1

2λα(2µλ)
1

α−1

)

|A− P|
2α

α−1 < ∞ (27)

For the particular case α = 2 we obtain (after simplifications) the equation
for market price:

E
A(A− P)3 = 0, (28)

which tells us that if the third central moment of the distribution ρ0(A) is
null then P = 1 and thus the price is exactly the true price V . The formula is
interesting in itself and also because it shows that the mere condition E

A(A) = 1
does not insure that the market will trade at the “true” price V .

Other information cost functions than a polynomial one can be proposed
such as exponential function f(b) = µ

(

eξb − 1− bξ
)

, ξ ∈ R.

4.3 Dependence of the trading volume on the precision
cost function

A different set of questions refers to the precision cost function f . A result
that investigated the properties of the trading volume in relation to f is the
following:

Theorem 9 (anti-monotony of trading volume) Let f , g be two precision
cost functions fulfilling the hypothesis of Thm. 5. Let also f, g be such that
g′(b) ≥ f ′(b) for any b ∈ R+. Denote by TVf and TVg the equilibrium trading
volumes for precision cost functions f and g respectively. Then TVf ≥ TVg.

Remark 10 Each function will generate its own market price; the monotony
is not necessarily true for other market price except the equilibrium ones (which
may be different or not). We saw that if the distribution ρ0(A) is symmetric then
the prices will be the same because they are independent of the cost functions.

Proof. Let us note that if a function is monotone its inverse (when it exists) is
also monotone and of the same type of monotonicity. Since f and g are convex
it follows that f ′ and g′ are monotone increasing.

Denote F = (f ′)−1 and G = (g′)−1; from the hypothesis we obtain from
g′ > f ′ that F ≥ G with both F and G being increasing functions. For any
precision cost function h denoted by D(h, p) the demand at price p given by the
formula

D(h, p) =
1

2V λ
E
A

[

(A− p)+(h
′)−1

(

(A− p)2

2λ

)]

(29)
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and symmetrically the offer at price p

O(h, p) =
1

2V λ
E
A

[

(A− p)−(h
′)−1

(

(A− p)2

2λ

)]

. (30)

Note that D(h, p) is a decreasing function of p and O(h, p) is increasing.
Recall that the equilibrium price Pf is the one that equals offer and demand
i.e. satisfies:

D(f,Pf ) = O(f,Pf ) (31)

and the corresponding equation for g. Since F ≥ G one obtains that for any
price p: O(g, p) ≤ O(f, p) and also D(g, p) ≤ D(f, p). In particular O(g,Pg) =
D(g,Pg) ≤ D(f,Pg). Define P1 as the solution of the equation : O(g, P1) =
D(f, P1) (such a solution exists because O(g, ·)−D(f, ·) is continuous, the value
in zero is strictly negative and value at infinity strictly positive). Then P1 ≥ Pg

because O(g, p) is increasing and D(f, p) is decreasing. In a symmetric way one
can prove that P1 ≥ Pf .

Then
TVg

V
= O(g,Pg) ≤ O(g, P1) = D(f, P1) ≤ D(f,Pf ) =

TVf

V
hence the

conclusion.

4.4 Results under weaker hypotheses on the precision cost
function

The hypotheses accepted so far on the precision cost function f(B) are rather
strong: strictly convex of C2 class. We relax in this section these assumptions
but refer to [4] for optimal results.

Theorem 11 Suppose that the precision cost function f : R+ → R+ is convex
(thus continuous for b > 0), f(0) = 0 and f is continuous in 0. Also assume
f to be coercive in the sense that lim infx→∞ f(x)/x = ∞. Then for each given
price p each agent x attains its optimum in at least a (possibly non-unique)
configuration with precision Bx and order volume θx; moreover θx is monotone
(decreasing) with respect to p. Finally, the overall demand and offer functions
D(p) and O(p) are also monotone with respect to p.

Proof.
As in the proof of Thm 5 we denote by y∗(p), z∗(p) an optimum candidate

where we explicitly mark the dependence on p. Since the functional J in equa-
tion (20) is differentiable with respect to z we obtain as before from ∂J

∂y
= 0

that

y∗(p) =
(Ax − p)z∗(p)

λV
; (32)

then z∗(p) optimizes the function gp(z) =
(Ax

−p)2

2λ z−f(z). Since f is not neces-
sarily differentiable, nor strictly convex the optimum exists (because f(0) = 0,
f is continuous and coercive) but is not necessarily unique.

Take Ax ≤ p1 ≤ p2 and suppose that some choice of optimums z∗(p1) and
z∗(p2) exists such that z∗(p1) > z∗(p2). Using the optimality properties for
z∗(p1) and z∗(p2) we obtain:

gp2
(z∗(p2))− gp1

(z∗(p2)) ≥ gp2
(z∗(p1))− gp1

(z∗(p1))

12



thus

(p2 −Ax)2

2λ
z∗(p2)−

(p1 −Ax)2

2λ
z∗(p2) ≥

(p2 −Ax)2

2λ
z∗(p1)−

(p1 −Ax)2

2λ
z∗(p1)

which implies
z∗(p2) ≥ z∗(p1). (33)

which contradicts our hypothesis.
Recall now that z∗ stands for the optimal value of Bx thus we have mono-

tonicity for Bx.
Recall also that the optimal value of θx is given by the formula (32); we

obtain thus the monotonicity of θx for p ≥ Ax. An analogous argument works
on the branch p ≤ Ax and since the optimal θx for p = Ax is zero we obtain the
monotony of θx with respect to p. The monotony of overall offer and demand
functions D(p) and O(p) follow.

Remark 12 We do not claim that O(p) and D(p) are necessarily continuous
functions nor that the monotonicity is strict. This precludes the use of Thm. 2.
But it is obvious that convexity is better than just continuity, which means that
additional properties of D(p) and O(p) can be proved. We refer to [4] for details.

4.5 Further comments

As this model is concerned only with deriving a formula for the trading volume,
the dynamics of the “true” price was not considered. Of course, it would be
interesting to take this into account; also a further refinement concerns the
estimation process Ã and its costs that may possess stochastic dynamics; we
refer to future work for such follow-ups [21].
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