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Displacement Estimation by Maximum-Likelihood
Texture Tracking

Olivier Harant, Lionel Bombrun, Member, IEEE, Gabriel Vasile, Member, IEEE,
Laurent Ferro-Famil, Member, IEEE, and Michel Gay, Member, IEEE

Abstract—This paper presents a novel method to estimate
displacement by maximum-likelihood (ML) texture tracking. The
observed polarimetric synthetic aperture radar (PolSAR) data-set
is composed by two terms: the scalar texture parameter and the
speckle component. Based on the Spherically Invariant Random
Vectors (SIRV) theory, the ML estimator of the texture is com-
puted. A generalization of the ML texture tracking based on the
Fisher probability density function (pdf) modeling is introduced.
For random variables with Fisher distributions, the ratio distri-
bution is established. The proposed method is tested with both
simulated PolSAR data and spaceborne PolSAR images provided
by the TerraSAR-X (TSX) and the RADARSAT-2 (RS-2) sensors.

Index Terms—Maximum-likelihood (ML), offset tracking, po-
larimetric synthetic aperture radar (SAR), spherically invariant
random vectors, texture.

I. INTRODUCTION

LACIER monitoring is a widely common problem which
G is investigated for years. The progressive awareness to
climate changes makes these investigations more and more
required as the glaciers are good indicators for local climate
variation.

Different approaches using both optical and SAR sensors
have been proposed to derive displacement fields. In the optical
domain, optical flow methods have been successfully validated
[1], but those methods are strongly dependent by weather
phenomenon (snow fall, etc.) which will change the scene
illumination. In addition, optical flow methods required cloud-
less images. Because of its all weather and all-day monitoring
capabilities, SAR imagery offers a number of advantages for
Earth-surface and feature observation. Different approaches
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have been proposed to derive displacement fields with SAR
imagery: Differential Interferometric SAR (D-InSAR) and
offset tracking techniques.

Although the potential of D-InSAR methods [2] have been
successfully validated on different geophysical objects such as
volcanoes, landslides [3], glaciers [4]-[7], its application is lim-
ited to coherence preservation. For the generation of new high
resolution sensors (RADARSAT-2, TSX), the repeat time ob-
servation intervals becomes larger. It varies from 11 days for
TSX to 24 days for RADARSAT-2 compared to 1 day during
the ERS-1/2 tandem mission. For TSX data, coherence is not
preserved at 11 days in winter on Alpine glaciers [8]. Another
limitation of D-InSAR techniques concerns the fact that the dis-
placement estimated is only a projection in the line-of-sight
(LOS) direction. Different hypothesis have been proposed to re-
trieve the three components. A common assumption is to con-
sider a flow parallel to the glacier surface and in the direction of
maximum averaged downhill slope [7]. Another approach is to
combine both ascending and descending passes [9].

Nevertheless, the new generation of recently launched SAR
sensors are now able to produce high quality images of the
Earth’s surface with meter resolution. The decrease of the reso-
lution cell offers the opportunity to observe much thinner spatial
features. Offset tracking methods in the SAR domain are now
more and more studied. It exists different techniques:

* The speckle tracking technique correlates small blocks to
determine the relative displacement in the range and az-
imuth (along-track) directions [10] [11]. This technique
does not depend on image feature tracking but rather on
the fact that there is coherence between the blocks. As co-
herence is not preserved with TSX for temperate Alpine
glaciers, the speckle tracking method is not well suited.

* Recently, a novel tracking method based on Isolated Point
Scatterer (IPS) has been proposed [12]. It corresponds to
the matched filter between the signal backscattered by an
IPS and the ideal response: a double cardinal sinus. This
method is valid only for particular objects such as corner
reflector.

» The classical intensity tracking technique based on the
normalized cross-correlation (NCC) criterion [13] [14].

¢ The Maximum-Likelihood (ML) texture tracking al-
gorithm which takes into account the statistics of the
backscattered signal [15].

In this paper, authors propose an algorithm closed to the ML tex-
ture tracking algorithm introduced by Erten et al. [15]. It takes
into accounts the statistics of the texture parameter extracted
from the PolSAR data. Fig. 1 shows the global scheme of this
method.

1932-4553/$26.00 © 2010 IEEE
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Fig. 1. Global scheme of the generalized ML texture tracking method.

This paper is organized as follows. In Section II, the Spher-
ically Invariant Random Vectors (SIRV) model is introduced
to extract the texture component from PolSAR data. Next, we
focus on the texture modeling. Then, in Section III, the ML tex-
ture tracking algorithm is presented and adapted to the proposed
texture model with both uncorrelated and correlated texture be-
tween images. Section IV presents results on simulated data, on
dual-pol TSX and quad-pol RADARSAT-2 data over the Argen-
tiere glacier. Finally, some conclusion and perspectives of this
work are discussed.

II. SIRV MODEL

A. Principle

With the new generation of airborne and spaceborne SAR
sensors, the number of scatterers present in each resolution
cell decreases considerably, homogeneous hypothesis of the
PolSAR clutter can be reconsidered. Heterogeneous clutter
models have therefore recently been studied with POLSAR
data with the SIRV processes [16].

From a PolSAR point of view, the target vector k can be
defined as the product of a square root of a positive random
variable 7 (representing the texture) with an independent com-
plex Gaussian vector z with zero mean and covariance matrix
[M] = E{zz"} (representing the speckle):

k=72 )]

where the superscript H denotes the complex conjugate trans-
position and E{-} the mathematical expectation.

B. SIRV Estimation Scheme

For a given covariance matrix [M], the ML estimator of the

texture parameter 7 for the pixel ¢ (7;) is given by
Hing-1
7o M @
p

where p is the dimension of the target scattering vectork (p = 3
for the reciprocal case).

The ML estimator of the normalized covariance matrix under
the deterministic texture case is the solution of the following
recursive equation:

N VH
[M]rp =1 ([M]FP) = %ZL

In the random texture 7 case, the ML estimator of the normal-
ized covariance matrix depends on the texture pdf p,(7) and is
given by [17]

. 1 Ky (kfI[MML]*lki)
_ 1 WH
[Marr] = N - k;k; “)
1 hp (kfI[MML]_lkz)

1=1

where hy(z) is the density generator function defined by [18]
(19]

+o00
1
hy(z) = / p exp (—;) pr(7) dr. 5)
0

For sake of simplicity and computational efficiency, this study
is limited to the “approximate” ML estimator (3). Pascal et al.
have established the existence and the uniqueness, up to a scalar
factor, of the Fixed Point estimator of the normalized covariance
matrix, as well as the convergence of the recursive algorithm
whatever the initialization [20] [21]. In this paper, the trace of
the covariance matrix is normalized to p the dimension of target
scattering vector. In practice, the normalized covariance matrix
is first computed because it does not depend on the texture com-
ponent. Then, the ML estimator of the texture parameter is esti-
mated according to (2).

It is important to notice that in the SIRV definition, the prob-
ability density function (pdf) of the texture random variable is
not explicitly specified. As a consequence, SIRVs describe a
whole class of stochastic processes. This class includes the con-
ventional clutter models having Gaussian, K, G 0 KummerU
pdfs which correspond respectively to Dirac, Gamma, Inverse
Gamma, and Fisher distributed texture [22]-[24].

C. Texture Modeling

1) Fisher pdf: The Fisher pdf is the Pearson type VI distri-
bution, it is defined by three parameters as [25]-[27]

rc+M) £ (£

pe(7) = Flmo £ M = Fe5E ) Mim (14 L) o0

with £ > 0 and M > 0.

As Fisher pdfs can be viewed as the Mellin convolution of a
Gamma pdf by an Inverse Gamma pdf [26], they can fit distri-
butions with either heavy heads or heavy tails.

2) Benefit of Fisher PDF: A glacier area (80 x 35 pixels)
from the X-band TSX data over the Chamonix Mont-Blanc test-
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Fig. 2. k2/rk3 plan for a glacier area over the Chamonix Mont-Blanc test-site
(TSX, X-band).

site has been extracted. Then, the covariance matrix [M]pp and
the texture parameter 7 are estimated according to (2) and (3).
To see the benefit of Fisher pdfs to model the texture of POISAR
data, the ko /k3 plan has been plotted in Fig. 2. It shows the
evolution of the second log-cumulant ko versus the third log-
cumulant 3. In this plan, Gamma and Inverse Gamma pdf are
respectively represented by the blue and red lines. The first three
log-cumulants estimates are

1 N
1%2 :NZ(IHTZ‘ —1%1)2
1 N
i3 :NZ(lnn — k1)? (7)

where N is the number of pixels in the sliding window. In the
case of Fig. 2, a 7 x 7 pixels sliding window has been used
to compute the log-cumulants. Fisher pdfs cover all the space
between the blue and red line [25].

In this example, 15.53% of the pixels are Beta distributed
(under the blue line), 0.004% are Inverse Beta distributed (under
the red line) and 84.47% are Fisher distributed. It shows that
Fisher pdfs are well adapted to model PolSAR clutter [24]. In
the following, the texture parameter will be considered to be
Fisher distributed.

After having shown the benefit of Fisher pdfs to model the
texture of high-resolution PoISAR data, we propose to imple-
ment this distribution in the ML texture tracking algorithm. As
Fisher pdfs are a generalization of Gamma pdfs, the proposed
algorithm can be seen as an extension of the algorithm proposed
by Erten et al. [15].

III. TEXTURE TRACKING

A. Principle

Classical algorithms estimate the shift between images by
maximizing the normalized cross-correlation coefficient. This
criterion is the ML solution for optical data corrupted by
additive noise [28] or for complex SAR data having circular
Gaussian statistics [29]. With increasing the resolution of

PolSAR data, the number of scatterers in each resolution de-
creases. The central limit theorem may not be respected and the
Gaussian hypothesis may be reconsidered. Consequently, the
NCC criterion may not be optimal for high-resolution PolISAR
data. In this section, the texture tracking algorithm is improved
based on the SIRV model and the Fisher distribution for texture
modeling.

Letki = [ki .....k} ]and k, = [k, ,....ks,] be two
blocks of the PolSAR data—set containing k pixels. They rep-
resent respectively the slave and master images. According to
(2) and (3), the texture blocks 7¢ = [Tz)l ..,T;k] and 7, =
[Tays - - - Ta, | are estimated. The slave block i is shifted from the
master one with a displacement v;. In this study, the vector v; is
limited to a translation and has only two components [v;¢, v%*]
in range and azimuth. The ML texture tracking algorithm esti-
mates the shift vector vyr, by maximizing for each slave block
1 the conditional density function (cdf) [15]. It yields

vmr, = Argmax p (Tm|7’;, vi). ©))

By following the same procedure as described in [15], the pdf
of the texture ratio & = 7, /7, must be established to estimate
the shift vector. This study has to be done when the texture be-
tween images is uncorrelated and correlated.

B. Texture Model With Uncorrelated Texture Between Images

If 7., and 7, are two independent and identically distributed
(i.i.d.) random variables, the pdf of the texture ratio « is given

by [30, Eq. 6.56]
/p‘r,; aT pT
0

For Fisher distributed texture, the pdf of the ratio of two un-
correlated texture has been established (see Appendix A), its
expression is given by

B(2L,2M) 1

T)7dT. 9)

) =
Pl = Bz )P o
-1
X o P <£ + M, 2M;2(L + M); O‘T) (10)
where 2 Fy(-,+;+;+) and B(-,-) are respectively the Gauss hy-

pergeometric function and the Euler Beta function (B(z,w) =
I'(z)I'(w)/T(z + w),Re(z) > 0,Re(w) > 0). L and M are
the two shape parameters of the Fisher pdf. The scale parameter
m simplifies because the texture ratio variable is studied.
According to [15], (8) is equivalent to
sz
Ty] .

1M
M L
S [B(L, M) T, (757 )

X o F1 <£+M,2M;2(,c+ M);1 — TL) . (12)

z;

VML = Argmax H 'r_ Pa (11)

i j=1 Y
It yields

VML = Argmax H
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By taking the natural logarithm of (12), one can prove that
the criterion to maximize to estimate the shift vector for uncor-
related texture between images is

Vg [ BRL2M) LT wrt
L(vi) = k1 (7[3(5,/\4)]2) +M;1 Zl

+Zln< <L‘+M IM;2(L + M); 1 T”f)). (13)

Tj

C. Texture Model With Correlated Texture Between Images

In the case of correlated texture between two images, the bi-
variate Fisher distribution with marginal Fisher pdf should be
used. Its pdf is defined by six parameters as [31]

PX:,X> (71, 22)
R{' Ry
B(El,M])B(EQ,Ll + Mz)
><xflflxngl(l—f—R1$1+R2x2)_(£1+£2+M2)
XoFy (L14+ Lo+ Mo, Mo—My; L1+ Mo w)

(14)

with R = Ll/./\/hmh Ry = LQ/Msz and w = R1£171/1 +
Rix1 + Roxs.

For Fisher distributed texture, the pdf of the ratio of two cor-
related texture has been established (see Appendix B), its ex-
pression is given by

(a) R R§? B(L1 4 L3, M>) ki
alO) =
g B(Ly, My) B(La, L1 + Ms) (Ria + Ry)F1+£2
X o F1 (L1 + Lo, My — Ma; L1 4+ Mo z)  (15)
with z = 1/1 + (Rs/R1)(1/a).

By following the same procedure as described in
Section III-B, the criterion to maximize to estimate the
shift vector for correlated texture between images is given by

k k
L(v;) = L1-1)) Inmy +(L2+1)> Iy
= =
,Cl + £2 Z (lerx] + RQT;J_)
+ Zln (2F1 (L1 4 Loy My — My L1+ May; 2))
7j=1
(16)
with K = k(InRf' + InR5?) + kIn(B(Ly + Ly, Ms)/

B(Ly, M1)B(La, L1 + MQ))

In (16), the term Ry 7, +Ro T,;]_ depends on the samples order.
It plays a role similar as the cross-correlation coefficient which
takes into account the spatial arrangement of pixels.

IV. RESULTS

A. On Simulated Data

Simulations have been performed to test the reliability of
the ML shift estimators. One Master/Slave image pair is sam-
pled from the same Fisher pdf for each region. The master and
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Fig. 3. NCC, uncorrelated and correlated Gamma ML, uncorrelated and cor-
related Fisher ML criteria computed on simulations. (a) Simulated texture data.
(b) Detection surfaces for the multiplicative noised dataset: NCC, uncorrelated
and correlated Gamma ML, uncorrelated and correlated Fisher ML.

slave images are shaped according to a 2-D rectangular function.
The border is sampled from F[1, 2, 0.5]. The center is sampled
from F[5,6,0.8] and corresponds to the size of the estimation
neighborhood. The simulated dataset has been corrupted with
independent multiplicative noise sampled from a Gamma pdf
G[1,1]. Fig. 3(a) shows an example of one simulation.

Five shift estimators are then computed: NCC, uncorrelated
and correlated Gamma ML, uncorrelated and correlated Fisher
ML. Since there is no motion between the two texture images,
the detection surface should be flat except in the center, where
a peak is expected.

Fig. 3(b) illustrates the results obtained where 1000 Monte
Carlo simulations have been performed for the shift estimators
(NCC and MLs). The NCC, both uncorrelated and correlated
Gamma ML and the uncorrelated Fisher ML estimators fail to
detect the no-motion: the criteria are very noisy without any
peak. However, the correlated Fisher ML gives a smoother
detection surface with a more pronounced detection peak. This
recommends the correlated Fisher ML texture tracking with
multiplicative noise.
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Fig. 4. D-InSAR results from 2009-01-06/2009-01-17 couple. (a) Amplitude.
(b) Coherence. (c) Phase images.

B. On Real Data

1) Argentiere Glacier Test-Site: This work introduces some
preliminary TSX and RADARSAT-2 observations of the Ar-
gentiere glacier in order to estimate its displacement. It is lo-
cated in the Mont-Blanc massif, its head (catchment area) starts
near 3000 m. Its slope is quite regular and not steep except at
the bottom where the seracs fall breaks the slope and discon-
nects the terminal part from the rest of the glacier. 14 TSX and
4 RADARSAT-2 images have been acquired on the Argentiere
glacier during the winter and spring 2008-2009.

2) D-InSAR Potential: As the surface of the temperate glacier
changes from one day to another, in the TSX case and more gen-
erally at X-band, the interferometry on the surface of temperate
glaciers is difficult and its potential is quite limited [8]. Fig. 4
shows amplitude, coherence and phase of an 11-day interfero-
gram acquired in winter (2009-01-06/2009-01-17). For this in-
terferometric couple, coherence is not preserved on the Argen-
tiere glacier. The interferometric phase cannot be used to derive
displacement fields.

3) Texture Tracking: As the new sensors provide higher res-
olution and according to the limitation of the interferometric
methods on the temperate glaciers, incoherent methods seems
promising. From October 2007 to June 2009, 14 TSX complex
dual-pol images in stripmap mode and 4 RADARSAT-2 com-
plex fine quad-pol images have been acquired over the Cha-
monix Mont-Blanc test-site. Table I summaries the main de-
tails of the two images pairs on which we have worked. Only
a coarse coregistration has been processed in each images pair
to avoid any distortion which could affect the polarimetric and
statistical properties. The subpixel coregistration values should
be subtracted to the texture tracking results.

a) On TSX data: Fig. 5 shows the displacement field de-
rived over one crevasses area of the Argentiere glacier. The tex-
ture image pair is extracted using the SIRV estimation scheme
[16]. A 64 x 256 pixels sliding window has been used to de-
rive the displacement map. As expected, the displacement on the

TABLE 1
DETAILS OF TSX AND RADARSAT-2 PRODUCTS

Prod. Date Pixel Spacing Polarizations Inc.
Rng x Az angle

2009-01-06 o

TSX 2009-02-08 1.4m x 2.5m HH / HV 37.8
2009-01-29 o

RS-2 2009-02-22 47m x 5lm  HH/HV/VV 315

Fig. 5. Displacement estimation over a crevasse field of the Argentiere glacier,
dual-pol TSX data, 2009-01-06/2009-02-08. (a) Master texture estimated using
SIRV model. (b) Displacement field in LOS. (c) Orientation map.

border of the glacier is closed to zero. Note that the mean dis-
placement over the crevasse field is about two times higher than
over the homogeneous area of the glacier. This corresponds to
the annual displacement estimation provided by glaciologists.!
Further studies need to quantitatively assess the derived shift
estimates.

Note also that orientation of the motion field is consistent with
the conventional temperate glacier flow model: from the upper
left to the bottom right of the image.

Contrary to the NCC criterion, the confidence interval for the
ML similarity measure is hard to qualify. Further investigations
should be necessary to derive the false alarm probability for
Fisher distributed texture. In [15], Erten et al. have introduced
the following Q) index defined by

max(ML) — mean(ML)
mean(ML) — min(ML) "

Qur = (17)

Qs is a measure of confidence. The higher is Qj1,, the more
accurate is the displacement estimation.

Table II shows the mean and variance of two samples ex-
tracted respectively from a crevasses area and an homogeneous
area of the glacier. The mean of Qj;y, is higher on crevasses
area and its variance is lower. It highlights the sensitivity of the
ML criterion to the texture heterogeneity. Reliable displacement
results are obtained on the crevasses areas.

b) Regularisation: For the study of geophysical objects, a
priori flow model can be added to similarity measure to estimate

ILGGE. Glacioclim.
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TABLE II
Q. MEAN AND VARIANCE OVER TWO AREAS ON THE ARGENTIERE
GLACIER COMPUTED FROM TSX DATA

QML Crevasses area Homogeneous area
Mean 1.2858 0.9224
Variance 0.2470 0.0728

the displacement field. According to Bayes’ rule, the problem
formulation becomes

p (malry. vi) p (r1vi) p(vi)
p(7l) '

(18)

i i) __
p(Tzﬁvisz) -

Let v¢ and v#* be, respectively, the two components of the
displacement vector v; along the distance and azimuth direc-
tion. In (18), the prior term p(v;) can be rewritten as

p(vi) = po(pi) pe(0:) 19)
where p; and 6; are the polar coordinates of the displacement
vector v;. They are linked with the distance and azimuth com-

ponent by p; = \/v%” + v%*2 and 6; = atan(v?* /v?).

For the Argentiere glacier, the assumptions of a flow parallel
to the glacier surface and in the direction of the maximum down-
hill slope have been successfully validated with in situ measure-
ments [7]. Those information can be included in the prior model.
Consequently, the orientation angle 6, is assumed to be normally
distributed and having circular values between —m and +. This
parameter follows the von Mises distribution (also known as the
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Fig. 7. Displacement estimation over the Argentiere glacier with reg-
ularisation according to Bayes’ rule, quad-pol RADARSART-2 data,
2009-01-29/2009-02-22. (a) Displacement field in LOS. (b) Orientation map.

circular normal distribution) which is the circular analog of the
normal distribution [32] (Fig. 6)

1 1
pe(0;) = ————exp (—cos 0; — 67 )
27'{'[0 (0—1(_)) U? ( )

with 9 mean and 0¥ standard deviation. #? is the direction in
the maximum downhill slope issued from a digital elevation
model. o is fixed here to 7. Iy(.) is the modified Bessel func-
tion of order 0. Concerning the absolute value of the displace-
ment p;, no constraint is imposed. p; is therefore assumed to be
uniformly distributed in the search neighborhood.

¢) On RADARSAT-2 data: Fig. 7 illustrates a displace-
ment estimation using quad-pol RADARSAT-2 data. On this
example, a regularization process has been applied according
to a Bayes’ rule formulation. The orientation map has been ex-
tracted from a DEM of the Mont-Blanc massif with a resolution

(20)
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of 10 m and projected in SAR geometry. As expected, the orien-
tation map [Fig. 7(b)] is consistent with the glacier flow model.

V. DISCUSSION

In this paper, the study has been focused on the generaliza-
tion of the ML texture tracking using the Fisher pdfs which have
the ability to fit a wide range of texture scenes. For glacier tex-
ture tracking, we recommend to use low-frequency bands as the
C-band or less to penetrate under the dry snow. This will permit
to observe structures (dust, eratic blocks, relief, etc.) present on
the ice surface which is more heterogeneous and more stable in
time than the snow.

In this paper, the ML texture tracking algorithm has been ap-
plied on Alpine glaciers. They present the advantage to have
large displacement. Nevertheless, their surface is quite homoge-
neous and does not highlight the benefit of Fisher pdfs for tex-
ture modeling. This kind of method can be relevant for the mon-
itoring of other geophysical objects such as volcanoes, earth-
quakes, etc., which have rough surfaces. The more heteroge-
neous the ground is and/or the higher the resolution is, the more
relevant the texture information is for displacement estimation,
segmentation and denoising.

Many recent works have been dedicated to the statistical mod-
eling of the backscattering signal. For this purpose, Mellin trans-
form and second kind statistics define a well-suited formalism
[27]. In this context, many distributions have been introduced as
a generalization of the well-known Gamma pdf. Here, the 3-pa-
rameter Fisher pdf has been used but other statistics such as the
KWBU pdfs system may be considered [33]. Those 4-param-
eter distributions should permit a better texture modeling. Fur-
ther investigations still remains necessary to quantify the benefit
of models with more freedom degrees.

VI. CONCLUSION

With the new generation of launched PolSAR sensors, the
Earth’s surface is imaged with meter resolution. Small spatial
features can then be observed from the space. Recently, more
and more studies are dedicated to texture extraction and mod-
eling. Based on this consideration, this paper has presented a
new texture tracking method to derive displacement fields from
PolSAR data. According to the SIRV estimation scheme, the
texture parameter can be estimated and isolated from the speckle
component. The proposed algorithm estimates a shift vector
through maximizing the cdf of two matched texture blocks.

Due to their capability to fit distributions with either heavy
heads or heavy tails, Fisher pdfs are well adapted to model
the texture variable. This observation has been illustrated on
real PolSAR data. Next, based on the assumption of Fisher dis-
tributed texture, the pdfs of the ratio of two texture variables
have been established for both uncorrelated and correlated tex-
ture between images. Then, a ML criterion has been established
to measure the similarity between two blocks: one for the master
and one for the slave texture images. This similarity measure is
computed in a neighborhood of the slave image. The shift vector
which leads to the largest log-likelihood value yields to the es-
timated displacement.

Then, the ML texture tracking algorithm has been applied on
simulated and real PolSAR data. The proposed algorithm has

been compared to the NCC criterion and the ML tracking algo-
rithm based on Gamma assumption for the texture component.

Contrary to the NCC criterion, the confidence interval for the
ML similarity measure is hard to qualify. Further investigations
should be necessary to derive the false alarm probability for
Fisher distributed texture.

As discussed before, the ML texture tracking confidence in-
terval is hard to be qualify. Erten ef al. have introduced the Q1.
factor which provides some information on the behavior of the
ML distribution. Nevertheless, some works are necessary to de-
fine the PFA for the ML criteria. This will permit to threshold
the similarity image and conclude or not on the relevance of the
results.

Further works will deal with the addition of the covariance
matrix information to estimate displacement. Indeed, only the
texture variable is used in the ML tracking algorithm. The po-
larimetric diversity contains very useful information concerning
the scattering mechanisms. This type of information has been
widely used in classification of PolSAR data. It should prob-
ably improve tracking performances.

APPENDIX A

This appendix gives the mathematical details of the pdf of «
for uncorrelated Fisher distributed texture. In such case, the pdf
of « is obtained by replacing the expression of the Fisher pdf
(6) in (9), it yields

e [T+ M) £ (Lem)et
Pala) = 0/ L(L)[(M) Mm (1+%)L+M
LM £ (GG
PLTM) Mm (1 4 £r ) e+M
v+ m) £ foLa T ’
| T(L)D(M) Mm (Mm)
x o' =% I(a,m, L, M). (21)

Next, by using the substitution u = (L£/Mm)7 in (21), it
yields

2L
I(,m, L, M) = (#) o~ (L+M)

x 1 (L4+M)
X /u2£ ! < —l—u) (1 +u)~ My, (22)
It has been shown the following relation which links an inte-

gral to the Gauss hypergeometric function [32]

o I
oFi(a,b;c;2) = F(b) =

< / el 1) — 2 1)dE (23)
0
with Re(c) 0 and |arg(l — 2)| < .

> >
Leta =L+ M,b=2M,¢c=2a=2L+M),z=
1—(1/a) = 1/«). By identification between (22) and
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(23), one can express I with the Gauss hypergeometric function
by

Mm)” 1 TEM)T(2L)

I{a,m, L, M) = < 7 a£+M) T'(2L 4 2M)

X oI <E + M, 2M;2(L + M); @

;1> . (24

By combining (21) and (24), one can obtain the analytical pdf
of a by

[T+ M)]PTEM)T2L) 1
(@) = | FGriad])

(2L 4+ 2M) aM+1
1
% o) <L+M72M;2(£+ M); O‘—) . (25

One can rewrite (25) with the Euler Beta function it yields to
(10).

APPENDIX B

If 7., and 7, are two correlated random variables, the pdf of
the texture ratio « is given by [30, Eq. 6.60]:

Pala) = /T pr,r, (a1, T) dT. (26)
0

For correlated Fisher distributed texture, the bivariate Fisher
pdf (14) should be used to derive the pdf of a. By replacing its
expression in (26), it leads

L L:
£ ! Lo 2
Mima Mamo

o O) =
Pal) = BEy M) BlLo 1 + M)
x /T(m)ﬂl—l(T)ﬂz—l
0
- [, N [/2 —(L1+L2+M3)
ar T
M1m1 M2m2
X oF (L1 4 Lo+ Mo, My — My;

Ly + Ma;w)dr (27

with

w = (El//\/llml)a'r/l + (L:l/\/llml)a’r+(£2/./\/12m2)7’.

By replacing in (27) the Gauss hypergeometric function by
its expression defined with the Pochhammer symbols ((a), =
I'(a + n)/T(a)) by

. =Tm+a)T(n+p) TI()
2F1(aa/8a77t)—nz=% I'(a) L(B) T(n+v)n!
(@) (B)n t"
N Z( zvgn) n! @

405

and if we swap the sum and the integral, it yields

L L:
£y s VAR
Mimq Mamg

Pa(a) = B(Ly, My) B(L2, L1 + Ma)
« i F(Ll +LQ+M2+k)F(M2_M1+k)
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The integral K (k) looks like an integral of a Fisher pdf de-
fined by parameters m = LM((LiMimy)a + (L2 Mams)),
L =L+ Lo+ kand M = Ma, it yields
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S
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By combining (29), (30), and (31), one can prove that
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with Rl = (El/./\/llml) and R2 = (ﬁz/Msz). It ylelds to
the pdf of the ratio of two correlated Fisher distributed texture
shown in (15).
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