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Statistical Classification for Heterogeneous
Polarimetric SAR Images

Pierre Formont, Student Member, IEEE, Frédéric Pascal, Member, IEEE, Gabriel Vasile, Member, IEEE,
Jean-Philippe Ovarlez, Member, IEEE, and Laurent Ferro-Famil, Member, IEEE

Abstract—This paper presents a general approach for high-
resolution polarimetric SAR data classification in heterogeneous
clutter, based on a statistical test of equality of covariance matrices.
The Spherically Invariant Random Vector (SIRV) model is used to
describe the clutter. Several distance measures, including classical
ones used in standard classification methods, can be derived from
the general test. The new approach provide a threshold over which
pixels are rejected from the image, meaning they are not suffi-
ciently “close” from any existing class. A distance measure using
this general approach is derived and tested on a high-resolution
polarimetric data set acquired by the ONERA RAMSES system. It
is compared to the results of the classical decomposition and
Wishart classifier under Gaussian and SIRV assumption. Results
show that the new approach rejects all pixels from heterogeneous
parts of the scene and classifies its Gaussian parts.

Index Terms—Image classification, non-Gaussian modeling, po-
larimetric synthetic aperture radar, statistical analysis.

I. INTRODUCTION

T
HE signal returned by a synthetic aperture radar (SAR)

is a complex variable, as it measures both amplitude

and phase information of the backscattered signal, producing

one complex image for each recording. POLarimetric SAR

(POLSAR) systems are able to emit and receive in two (or

more) orthogonal polarizations. The interactions between the

polarized electromagnetic waves emitted by the radar and the

target area can be described thanks to the Sinclair matrix [1].

This matrix can be represented in a vectorized version, the

scattering vector. From this vector, its covariance matrix can

be computed. Random interferences of the waves scattered

within each resolution cell are responsible for the speckle noise

[2]. Thus, the backscattered signal from polarimetric SAR data

is generally modeled by the multivariate, zero-mean, circular
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complex Gaussian distribution, which is fully characterized by

the covariance matrix.

However, recent POLSAR systems are now capable to ac-

quire very high-resolution images of the Earth’s surface, up

to decimetric resolution. This increase in resolution leads to a

higher scene heterogeneity, particularly in urban areas, where

the clutter can no longer be modeled by a Gaussian process [3].

More precisely, the value of each resolution cell corresponds

to the sum of all signals reflected by the scatterers within the

cell. With higher resolutions, the number of scatterers varies

randomly from cell to cell [4]. Thus, the resulting backscattered

signal is heterogeneous, as it is locally Gaussian with random

power. To take this heterogeneity into account, one can use the

Spherically Invariant Random Vector product model, first in-

troduced by Yao [5] for the information theory. The clutter is

modeled as compound-Gaussian process, i.e., the product be-

tween the square root of a positive random scalar variable, called

the texture, and an independent, zero-mean, complex circular

Gaussian vector, called the speckle. Since the texture distribu-

tion is not specified, this model encompasses an infinity of dis-

tributions, notably the Gaussian one and the -distribution [6].

Furthermore, this model has been validated by several measure-

ments, see, e.g., [6]–[9]. This model has also been recently used

by Rangaswamy in [10] to select homogeneous training data for

covariance matrix estimation.

Polarimetric SAR images can be used for several applica-

tions, mostly for land cover classification. Therefore, polari-

metric SAR images classification is an active area of research.

Two main approaches appeared in the corresponding literature.

The first approach is to classify the images based on their statis-

tical properties: Kong et al. [11] derived a distance measure for

single-look complex polarimetric SAR data, which has been ex-

tended by Yueh et al. [12] and van Zyl et al. [13] for normalized

complex POLSAR data. A distance measure for the multi-look

complex case has been proposed by Lee et al. in [14], based on

the complex Wishart distribution of the clutter covariance ma-

trix under the Gaussian assumption. The second approach is to

classify pixels thanks to their physical characteristics. Several

matrix decompositions have been proposed: coherent decom-

positions, based on the scattering matrix, like the Cameron de-

composition [15] or the Krogager decomposition [16], in order

to characterize pure scatterers. The distributed scatterers have

been studied thanks to incoherent decompositions, i.e., decom-

positions of the covariance matrix. Freeman et al. [17] proposed

such a decomposition. In [18], Cloude et al. proposed the

decomposition, based on the eigendecomposition of the covari-

ance matrix.

1932-4553/$26.00 © 2010 IEEE
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These two approaches can be combined. Lee et al. [19] pro-

posed an unsupervised classification algorithm using both phys-

ical and statistical properties of the POLSAR image for the clas-

sification. More recently, several methods have been considered

for the clustering: fuzzy clustering, EM clustering, neural net-

works but most of these approaches only consider the Gaussian

case. Vasile et al. [20] proposed a different approach for the

non-Gaussian case, using an adapted model.

The main contribution of this paper is to study the polari-

metric SAR classification problem as a statistical test problem

on the covariance matrices. First, this approach allows unifying

the existing classification methods based on statistical distance

measures. Indeed, according to the assumption on the statis-

tical test problem, each distance will be derived again as a test

statistic. Second, a more general distance measure will be pro-

posed and will be tested on a polarimetric SAR image. More

precisely, the paper is organized as follows: Section II will recap

the decomposition and the standard Wishart classifier

while Section III presents the heterogeneous model and the im-

provements on heterogeneous data. Section IV is devoted to the

statistical approach based on the theory of statistical tests and

validated on real polarimetric SAR image in Section V. Finally,

Section VI concludes this paper.

II. STATE-OF-THE-ART ON POLARIMETRIC CLASSIFICATION

IN HOMOGENEOUS CLUTTER

Cloude et al. proposed a decomposition of the covariance ma-
trix in [18], extracting physical parameters from its eigenvalues,
named the decomposition. This decomposition will be
used as the initialization of the classification algorithms pre-
sented in this paper. It is recapped as follows.

A. Decomposition

Let us denote a pixel, i.e., a -dimensional vector con-

taining complex values. In our context, will be equal to 3.

More precisely, can be represented in many bases, the more

common ones being the lexicographic basis and the Pauli basis

that are defined as follows:

in the lexicographic basis

in the Pauli basis

where (respectively , ) corresponds to the value

acquired with horizontal (respectively vertical, horizontal) po-

larization in emission and horizontal (respectively vertical, ver-

tical) polarization in reception.

Let us denote its covariance matrix, i.e., ,

where is the conjugate transpose operator and denotes

the statistical mean. From the eigendecomposition of the co-

variance matrix , two main classification parameters can be

extracted: the entropy and the angle. The underlying as-

sumption is that there is a dominant scattering mechanism in

each cell, which can be characterized by these two parameters.

Fig. 1. � � � plane.

is a function of the eigenvalues only, while is a function

of both the eigenvalues and the eigenvectors .

The entropy measures the chaos inside a resolution cell:

if is close to 0, there is little chaos, meaning one scattering

mechanism is much stronger than all the others in the cell. On

the contrary, if is close to 1, no mechanism is sufficiently

stronger than the others to be dominant inside the cell.

The angle characterizes the type of the dominant scattering

mechanism: for example, when is close to , the dominant

mechanism is a surface diffusion and when is close to 90 , the

dominant mechanism is a dihedral reflection. The relationship

between entropy, angle and scattering mechanisms is repre-

sented in Fig. 1.

The plane is separated into eight areas (Z1 to Z9, except

Z3 which is not physically feasible), each one corresponding

to a specific scattering mechanism. The red line represents the

boundary of physically possible couples.

B. Clustering: Wishart Classifier

One of the main advantages of the decomposition is
that it regroups pixels in large clusters. Such information can
then be used to classify the image more precisely. Lee et al. [19]
proposed an algorithm based on the -means algorithm, using
the decomposition as the algorithm initialization and
using the covariance matrix distribution to classify the image.
The main assumption is that the class center, which is a covari-
ance matrix, can be computed with higher accuracy, because of
the large number of samples contained in each class. Once these
class centers are known, each pixel can be reattributed to a class,
depending on the distance between its covariance matrix and
each class center. The distance used is based on the covariance
matrix distribution and is detailed in the following.

1) Wishart Distance: The pixel under consideration, char-
acterized by its target vector , is supposed to follow a zero-
mean complex Gaussian distribution denoted with
covariance matrix . Considering an independent and identi-
cally distributed (i.i.d.) -sample corresponding
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to a spatial neighborhood1 of the pixel , the maximum-likeli-
hood (ML) estimator of is the well-known sample covariance
matrix, given by

(1)

has a complex Wishart distribution [21]:

where and is
the Gamma function [22].

A distance measure, called the Wishart distance, can be de-
rived [14] from this distribution and a Bayes ML procedure

(2)

where is the center of the class .
Algorithm: The subsequent algorithm, based on a classical
-means clustering algorithm is described as follows.
1) Initially classify the image using the decomposition,

thus creating eight classes.
2) For , compute the class centers:

, where is the number of pixels

in the class and where is the covariance matrix
estimator of the pixel in the class .

3) For each pixel, compute the Wishart distances between its
covariance matrix and each class center using (2) and as-
sign the pixel to the class whose center minimizes the dis-
tance.

4) Check the termination criterion. If it is met, stop the algo-
rithm, else go to step 2.

This approach relies heavily on the Gaussian assumption for
pixels distribution and can perform poorly when this assumption
is not valid anymore. The case of non Gaussian distributions is
addressed in the next section.

III. STATE-OF-THE-ART ON POLARIMETRIC CLASSIFICATION

IN HETEROGENEOUS CLUTTER

The increase in resolution leads to much smaller resolution

cells. This results in a heterogeneous backscattered signal and

previous methods may give poor results. It is thus necessary to

consider an heterogeneous signal model.

A. SIRV Model

A SIRV is a compound Gaussian vector, defined as the
product of a positive scalar random variable and a -dimen-
sional complex circular Gaussian vector, . Then the target
vector can be rewritten as

1For a rigorous estimation procedure, � independent temporal realizations
of the pixel � should be considered but in practice, those are not available since
there is only one image. For that purpose, the spatial independency and the local
homogeneity are commonly assumed to have an i.i.d. � -sample.

This model exhibits many advantages such as follows.
• is called the speckle and represents the

polarimetric information contained in the clutter.
• is called the texture and represents the local variations of

power from cell to cell, thus the heterogeneity of the clutter.
• As ’s probability density function (pdf) is not explicitly

specified, a whole range of random processes can be de-
scribed by this model, including of course the Gaussian one.
We can also cite the -distribution for a Gamma distributed
texture, Chi, Rayleigh, Weibull, or Rician pdfs [23].

• Measurements campaigns have been realized to show this
model matches well with real data [6], [24].

The SIRV model is uniquely defined up to a multiplica-
tive constant with respect to the covariance matrix of the
Gaussian kernel. Let and be two covariance matrices
such as . The two different sets of
parameters and describe the same
SIRV. To solve this identification problem, the covariance
matrix has to be normalized. We choose to normalize it such
that , where denotes the trace of a matrix.
This normalization results in transferring all the power infor-
mation in the texture parameter, while the speckle parameter
contains only information about the polarimetric diversity. As
a result, the interesting matrix for our study is the normalized
covariance matrix of the Gaussian kernel .

Using this model, Gini et al. [25] and Conte et al. [26] propose
the exact ML estimate of , when assuming that the textures
of each component of the -sample of spatial neighbors are de-
terministic. It is the solution of the following recursive equation:

(3)

The associated recursive algorithm to compute , the
Fixed Point (FP) of is given by

To initialize this recursive algorithm, one can choose
.
The estimate from (3) holds for stochastic and becomes

an approximate maximum-likelihood (AML) estimate. Pascal
et al. [27] have proven the existence and the uniqueness of the
fixed point estimator as the solution of (3). They also prove in
[27] the convergence of the recursive algorithm, whatever the
initialization.

B. SIRV Distance

This new estimator, adapted to the non-Gaussian case has

been used by Vasile et al. [20] to derive a distance measure. The

estimation scheme is the same as in the Gaussian case, only the

estimator used differs. The resulting distance, called the SIRV

distance, is given by the following equation:

(4)

where is the center of the class .
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Fig. 2. Amplitude color composition image of the Brétigny region: � -� -� .

C. Results and Discussion

1) High-Resolution POLSAR Data Set: The data set consid-

ered was acquired by the ONERA RAMSES system in Brétigny,

France. The acquisition was made in X-band, with a spatial res-

olution of 1.32 m in range and 1.38 m in azimuth. The resulting

image is 501 501 pixels. Fig. 2 shows a color composition of

the data in the Pauli basis

is in red, in blue, and in green.

The polarimetric diversity in this image is high as different

features are present: several buildings, a parking lot, different

kind of fields, forested areas, roads, etc.

2) Decomposition: Fig. 3 shows the decompo-

sition applied to the data set using the SCM estimate in Fig. 3(a)

and the FP estimate in Fig. 3(b). Both results are similar, in terms

of visual interpretation, which means that the FP estimate has

the same polarimetric properties as the SCM.

3) Classical Wishart Classifier: The Wishart classifier of

Section II has been applied on this data set. The results can be

seen in Fig. 4.

We can notice that the Gaussian areas are clearly identified:

fields in yellow in the bottom part of the image and the blue

field in the top part. Urban areas, on the contrary, are a mix on

several classes and do not stand out as well. This is due to the

fact that the SCM is not a good estimate for heterogeneous areas.

Moreover, in [20], it has been shown that the SCM estimate is

heavily polluted by the power information.

4) Fixed Point Estimate: Replacing the SCM by the FP esti-

mate in the Wishart Classifier algorithm yields much better re-

sults in heterogeneous areas, as can be seen in Fig. 5.

The two big buildings stand out much more in this image than

in Fig. 4 and are composed of only one class each. The clas-

sification remains satisfactory on most of the Gaussian areas,

though it is less good than with the SCM estimate, in terms of

separation.

5) SIRV Distance: When replacing the Wishart distance by

the SIRV distance in the algorithm, the results, as seen in Fig. 6,

stay very close when using the FP estimate. Notice that the clas-

sification improvement comes only from the FP estimate and not

from the distances.

Fig. 3. � � � decomposition. (a) SCM. (b) FP.

Fig. 4. Wishart classifier, SCM, � � � initialization.

6) Initialization: The use of the decomposition

for the initialization may create a bias in the final classification
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Fig. 5. Wishart classifier, FP, � � � initialization.

Fig. 6. SIRV classifier, FP, � � � initialization.

results, as the pixels are initially clustered into classes thanks

to their physical properties, while the distances are a result of

the statistical distribution of the clutter. We have investigated

the initialization by comparing the end results of the classifier,

using initialization or a totally random initialization: each

pixel is randomly assigned to 1 out of 8 classes at the start of the

classifier. Results can be seen in Fig. 7.

Although the colors do not match, the final classification re-

sults are very close to each other. We can therefore dispense

with the initial decomposition as it does not improve the

end results for this data set.

7) Conclusion: The SCM estimate gives poor results com-

pared to the FP estimate in a non-Gaussian environment. The

physical interpretation given by the prior to the classifica-

tion is not relevant, as a completely random initialization gives

the same classification results. On the other hand, the SIRV

distance, while optimal for the SIRV case, does not improve

the classification in comparison to the Wishart distance and is

Fig. 7. Wishart classifier, FP. (a) � � � initialization. (b) Random initializa-
tion.

much more computationally heavy. Besides, these methods do

not necessarily take into account the possibility of pixels being

too far away from every class center. In that case, it makes no

sense to add these pixels to any of the classes. In the classical

methods, it is possible to take this possibily into account but

the threshold has to be set manually. As we want to classify

pixels based on their polarimetric properties, i.e., their covari-

ance matrices, we propose to use a statistical test of equality of

covariance matrices, which will give a more general approach

to the classification problem. This approach will also allow us

to rederive the classical Wishart distance and the SIRV distance

of [20] more formally according to the hypotheses used in the

statistical test problem. These two distances are simply a partic-

ular case of the proposed method.

IV. STATISTICAL APPROACH FOR POLSAR DATA

CLASSIFICATION – MAIN CONTRIBUTION

This section is devoted to the study of statistical test for

equality of covariance matrices and its application to POLSAR
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data classification. A statistical approach to the problem of

POLSAR data classification has many advantages.

• It can be applied to both homogeneous and heterogeneous

clutter models.

• There is no a priori physical interpretation to the classifi-

cation process.

• It is a very general approach which particularly contain

previous methods.

A. Statistical Framework

Let and be independent random vectors, such that

and , where stands for any

distribution with the two first moments existing. The goal is to

decide if their covariance matrices and are equal. The

resulting binary hypothesis test can be written as

Let (resp. ) be an observation of (resp. ) and

. and are supposed i.i.d. Let (resp. )

be of size (resp. ).

The likelihood function is then

(5)

where is the element of the -sample .

This is a more general approach for the pixels classification.

Indeed, the idea with previous test is to assign two different

pixels in the same class or not.

1) Known: Let us assume that is known and equal to

, i.e., the center of the class .

• If is Gaussian distributed, the likelihood ratio test

statistic derived from (5) easily provides the Wishart

distance defined by (2).

• If is SIRV distributed, the likelihood ratio test statistic

derived from (5) provides the SIRV distance defined by (4).

In both cases, the approach of statistical tests shows that the

corresponding distances used for the polarimetric SAR classi-

fication are actually specific test statistics. Thus, to decide that

two covariance matrices are equal, it is not sufficient to mini-

mize the distance between these two covariance matrices (done

in the previous classification procedure). The minimal distance

has to be also smaller than a threshold, directly relied to the dis-

tribution of the test statistic and given by the type I error.

2) Unknown: The maximum-likelihood estimator of

is

(6)

is the classical SCM defined in (1); hence, it is Wishart-

distributed.

Equation (5) needs to be maximized under , i.e., when

. Equation (5) then becomes

(7)

The optimal estimator of is

(8)

By replacing (6) in (8) and by its estimate , the test

statistic is

(9)

Notice the exponents are the size of the samples. Bartlett [28]

proposed alternative exponents for the univariate case, replacing

the samples size by the degree of freedom of the estimators .

Equation (9) then becomes

(10)

where are the degrees of freedom of and

, the degree of freedom of .

The statistic varies between 0 and 1, with values close to 0

rejecting the null hypothesis, while values close to 1 accept the

null hypothesis. To illustrate this, let consider (10) as

When , . As the difference between

and increases, the smaller factor reduces the product more

than the higher factor increases it, thus bringing closer to 0.

Box [29], [30] proposed - and - approximations for the

distribution of . For the -approximation, the statistic he pro-

posed is

where

and denotes the distribution with degrees of

freedom.

The critical region of the test is

(11)

where is the type I error, or false-alarm rate. In our case,

we set the type I error (accepting the null hypothesis when it is

not true, i.e., rejecting the equality of the matrices of the two

populations when they are actually equal) to be very low.

3) SIRV Case: The same procedure can be applied in the

SIRV case, considering that it was demonstrated by Pascal et

al. in [31] that the FP estimate asymptotically has a Wishart

distribution behavior with degrees of freedom.

This is a very important property of the FP estimate since all

results obtained with the SCM remain valid for the FP estimate

due to an asymptotical justification. The SCM estimators

and can be replaced by the FP estimates and of the

same -samples and with the correct degrees of freedom.
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Algorithm

The algorithm used is very similar to the previous algorithm
of Section II, except for the fact that the number of classes is
not specified at the beginning. We start the algorithm with only
one class and increase the number of classes at each iteration.
To decide if a pixel is joining a class, the test statistic of (10) is
used. The -samples required to compute the estimation of the
covariance matrice are simple boxcar neighorhoods, centered on
the pixel under consideration. The classification map is initial-
ized with the decomposition: indeed, we need an initial
class that has some sense. We tried initializing the algorithm
with one pixel randomly chosen across the image but the end
results were not satisfying. Indeed, selecting only one pixel for
the initialization leads to very different class centers from one
execution of the algorithm to the other. A large number of pixels
has to be selected to provide a robust initialization. A quick way
to do this is to actually use the decomposition. Note that
a random initialization with a large number of pixels randomly
chosen yields the same results, as discussed in Section V. One
of the largest zones of the decomposition is then chosen
as the first class of the algorithm. Its center is computed as

Notice that, for the SIRV case, is replaced by .
All pixels are then reclassified according to the test of (10), used
as a distance measure. Equation (11) gives the critical region of
the test. In our case, the number of populations, , is 2 and the
number of variables, , is 3 so the threshold over which the
hypothesis is rejected (i.e., the covariance matrix of the consid-
ered pixel is not equal to the covariance matrix of the class) is
given by the threshold of a -distribution with 6 degrees of
freedom and a type I error the user can define (we chose ).
This means that pixels are not automatically put in one of the
existing classes. A pixel is assigned to the class who minimizes
the distance only if this minimal distance is below the threshold.
If the minimal distance is over the threshold, the pixel is put in a
rejection class, meaning that it is not close to any of the current
classes. The number of classes has then to be incremented and
the new class is initialized as the previous rejection class.

The selection of training data for the covariance matrix esti-
mation is made with a 5 5 boxcar filter around the pixel under
consideration. The Estimated Number of Looks in SIRV en-
vironment is linked to the Estimated Number of Looks in
homogeneous Gaussian environment according to the asymp-
totic statistical behavior of the normalized Fixed Point Estimate
[31]: . For the 5 5 boxcar, we get

looks.
The classification procedure is summarized as follows.

1) Initially classify the image using the decomposition.
Pick one of the largest zones as the starting class of the
algorithm.

2) Compute the class centers .
3) For each pixel in the image, compute its distance to all the

class centers using (10). If the minimal distance is below
the threshold, assign the pixel to the corresponding class.
Else, put it into the rejection class.

4) Once all pixels have been classified, check the termination
criterion. If it is not met, increase the number of classes

Fig. 8. Box classifier with SCM and associated colormaps. (a) One class +
rejection class. (b) Eight classes + rejection class.

by 1 and go to step 2. The new class is defined as the
rejection class computed in iteration ( ).

Notice that the introduction of a rejection class is more rig-
orous than the existing methods with respect to the statistical
test procedure. Indeed, previous methods assigned a pixel to the
class whose center minimizes the distance measure, even if this
distance was very high.

V. RESULTS AND DISCUSSION

The test statistic of (10) has been applied successfully by

Conradsen et al. in [32] for the Gaussian case in change detec-

tion. They were able to detect changes more precisely using this

fully polarimetric test statistic.

The algorithm proposed in the previous section has been ap-

plied on the data described in Section III for classification. The

termination criterion chosen is to stop the algorithm at eight

classes (plus one rejection class) in order to compare the classifi-

cation against a Wishart classifier with the standard eight classes

from the decomposition.

1) SCM Estimate: Fig. 8 shows the results of the algorithm of

Section IV with the SCM estimate of the covariance matrix after

1 iteration on Fig. 8(a) and after eight iterations on Fig. 8(b).
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TABLE I
NUMBER OF PIXELS IN EACH CLASS AT EACH ITERATION – SCM

TABLE II
NUMBER OF PIXELS IN EACH CLASS AT EACH ITERATION – FP.\

After one iteration, most of the pixels of the image are rejected

and no feature of the image is well discernible. When compared

to Fig. 3(a), the pixels of the first class appear to belong to the

yellow class in the decomposition (which corresponds to

a random surface with medium entropy). This is rather accurate

since the pixels belong to fields.

After eight iterations, there are still rejected pixels in the fields

areas, especially the top field which is still almost entirely re-

jected. However, the remaining rejected pixels outline for the

most part the urban features of the scene: the two big buildings

are clearly identified, as well as the small building next to them,

the urban area on the top left, the parking lot on the right side and

the dihedrals used for calibration. Even the biggest roads can

be seen. Concerning the Gaussian parts, the bottom left field is

pretty much identified as only one class but the others are a mix-

ture of several classes and do not really stand out. On forested

areas on the right part of the image, most of the area is rejected

as well.

2) FP Estimate: For the FP estimate, the classification re-

sult after one iteration is encouraging. The number of rejected

pixels is reduced compared to the SCM case (see Tables I and

II for numbers of pixels in each class at every iteration) and the

man-made features already stand out much more. The reduc-

tion of rejected pixels means a reduction in false alarms, which

proves that the FP estimate is more adapted to the heterogeneous

clutter than the SCM. After eight iterations, Fig. 9(b), the results

are pretty close to the results of the SCM concerning the build-

ings and the dihedrals. On the rest of the image, the classification

results are very different from the one obtained with the classical

methods. Indeed, the patches are much smaller. This is due to

the fact that the classification is not made on the power: as the

estimation of the covariance is made with the spatial neighbors

of the pixel under consideration, on classical methods, there can

be stronger reflectors on nearby cases that will bias the classi-

fication results on a large area. It is difficult to provide an in-

terpretation at this time since we do not have the ground truth
Fig. 9. Box classifier with FP and associated colormaps. (a) One class + rejec-
tion class. (b) Eight classes + rejection class.
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Fig. 10. Box classifier with FP and associated colormaps. (a) � � � initial-
ization. (b) Random initialization.

data. A comparison with other classification methods is difficult

as well, since there are very few classification results on the ac-

tual polarimetric information.

Furthermore, as mentioned in Section IV, we selected ran-

domly a large number of pixels ( of the total number) for

the initialization to compare this method with the initial-

ization. The result of the algorithm with this random initializa-

tion is presented on Fig. 10. As in Section III, using a

initialization or a random initialization with a large number of

pixels provides the same end results, even if the colors differ. It

is thus possible to skip the initialization phase for this

scheme as well.

VI. CONCLUSION AND PERSPECTIVES

This paper presented a rigorous statistical approach for po-

larimetric SAR data classification. It relies on a simple binary

test of equality of covariance matrices which can be applied to

both homogeneous and heterogeneous clutter models.

The heterogeneous clutter in POLSAR data was described by

the SIRV model. The Fixed Point estimate of the covariance ma-

trix was used to describe the POLSAR data set. It is independent

of the texture pdf and is an AML estimator for many stochastic

processes obeying the SIRV model. Moreover, it is asymptoti-

cally Wishart distributed. Performances of a classical classifica-

tion procedure designed for Gaussian clutter and of a procedure

adapted to the heterogeneous assumption were compared on a

high resolution polarimetric data set.

The statistical test was presented and classical distance mea-

sures derived as particular cases of the test. The main improve-

ment of this approach is to introduce a critical region which

properly rejects pixels that are not close enough to the class

centers, contrary to existing methods. The test statistic in the

general case has been used as a distance measure in a new al-

gorithm, applied on the POLSAR data set. Results show mainly

that heterogeneous pixels are rejected from the rest of the image.

The proposed approach is very general and can be applied

to other multidimensional SAR techniques such as polarimetric

interferometry or multi-frequency polarimetry. Perspectives in-

clude the study of the class centers. They are defined as the mean

of all covariance matrices inside a class but, although that may

hold for the SCM, it does not for the FP estimate as the fixed

point of a sum is not the sum of the fixed points. The geometry

of covariance matrices have to be considered more accurately to

use the correct center of mass. A short term goal is to compare

the results of the classification to the ground truth data in order

to have a better analysis.
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