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Clutter for High Resolution Polarimetric SAR Data
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Pierre Formont,Student Member, IEEE Michel Gay,Member, IEEE

Abstract—This paper presents a new estimation scheme for op-
timally deriving clutter parameters with high resolution P OLSAR
data. The heterogeneous clutter in POLSAR data is described
by the Spherically Invariant Random Vectors model. Three
parameters are introduced for the high resolution POLSAR
data clutter: the span, the normalized texture and the speckle
normalized covariance matrix. The asymptotic distribution of the
novel span estimator is investigated. A novel heterogeneity test
for the POLSAR clutter is also discussed. The proposed method
is tested with airborne POLSAR images provided by the ONERA
RAMSES system.

Index Terms—Estimation, detection, polarimetry, SAR.

I. I NTRODUCTION

The recently launched polarimetric SAR (POLSAR) sys-
tems are now capable of producing high quality images of
the Earth’s surface with meter resolution. The goal of the
estimation process is to derive the scene signature from the
observed data set. In the case of spatially changing surfaces
(”heterogeneous” or ”textured” scenes) the first step is to de-
fine an appropriate model describing the dependency between
the polarimetric signature and the observable as a function
of the speckle. In general, the multiplicative model has been
employed for POLSAR data processing as a product between
the square root of a scalar positive quantity (texture) and the
description of an equivalent homogeneous surface (speckle)
[1], [2].

In the context of the non-Gaussian polarimetric clutter
models, several studies tackled POLSAR parameter estimation
using the product model. For deterministic texture, Novak
and Burl derived the Polarimetric Whitening Filter (PWF)
by optimally combining the elements of the polarimetric
covariance matrix to produce a single scalar image [1], [3].
Using the complex Wishart distribution, the PWF for homo-
geneous surfaces has been generalized to an Multi-look PWF
(MPWF) in [2], [4]. The objective of this paper is to present a
novel parameter estimation technique based on the Spherically
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Invariant Random Vectors (SIRV) model. For a detailed review
on the use of SIRV with POLSAR data refer to [5].

This paper is organized as follows. The POLSAR param-
eter estimation strategy for SIRV clutter model both with
normalized texture, and with normalized covariance matrixis
presented in Sect. II and Sect. III, respectively. Then, thenovel
span estimator is introduced in Sect. IV. Next, some estimation
results are shown in Sect. V on a real high-resolution POLSAR
dataset acquired by the ONERA RAMSES system. Eventually,
in Sect. VI, some conclusions are presented.

II. SIRV CLUTTER MODEL WITH NORMALIZED TEXTURE

The SIRV is a class of non-homogeneous Gaussian pro-
cesses with random variance [6], [7]. The complexm-
dimensional measurementk (m being the number of po-
larimetric channels) is defined as the product between the
independent complex circular Gaussian vectorζ ∼ N (0, [T ])
(speckle) with zero mean and covariance matrix[T ] = E{ζζ†}
and the square root of the positive random variableξ (repre-
senting the texture):k =

√
ξ · ζ. It is important to notice that

in the SIRV definition, the probability density function (PDF)
of the texture random variable is not explicitly specified. As
a consequence, SIRVs describe a whole class of stochastic
processes [8].

For POLSAR clutter, the SIRV product model is the product
of two separate random processes operating across two differ-
ent statistical axes [5]. The polarimetric diversity is modeled
by the multidimensional Gaussian kernel. The randomness
of spatial variations in the radar backscattering from cellto
cell is characterized byξ. Relatively to the polarimetric axis,
the texture random variableξ can be viewed as a unknown
deterministic parameter from cell to cell.

The texture and the covariance matrix unknown param-
eters can be estimated from the ML theory. ForN i.i.d.
(independent and identically distributed) secondary data,
let Lk(k1, ...,kN |[T ], ξ1, ..., ξN ) be the likelihood function to
maximize with respect to[T ] andξi.

Lk(k1, ...,kN ; [T ], ξ1, ..., ξN ) =
1

πmN det{[T ]}N
×

×
N∏

i=1

1

ξm
i

exp

(
−k

†
i [T ]−1

ki

ξi

)
. (1)

The corresponding ML estimators are given by [9]:

∂lnLk(k1, ..., kN |[T ], ξ1, ..., ξN)

∂ξi

= 0 ⇔ bξi =
k
†
i [T ]−1

ki

m
, (2)
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∂lnLk(k1, ..., kN |[T ], ξ1, ..., ξN)

∂[T ]
= 0 ⇔ [ bT ] =

1

N

N
X

i=1

kik
†
i

bξi

. (3)

As the variablesξi are unknown, the following normal-
ization constraint on the texture parameters assures that the
ML estimator of the speckle covariance matrix is the Sample
Covariance Matrix (SCM):

[ bT ] =
1

N

N
X

i=1

kik
†
i = [ bT ]SCM ⇔

1

N

N
X

i=1

kik
†
i

„

1 −
1

bξi

«

= [0m].

(4)
The generalized ML estimator forξi are obtained by intro-

ducing Eq. 4 in Eq. 2:

ξ̂i =
k
†
i [T̂ ]−1

SCMki

m
. (5)

Note theki primary data is the cell under study.
The normalized texture estimator from Eq. 5 is known as

the Polarimetric Whitening Filter (PWF-SCM) introduced by
Novak and Burl in [1].

III. SIRV CLUTTER MODEL WITH NORMALIZED

COVARIANCE MATRIX

Let now the covariance matrix be of the form[T ] = σ0[M ],
such that Tr{[M ]} = 1. The product model can be also written
ask =

√
τ ·z, wherez ∼ N (0, [M ]). σ0 andξ are two scalar

positive random variables such thatτ = σ0 · ξ.
Using the same procedure as in Sect. II and given the fact

that the covariance matrix is normalized, it is possible to
compute the generalized ML estimator of[M ] as the solution
of the following recursive equation:

[M̂ ]FP = f([M̂ ]FP ) =
1

N

N∑

i=1

kik
†
i

k
†
i [M̂ ]−1

FP ki

. (6)

This approach has been used in [10] by Conte et al. to derive
a recursive algorithm for estimating the matrix[M ]. This
algorithm consists in computing the Fixed Point off using
the sequence([M ]i)i≥0 defined by:

[M ]i+1 = f([M ]i). (7)

This study has been completed by the work of Pascal et al.
[11], [12], which recently established the existence and the
uniqueness, up to a scalar factor, of the Fixed Point estimator
of the normalized covariance matrix, as well as the conver-
gence of the recursive algorithm whatever the initialization.
The algorithm can therefore be initialized with the identity
matrix [M̂ ]0 = [Im].

The generalized ML estimator (PWF-FP) for theτi texture
for the primary dataki is given by:

τ̂i =
k
†
i [M̂ ]−1

FPki

m
. (8)

One can observe that the PWF-FP texture from Eq. 8 has
the same form as the PWF-SCM. The only difference is the
use of the normalized covariance estimate given by the FP
estimator instead of the conventional SCM [5].

IV. M AIN RESULT

The span (total power)σ0 can be derived using the covari-
ance matrix estimators presented in Sect. II and Sect. III as:

σ̂0 =
k
†[M̂ ]−1

FPk

k†[T̂ ]−1
SCMk

. (9)

Note that Eq. 9 is valid when consideringN identically
distributed linearly independent secondary data and one pri-
mary data. It can be seen as a double polarimetric whitening
filter issued from two equivalent SIRV clutter models: with
normalized texture variables and with normalized covariance
matrix parameter.

The main advantage of the proposed estimation scheme is
that it can be directly applied with standard boxcar neighbor-
hoods.

A. Asymptotic statistics of σ̂0

This section is dedicated to the study of large sample
properties and approximations of the span estimatorσ̂0 form
Eq. 9.

On one hand, the asymptotic distribution of the FP estimator
from Eq. 6 has been derived in [12]. The FP estimator
computed withN secondary data converges in distribution to
the normalized SCM computed withN [m/(m+1)] secondary
data. Since the normalized SCM is the SCM up to a scale
factor, we may conclude that, in problems invariant with
respect to a scale factor on the covariance matrix, the FP
estimate is asymptotically equivalent to the SCM computed
with N [m/(m + 1)] secondary data. Hence one can set
the degrees of freedom of FP normalized covariance matrix
estimators as:

q1 = N
m

m + 1
. (10)

On the other hand, Chatelain et al. establishedthe multi-
sensor bivariate gamma distribution PDF, whose margins
are univariate gamma distributions with different shape
parameters [13]:

PbΓ(y1, y2; p1, p2, p12, q1, q2).

The scale parametersp2 and p1, the shape parametersq2 >
q1 and p12 are linked to the mean parametersµ1, µ2, to the
number of degrees of freedomn1, n2, and to the normalized
correlation coefficientρ such as:

q1 = n1, q2 = n2, p1 =
µ1

q1
, p2 =

µ2

q2
, p12 =

µ1µ2

q1q2
(1 − ρ).

Using these results, we derived the PDF of the ratioR =
y1/y2 of two correlated Gamma random variables:

PRΓ(R, p1, p2, p12, q1, q2) = Rq1−1

(
p2

p12

)q1
(

1

p2

)q2

×

×
(

p12

p1 + Rp2

)q2+q1 Γ(q1 + q2)

Γ(q1)Γ(q2)
× (11)

× H3

[
q1 + q2, q2 − q1, q2; R

p1p2 − p12

(p1 + Rp2)2
,

p1p2 − p12

p2(p1 + Rp2)

]
,
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where H3(α, β, γ; x, y) =

∞∑

m,n=0

(α)2m+n(β)n

(γ)m+nm!n!
xmyn is

one of the twenty convergent confluent hypergeometric series
of order two (Horn function), and(α)n is the Pochhammer
symbol such that(a)0 = 1 and(a)k+1 = (a + k)(a)k for any
positive integerk [14].

By taking into consideration both Eqs. 10, 11 and the
Cochran’s theorem [15], the PDF of the span estimator
from Eq. 9 converges asymptotically to the the ratio of two
correlated Gamma random variables PDF (the ratio of two
quadratics). Moreover, the degrees of freedomn1 andn2 are
set toN [m/(m + 1)] andN (the number of secondary data),
respectively.
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Fig. 1. Ratio PDF of two correlated Gamma random variables (Eq. 11) for
different ρ and the empirical PDF of simulatedσ0 in Gaussian clutter

Fig. 1 illustrates the behavior of theσ0 PDF with respect to
the normalized correlation coefficientρ. The PDF parameters
are set according to the processing illustrated in Sect. IV,
namely N = 24, m = 3, µ1 = 10, µ2 = 1. Notice that
when the normalized correlation coefficient approaches to1,
the PDF tends to a Dirac.

A Monte Carlo simulation has been represented in Fig.1,
also.5000 samples ofσ0 were obtained by computing5000×
24 samplesdraw from a zero-mean multivariate circular com-
plex Gaussian distribution with a covariance matrix selected
from the real POLSAR data. The span of the selected covari-
ance matrix equal3. One can observe the good correspondence
between the empirical PDF of simulatedσ0 and the PDF
derived in Eq. 11 forρ = 0.95.

TABLE I
EMPIRICAL MEAN AND VARIANCE OF THE σ0 ESTIMATOR FROMEQ. 9

AND THE THEIR EXPECTED VALUES FOR SIMULATEDGAUSSIAN CLUTTER.

Boxcar Expected Empirical
Mean Variance Mean Variance

3× 3

3 0

3.42 1.99
5× 5 3.13 0.51
7× 7 3.04 0.22
9× 9 3.03 0.13

Using the same parameters as in the previous Monte Carlo
simulation, Table I illustrates the behavior of the empirical
mean and variance of the proposedσ0 in Gaussian clutter (e.g.
in homogeneous regions). By using24 up to 48 secondary
data, the estimation bias is negligible and the empirical vari-
ance is close to zero.

B. The σ0 test

In this section we propose to show how the estimator from
Eq. 9 is linked with a binary hypothesis testing problem, also:

• under the null hypothesisH0, the observed target vector
k =

√
ξ · ζ belongs to the SIRV clutterζ ∼ N (0, [T ])

with normalized texture,
• under the alternative hypothesisH1, the primary target

vector k =
√

τ · z belongs to the SIRV clutterz ∼
N (0, [M ]) with normalized covariance matrix.

From the operational point of view, the proposed detector
is a classical constant false alarm rate detector with
current pixel as primary data, and with the local boxcar
neighborhood around it as secondary data.

The Neyman-Pearson optimal detector is given by the
following likelihood ratio test (LRT):

Λ (k) =
pk(k/H1)

pk(k/H0)

H1

≷
H0

λ. (12)

After expressing the PDF under each hypothesis, it results that:

Λ (k) =

1

πmdet{[M ]}τm

exp
(
−k

†[M ]−1
k

τ

)

1

πmdet{[T ]}ξm

exp
(
−k†[T ]−1k

ξ

)
H1

≷
H0

λ. (13)

By plugging into the LRT the ML texture estimators from Eqs.
5 and 8 we obtain:

Λ (k) =
det{[T ]}
det{[M ]}

(
k
†[T ]−1

k

k†[M ]−1k

)m
H1

≷
H0

λ. (14)

Next, we assume the ratio of determinants is a deterministic
quantity and we denote it byα. This is an approximation, since
in practice the ratio of determinants is also computed using
the ML estimators of the respective covariance matrix withN
secondary data. Finally, by replacing the known covariances
by their ML estimates the generalized LRT is:

Λ (k) = ασ̂0
−m

H1

≷
H0

λ. (15)

As α appears as a deterministic quantity only, it is possible to
use the PDF derived in Sect. IV-A to set the decision threshold
λ for a specific false alarm probability.

V. RESULTS AND DISCUSSIONS

The high resolution POLSAR data set, illustrated in Fig. 2,
was acquired by the ONERA RAMSES system over Toulouse,
France with a mean incidence angle of500. It represents a
fully polarimetric (monostatic mode) X-band acquisition with
a spatial resolution of approximately50 cm in range and
azimuth. In the upper part of the image one can observe the
CNES buildings.

Fig. 5-(a),(b),(c) presents the three SIRV parameters which
completely describe the POLSAR data set: the total power, the
normalized texture and the normalized covariance matrix. The
5 × 5 boxcar neighborhood has been selected for illustration,
hence24 secondary samples and1 primary data.

Fig. 3 presents the zoom over the red rectangle from Fig.
5-(a), where a narrow diplane target was previously detected.
Fig. 3-(a),(b),(c) shows the FP-PWF texture, the SCM-PWF
normalized texture, and the proposed span estimatorσ̂0, re-
spectively. For comparison, the Multi-look PWF (MPWF) has
been illustrated in Fig. 3-(d). The proposed estimator exhibits
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Fig. 2. Toulouse, RAMSES POLSAR data, X-band,1500 × 2000 pixels:
amplitude color composition of the target vector elementsk1-k3-k2.

better performances in terms of spatial resolution preservation
than the MPWF span estimator: the ring effect (two large dips
on a spatial profile near the boundaries of a pointwise target
[16]) is reduced.

Finally, Fig. 4 illustrates the detection map obtain using
the LRT from Eq. 15 with25 secondary and one primary
data. The detection threshold has been obtained by Monte
Carlo integration of the PDF from Eq. 11 with a false alarm
probability set toPfa = 10−3 in each pixel. Note that
the PDF integration for such a small Pfa is quite time
consuming and fast numerical approximations need to be
investigated in the future for going to an operational level.
This detection map can be interpreted as follows:

• heterogeneous clutter areas, represented in red, revel
dense urban areas, which exhibit fewer dominant
scatterers within the resolution cell. Over these areas,
according to the hypotheses test from Sect. IV, it
is better to estimate clutter parameters using the
normalized covariance SIRV model.

• homogeneous clutter areas, represented in blue, where
the normalized texture model is better.

Concerning the validation of our results, the generalized
LRT is known to be asymptotically uniformly most pow-
erful according to the Neyman-Pearson lemma [17]. This
”optimality” holds provided the ML estimators plugged
into the LRT are consistent, which is the case for our
study [11], [12].

VI. CONCLUSIONS

This paper presented a new estimation scheme for optimally
deriving clutter parameters with high resolution POLSAR
images. The heterogeneous clutter in POLSAR data was de-
scribed by the SIRV model. Three estimators were introduced
for describing the high resolution POLSAR data set: the span,
the normalized texture and the speckle normalized covariance
matrix. The asymptotic distribution of the new span estimator
has been established. The estimation bias on homogeneous
regions have been assessed also by Monte Carlo simulations.

Based on these issues, a novel test has been introduced for
selecting the most appropriate model for POLSAR heteroge-
neous clutter described by SIRVs.

This work has many interesting perspectives. We believe
that this paper contributes toward the description and the anal-
ysis of heterogeneous clutter over scenes exhibiting complex
polarimetric signatures. Firstly, the exact texture normalization
condition for the PWF-SCM estimator has been derived in
Sect. II under the SIRV clutter hypothesis. A novel estimation
/ detection strategy has been proposed which can be used
with conventional boxcar neighborhoods directly. Finally, the
proposed estimation scheme can be extended to other mul-
tidimensional SAR techniques using the covariance matrix
descriptor, such as the following: repeat-pass interferometry,
polarimetric interferometry, or multifrequency polarimetry.
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(a) (b)

(c) (d)

Fig. 3. Toulouse, RAMSES POLSAR data, X-band,50 × 50 pixels, zoom
image: (a) FP-PWF texture, (b) SCM-PWF normalized texture,(c) span
estimated usingcσ0 from Eq. 9 and (d) SCM-MPWF span.

Fig. 4. Toulouse, RAMSES POLSAR data, X-band,1500 × 2000 pixels:
LRT detection map atPfa = 10−3 (SIRV with normalized texture inblue
and SIRV with normalized covariance inred).

(a)

(b)

(c)

Fig. 5. Toulouse, RAMSES POLSAR data, X-band,1500×2000 pixels: (a)
span estimated usingcσ0 from Eq. 9, (b) normalized textureξ, and (c) color
composition of the normalized coherency diagonal elements[M ]11-[M ]33-
[M ]22.
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