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Abstract—This paper presents a new estimation scheme for op- Invariant Random Vectors (SIRV) model. For a detailed navie

timally deriving clutter parameters with high resolution POLSAR  gn the use of SIRV with POLSAR data refer to [5].

data. The heterogeneous clutter in POLSAR data is described This paper is organized as follows. The POLSAR param-
by the Spherically Invariant Random Vectors model. Three . . for SIRV I' del both with
parameters are introduced for the high resolution POLSAR eter estlmatlon strategy .0r (_:utter mo. el bot _W't
data clutter: the span, the normalized texture and the spece Normalized texture, and with normalized covariance magrix
normalized covariance matrix. The asymptotic distribution of the  presented in Sedtl]ll and Sect] 11, respectively. Thenniineel
novel span estimator is investigated. A novel heterogengittest gpan estimator is introduced in Sécil IV. Next, some estonat
for the POLSAR clutter is also discussed. The proposed mettib ; O h :

is tested with airborne POLSAR images provided by the ONERA :jzstg!‘;ita;g ShOV\(/jnbln ;eE(IJXEOQ:SS\lAg%g reSCElutloréPOIt_SﬁR
RAMSES system. quired by the system. Eventually,

o ) ) in Sect[V], some conclusions are presented.
Index Terms—Estimation, detection, polarimetry, SAR.

II. SIRV CLUTTER MODEL WITH NORMALIZED TEXTURE
|. INTRODUCTION The SIRV is a class of non-homogeneous Gaussian pro-

The recently launched polarimetric SAR (POLSAR) sysesses with random variance [6], [7]. The complex
tems are now capable of producing high quality images gfmensional measuremekt (m being the number of po-
the Earth’s surface with meter resolution. The goal of tH8MMetric channels) is defined as the product between the
estimation process is to derive the scene signature from {R@e€Pendent complex circular Gaussian vetor AV (0, [T])
observed data set. In the case of spatially changing sirfabaPeckle) with zero mean and covariance matiik= F{(¢'}
("heterogeneous” or "textured” scenes) the first step iseo g@nd the square root of the positive random varigbleepre-
fine an appropriate model describing the dependency betwS&RtNY the texture) = /¢ - (. It is important to notice that
the polarimetric signature and the observable as a functitfhthe SIRV definition, the probability density function (PP
of the speckle. In general, the multiplicative model hasnbedf the texture random variable is not explicitly specifiecs A
employed for POLSAR data processing as a product betwerFOnsequence, SIRVs describe a whole class of stochastic
the square root of a scalar positive quantity (texture) ded tProcesses [8]. .
description of an equivalent homogeneous surface (speckle™©" POLSAR clutter, the SIRV product model is the product
11, [2]. of two s_eparate random processes opgra‘u_ng across twao- diffe
In the context of the non-Gaussian polarimetric cluttdfnt Statistical axes [5]. The polarimetric diversity is retti
models, several studies tackled POLSAR parameter estimatpy the_multlo_llm_ensu_)nal Gaussian kernel. The randomness
using the product model. For deterministic texture, Nova¥ SPa“a' varlatllons in the ra(_jar backscatterln.g from O@II
and Burl derived the Polarimetric Whitening Filter (PWF)Ce” is characterized by.. Relatively to t_he polarimetric axis,
by optimally combining the elements of the polarimetrid€ t€xture random variablg can be viewed as a unknown
covariance matrix to produce a single scalar image [1], [Féterministic parameter from cell to cell.
Using the complex Wishart distribution, the PWF for homo- 'N€ texture and the covariance matrix unknown param-
geneous surfaces has been generalized to an Multi-look P\ﬁ}@rs can be esumated_ from _the_ ML theory. Fr ii.d.
(MPWF) in [2], [4]. The objective of this paper is to present sindependent and identically distributed) secondary data,

novel parameter estimation technique based on the Spigriciet Li(k1, . kn|[[T], &1, ..., &) be the likelihood function to
maximize with respect t¢7’] and¢;.
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i=1 & The span (total powery, can be derived using the covari-

. . ance matrix estimators presented in SEét. Il and $ett. 11l as
As the variablest; are unknown, the following normal- P

ization constraint on the texture parameters assures lieat t Kk [M] 7Lk
ML estimator of the speckle covariance matrix is the Sample oo = ffp. (9)
Covariance Matrix (SCM): ki[T]gcnk

distributed linearly independent secondary data and oire pr
mary data. It can be seen as a double polarimetric whitening
filter issued from two equivalent SIRV clutter models: with

1 X L | XN . 1 Note that Eq.[P is valid when consideriny identically
[T] = ~ ;kiki = [T)scm & i Zkiki <1 — 7.) = [Opm].

1=1 t

The generalized ML estimator f@j; are obtained by intro-

ducing Eq[% in EqCI2: zqoartr;::l:oz;rirtne:ttgrre variables and with normalized covaran
o kZT [f]gé ki 5) Th_e main adyantage of_the proposed estimation scheme is
T m . that it can be directly applied with standard boxcar neighbo
hoods.

Note thek; primary data is the cell under study.
The normalized texture estimator from Hq. 5 is known as
the Polarimetric Whitening Filter (PWF-SCM) introduced byA. Asymptotic statistics of o

Novak and Burl in [1]. This section is dedicated to the study of large sample
properties and approximations of the span estimagoform
Il1. SIRV CLUTTER MODEL WITH NORMALIZED Eq.[9.
COVARIANCE MATRIX On one hand, the asymptotic distribution of the FP estimator

, . from Eq.[6 has been derived in [12]. The FP estimator
Let now the covariance matrix be of the foffi] = oo [M]_' computed withN secondary data converges in distribution to
such that Tf[M]} = 1. The product model can be also writtel\ha normalized SCM computed witki[m/(m + 1)] secondary
ask = /72, wherez ~ N (0, [M]). oy and¢ are two scalar gai5 since the normalized SCM is the SCM up to a scale
positive random variables such that= o - £. _ factor, we may conclude that, in problems invariant with
Using the same procedure as in Sedt. Il and given the fagk et to a scale factor on the covariance matrix, the FP
that the covariance matrix is n_ormallzed, it is possw_)le ©stimate is asymptotically equivalent to the SCM computed
compute the generalized ML estimator [@f] as the solution it Nlm/(m + 1)] secondary data. Hence one can set

of the following recursive equation: the degrees of freedom of FP normalized covariance matrix
N t estimators as:
— — 1 k;k! m
M = f([M = — i 6 =N——. 10
[M]pp = f(M]rp) = ; e © @ =N (10)

This approach has been used in [10] by Conte et al. to deriveon the other hand, Chatelain et al. establisttesl multi-

a recursive algorithm for estimating the matrixd]. This sensor bivariate gamma distribution PDF, whose margins

algorithm consists in computing the Fixed Point pfusing a;eialrj:é\:g:lsa[tlesﬁamma distributions with different shape
the sequencé[M];);>o defined by: P ’

[M]iv1 = f([M]:). (7
, The scale parametefs andp;, the shape parametegs >
This study has been completed by the work of Pascal et 91|'andp12 are linked to the mean parameters, /s, to the

[11], [22], which recently established the existence anel trhumber of degrees of freedom, n», and to the normalized
uniqueness, up to a scalar factor, of the Fixed Point estimat , ra|ation coefficienp such as:

of the normalized covariance matrix, as well as the conver-

Pyr(y1,y2:p1, P2, P125 41, q2)-

gence of the recursive algorithm whatever the initial@ati ¢, = ny, ¢ = na, p1 = ﬂ, Do = @, Pia = taliz (1-p).
The algorithm can therefore be initialized with the idepntit ¢ 42 1192
matrix [M]o = [L]. Using these results, we derived the PDF of the radtic=

The generalized ML estimator (PWF-FP) for thetexture y;/y» of two correlated Gamma random variables:

for the primary daté; is given by: ks
Prr(R,p1,p2, pr2, q1,q2) = R™1 <p_2> ( > y

~ K/[M]ppki piz) \p2

3

(8)

One can observe that the PWF-FP texture from[Eq. 8 has
the same form as the PWF-SCM. The only difference is the
use of the normalized covariance estimate given by the FP
estimator instead of the conventional SCM [5]. x Hy {ql t 20— 0 @i R

m

q2+q1
T
% ( P12 ) (g1 + q2) « (11)

p1 + Rp2 I'(q1)T'(g2)

p1p2 — P12 P1p2 — P12 ]
(p1 + Rp2)?’ p2(p1 + Rp2) |’




(o]

) _ (@2msn(BIn _m n « under the null hypothesi#, the observed target vector
where  Hs(a, 8,7:2,y) = mzn;o (V) m4nm!in! vy k = /€ - ¢ belongs to the SIRV clutte¢ ~ N(0,[T7])
one of the twenty convergent confluent hypergeometric serie  With normalized texture,
of order two (Horn function), anda),, is the Pochhammer o under the alternative hypothesi$;, the primary target
symbol such thafa)o = 1 and(a)s,1 = (a + k)(a); for any vectork = /7 - z belongs to the SIRV clutter ~
positive integerk [14]. N(0, [M]) with normalized covariance matrix.

By taking into consideration both EqE. 110,111 and therom the operational point of view, the proposed detector
Cochran’s theorem [15], the PDF of the span estimaty a classical constant false alarm rate detector with
from Eq.[9 converges asymptotically to the the ratio of tweurrent pixel as primary data, and with the local boxcar
correlated Gamma random variables PDF (the ratio of twighborhood around it as secondary data.

guadratics). Moreover, the degrees of freedemandn, are The Neyman-Pearson optimal detector is given by the
set toN[m/(m+1)] and N (the number of secondary data)following likelihood ratio test (LRT):

respectively.
peCTVEY  plk/H)

Ak)=———"—7—<2 A\ (12)
s ) = /o)
0.8 B 3 —© Empirical PDF
P(ao; p=3, N=24, m=3, p=0.05) . . .
osh Pl u=3, N=24, me3,p=05) | After expressing the PDF under each hypothesis, it redts t
.= = P(0,; 1=3, N=24, m=3, p=0.95)

0.4

1 exp (_ k'*[M]*lk)
mdef M)} T @)\. (13)

kfmflk) i
3

A (k) =

0

1 —
wmdeg e P (

By plugging into the LRT the ML texture estimators from Eqs.
Fig. 1. Ratio PDF of two correlated Gamma random variables [[E) for and® we obtain:

different p and the empirical PDF of simulategh in Gaussian clutter
def{[T]} [ ki[T] 'k \" H:

Fig.[ illustrates the behavior of the, PDF with respect to Ak) = detf{[M]} \kI[M] 'k 50 A (14)
the normalized correlation coefficiept The PDF parameters ] ] i S
are set according to the processing illustrated in Segt. Yext, we assume the ratio of determinants is a deterministic
namely N = 24, m = 3, 1 = 10, uo = 1. Notice that guantity and we denote it by. This is an approximation, since
when the normalized correlation coefficient approaches, to N practice the ratio of determinants is also computed using
the PDF tends to a Dirac. the ML estimators of the respective covariance matrix uth

A Monte Carlo simulation has been represented in[Fig.3écondary data. Finally, by replacing the known covariance
also0.5000 samples ofr, were obtained by computingp00 x b their ML estimates the generalized LRT is:
24 sampledraw from a zero-mean multivariate circular com- R
plex Gaussian distribution with a covariance matrix select A (k) = aoo 5 A (15)
from the real POLSAR data. The span of the selected covari- ’

ance matrix equal. One can observe the good corresponden@$ « appears as a deterministic quantity only, it is possible to
between the empirical PDF of simulated, and the PDF Use the PDF derived in SeEt. WA to set the decision threshol

derived in EqCIL fop = 0.95. A for a specific false alarm probability.
TABLE | V. R
EMPIRICAL MEAN AND VARIANCE OF THE o ESTIMATOR FROMEQ.[9 ' ESULTS AND DISCUSSIONS

AND THE THEIR EXPECTED VALUES FOR SIMULATEDGAUSSIAN CLUTTER.

The high resolution POLSAR data set, illustrated in Eig. 2,
was acquired by the ONERA RAMSES system over Toulouse,

Expected Empirical

BOXCar | —san | Variance | Mean | Variance France with a mean incidence angle &f°. It represents a
3x3 3.42 1.09 fully polarimetric (monostatic mode) X-band acquisitiofittw
5 x5 3 0 3.13 0.51 a spatial resolution of approximate0 cm in range and
gig 2:8‘3‘ 8:% azimuth. In the upper part of the image one can observe the

CNES buildings.

Fig.[B-(a),(b),(c) presents the three SIRV parameters lwhic

Using the same parameters as in the previous Monte Cagtompletely describe the POLSAR data set: the total power, th
simulation, Tabld]l illustrates the behavior of the emgitic normalized texture and the normalized covariance mattive T
mean and variance of the proposedin Gaussian clutter (e.g. 5 x 5 boxcar neighborhood has been selected for illustration,
in homogeneous regions). By usirkg up to 48 secondary hence24 secondary samples ardprimary data.
data, the estimation bias is negligible and the empirical va Fig.[3 presents the zoom over the red rectangle from Fig.
ance is close to zero. [B-(a), where a narrow diplane target was previously detecte

Fig.[3-(a),(b),(c) shows the FP-PWF texture, the SCM-PWF

B. The oy test normalized texture, and the proposed span estimajore-

In this section we propose to show how the estimator froapectively. For comparison, the Multi-look PWF (MPWF) has
Eq.[9 is linked with a binary hypothesis testing problemgalsbeen illustrated in Fid.]3-(d). The proposed estimator lgithi



Based on these issues, a novel test has been introduced for
selecting the most appropriate model for POLSAR heteroge-
neous clutter described by SIRVs.

This work has many interesting perspectives. We believe
that this paper contributes toward the description and iz a
ysis of heterogeneous clutter over scenes exhibiting cexnpl
polarimetric signatures. Firstly, the exact texture ndizaséion
condition for the PWF-SCM estimator has been derived in
Sect[d] under the SIRV clutter hypothesis. A novel estimmati
|/ detection strategy has been proposed which can be used
with conventional boxcar neighborhoods directly. Finathe
proposed estimation scheme can be extended to other mul-
tidimensional SAR techniques using the covariance matrix
descriptor, such as the following: repeat-pass interfetoyn
polarimetric interferometry, or multifrequency polarime

Fig. 2. Toulouse, RAMSES POLSAR data, X-barnd00 x 2000 pixels:
amplitude color composition of the target vector eleménts:;-ks.
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[16]) is reduced.

Finally, Fig.[4 illustrates the detection map obtain using
the LRT from Eq.[Ib with25 secondary and one primary 1]
data. The detection threshold has been obtained by Mon&e
Carlo integration of the PDF from Ef.J11 with a false alarm
probability set to Py, 1072 in each pixel. Note that
the PDF integration for such a small Py, is quite time
consuming and fast numerical approximations need to be
investigated in the future for going to an operational level
This detection map can be interpreted as follows:

« heterogeneous clutter areas, represented in red, revel [4]
dense urban areas, which exhibit fewer dominant
scatterers within the resolution cell. Over these areas,
according to the hypotheses test from Sec{_1V, it
is better to estimate clutter parameters using the
normalized covariance SIRV model.

« homogeneous clutter areas, represented in blue, where [6]
the normalized texture model is better.

Concerning the validation of our results, the generalized
LRT is known to be asymptotically uniformly most pow-
erful according to the Neyman-Pearson lemma [17]. This
"optimality” holds provided the ML estimators plugged
into the LRT are consistent, which is the case for our
study [11], [12].

(3]

(5]

(7]
(8]
El

VI. CONCLUSIONS (10

This paper presented a new estimation scheme for optimally
deriving clutter parameters with high resolution POLSAR
images. The heterogeneous clutter in POLSAR data was de-
scribed by the SIRV model. Three estimators were introduced
for describing the high resolution POLSAR data set: the SPaib)
the normalized texture and the speckle normalized covegian
matrix. The asymptotic distribution of the new span estonat
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Fig. 3. Toulouse, RAMSES POLSAR data, X-baié), x 50 pixels, zoom
image: (a) FP-PWF texture, (b) SCM-PWF normalized textym, span
estimated usingo from Eq.[9 and (d) SCM-MPWF span.

Fig. 4. Toulouse, RAMSES POLSAR data, X-baridi00 x 2000 pixels: F19- 5. Toulouse, RAMSES POLSAR data, X-band(0 x 2000 pixels: (a)
LRT detection map af;, = 10—3 (SIRV with normalized texture iblue span estimated usingy from Eq.[9, (b) normalized texturg, and (c) color

and SIRV with normalized covariance fad). [c](\J/[rr}]position of the normalized coherency diagonal eleméhts$;-[/1/]33-
22.
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