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Abstract
This letter deals with the estimation of a flat fading Rayleigh channel with Jakes’s
spectrum. The channel is approximated by a first-order autoregressive (AR(1))
model and tracked by a Kalman Filter (KF). The common method used in the
literature to estimate the parameter of the AR(1) model is based on a Correlation
Matching (CM) criterion. However, for slow fading variations, another criterion
based on the Minimization of the Asymptotic Variance (MAV) of the KF is more
appropriate, as already observed in few works [1]. This letter gives analytic jus-
tification by providing approximated closed-form expressions of the estimation
variance for the CM and MAV criteria, and of the optimal AR(1) parameter.

Keywords: Channel estimation, Autoregressive model, Kalman Filter, Jakes’s
spectrum, Rayleigh channel, Flat fading, Bayesian Cramér-Rao Bounds BCRB.

1. Introduction

The Rayleigh fading channel model with Jakes’s Doppler spectrum is the most ac-
cepted random model to represent temporal variations (fading) of the equivalent base-
band channel complex gain (CG) in wireless communication. However, this model
is not always directly convenient for highly important tasks such as channel estima-
tion or equalization. Usually, the autoregressive model AR(p) with some Gaussian
assumptions (most often used with order p = 1) is used to approach this channel and
facilitate its manipulation. In [2], the authors demonstrated that the AR model can be
considered for the computer simulation of correlated fading channels insisting that low
orders are appropriate for narrowband Doppler fading processes. Moreover, [3] showed
that a first-order model is enough to capture most of the channel tap dynamics. This
approximation has been widely used to track the true Jakes’s spectrum channel by a
Kalman Filter (KF) in various wireless communication systems ([4, 5, 6, 7, 8, 9, 10, 11],
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...). This letter deals with the choice of the AR(1) coefficient. In many papers, e.g.,
the aforementioned works, the AR(1) coefficient calculation for a given normalized
Doppler frequency ( fdT ) is based on the same criterion, called Correlation Matching
(CM) in this letter. The CM criterion1 consists in imposing that the autocorrelation
coefficients Rα̃ [n] of the approximated AR(1) process α̃ perfectly match the sam-
pled autocorrelation function (which is a Bessel function) of the true CG α for lags
n ∈ {−1,0,1} [2] (see also [4], Fig. 1). But in some situations the results were
disappointing (in terms of the distance from the Bayesian Cramér–Rao lower Bound
(BCRB)), as pointed out recently in [10] (Fig. 3) and in [11] (Fig. 2) for the special
case of a slow fading scenario where the channel is theoretically easier to estimate.
Note also that some authors propose adding a positive ε to the zeroth autocorrelation
lag, which modifies slightly the CM constraint to better approximate the original pro-
cess in some sense [2]. In the recent work [1], the search for the AR(1) parameter is
based on another method, consisting in the minimization of the steady-state estimation
error variance, called the Minimum Asymptotic Variance (MAV) criterion in this let-
ter. This method seems very effective compared to the CM method for a Clarke (i.e.,
Rayleigh-Jakes) Model channel, but the study in [1] does not provide analytic results
nor closed-form expressions about the choice of the AR(1) parameter (nor the associ-
ated Mean Square Error (MSE)) for a given channel state ( fdT , SNR). In this letter, we
first provide a general theoretical frequency-domain analysis of the estimation error (in
terms of static and dynamic contributions) that explains analytically the previous disap-
pointing results with the CM-criterion based method. Moreover, the analytic approach
is used to calculate the optimal AR(1) coefficient under the MAV criterion, without the
CM constraint. For a given Doppler and SNR scenario, we give approximate closed-
form expressions of the optimal coefficient and of the corresponding MSE.

2. Mathematical Model

We consider the estimation of a flat Rayleigh fading channel. The discrete-time
observation is2:

yk = αk +nk (1)

where k is the (symbol) time index, nk is a zero-mean additive white circular complex
Gaussian noise with variance σ2

n , and αk is a zero-mean circular complex Gaussian CG
with variance σ2

α = 1. The normalized Doppler frequency of this channel is fdT , where

1And for a more general AR(p) model (with more degrees of freedom than the AR(1) model), the co-
efficients of the AR(p) process are calculated [2] by still imposing the correlation matching constraint for
lags n ∈ {−p, ....,−1,0,1, ...., p}, but followed by the resolution of the Yule–Walker equations in order to
minimize the prediction error (model noise).

2In general, the observation is rather yk = skαk + nk where sk denotes the transmitted symbols. Our
simplified model (1) assumes the symbols are known (or decided). This model relies also on the assumption
that the CG variation can be neglected during one symbol period. It should be noted that even if it is simple,
this observation model is the same as the one obtained through multipath frequency selective channel in an
OFDM system, for each subcarrier.
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T is the symbol period. A Jakes’s Doppler spectrum is assumed for this channel:

Γα( f ) =


σ2

α

π fd

√
1−

(
f

fd

)2
if | f |< fd

0 if | f |> fd

(2)

The autocorrelation matrix Rk
α of a block of k consecutive CG is then defined by its

[i, j]th entry: [
Rk

α

]
i, j

= Rα [i− j] = σ2
α J0(2π fdT.(i− j)) 1 ≤ i, j ≤ k (3)

where J0 is the zeroth-order Bessel function of the first kind.
The time-varying CG αk is approached by a first-order autoregressive (AR(1))

model α̃k:
α̃k = a.α̃k−1 + ek (4)

where ek is a white circular complex Gaussian noise with variance σ2
e = (1− a2)σ2

α .
The observation equation (4) is then approximated by:

yk = α̃k +nk (5)

The AR(1) coefficient verifies

a =
Rα̃ [1]
Rα̃ [0]

(6)

If the correlation matching (CM) criterion [2, 4, 5, 6, 8] is imposed, the two first au-
tocorrelation coefficients of the AR(1) process α̃ coincide with those of the exact CG
α (i.e., Rα̃ [0] = Rα [0], and Rα̃ [1] = Rα [1]), and using equation (6) and (3) the AR(1)
coefficient a noted aCM becomes

aCM = J0(2π fdT ) (7)

3. MSE Analysis, Optimization, and Simulation Results

Given the model and observation equations (4 and 5), we use a KF to get an on-line
unbiased estimate, α̂k, of the true αk. We compare the variance of the error εk =αk−α̂k
to the on-line BCRB (see [12] for details about the computation of this BCRB):

E
{
|εk|2

}
≥ BCRB(k)

with BCRB(k) =
[
J−1

]
k,k

3 the last element of the inverse of the Bayesian Information
Matrix J :

J =
1

σ2
n
Ik +[Rk

α]
−1

3The Cramér–Rao inequality is verified at every iteration k but the BCRB converges to a constant value
after a certain number of iterations ([12], [15]), (i.e., BCRB ≈ BCRB(k) for a sufficiently large value of k).
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and Ik is the k× k identity matrix.
The KF is given by [14] (see also p. 436 in [16]):

Prediction α̂k|k−1 = a α̂k−1 (i)
Prediction MSE Pk|k−1 = a2Pk−1 +σ2

e (ii)

Kalman Gain Kk =
Pk|k−1

σ2
n +Pk|k−1

(iii)

Correction α̂k = α̂k|k−1 +Kk(yk − α̂k|k−1) (iv)
MSE Pk = (1−Kk)Pk|k−1 (v)

Replacing (ii) in (iii), (v) in (ii), and (i) in (iv), we obtain the simplified system:

Kk = [a2Pk−1 +σ2
e ]/[a

2Pk−1 +σ2
e +σ2

n ] (8)
Pk = (1−Kk)(a2Pk−1 +σ2

e ) (9)
α̂k = a α̂k−1 +Kk(yk −a α̂k−1) (10)

where Kk is the Kalman gain at iteration k and Pk is the estimation error variance. Since
the linear system (1) and (4) is observable and controllable, an asymptotic regime for
which Kk = Kk+1 = K∞ and Pk = Pk+1 = P∞ is quickly reached ([14]).
Based on equations (8) and (9), and given a2 = 1− σ2

e
σ2

α
, we deduce

P∞ =
σ2

n (a
2 −1)−σ2

e +
√

∆
2a2

K∞ =
a2P∞ +σ2

e

a2P∞ +σ2
e +σ2

n
(11)

with ∆=(σ2
n +σ2

e −a2σ2
n )

2+4a2σ2
n σ2

e . From now on, we assume that the noise model
variance satisfies σ2

e << σ2
n . Note that this assumption means that K∞ << 1, which

seems reasonable for low normalized Doppler (i.e., fdT ≤ 10−2) and the usual range of
SNR (i.e., 0.01 ≤ σ2

n
σ2

α
≤ 1). We then have the following approximations (see Appendix

A): √
∆ ≈ 2σeσn and a2P∞ ≈ σeσn (12)

leading to the following approximate expression of the steady-state Kalman gain:

K∞ ≈ σe

σn
(13)

On the other hand, we see that in the asymptotic regime (or tracking mode), equation
(10) of the KF reduces (using (1)) to a time-invariant linear filter, expressed in the
Z-Transform domain by:

α̂(z) = az−1α̂(z)+K∞(α(z)+N(z)−az−1α̂(z))

Then α̂(z) = T (z)(α(z)+N(z)) and the error is

ε(z) = α(z)− α̂(z) = (1−T (z))α(z)−T (z)N(z) (14)
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where T (z) is the transfer function of the steady-state KF:

T (z) =
K∞

1−a(1−K∞)z−1 (15)

Using (14), the asymptotic MSE is divided into two parts:

MSE = MSE1+MSE2 (16)

• MSE1 is the dynamic error variance, due to the CG variations αk filtered by the
high pass filter 1−T (z):

MSE1 def
=

∫ + 1
2T

− 1
2T

|1−T (e j2π f T )|2Γα( f )d f (17)

Under the assumption 1
2

σ2
e

σ2
α
<< 2π fdT < 2π fcT << 1, which is reasonable for

a low-Doppler scenario, we obtain (see Appendix B):

MSE1 ≈
∫ + fd

− fd

∣∣∣∣ 2π f T
2π fcT

∣∣∣∣2 Γα( f )d f = σ2
α
(2π fdT )2

2(2π fcT )2 (18)

where fc is the cut-off frequency of the low-pass filter T(z), defined such that
2π fcT = 1−a(1−K∞)

a(1−K∞)
. Still assuming that σ2

e << σ2
n , it results that 2π fcT ≈

σn−a(σn−σe)
a(σn−σe)

≈ σe
σn

, which means that the (normalized) cut-off pulsation is approx-
imately equal to the steady-state Kalman gain. The approximate closed-form
expression of MSE1 is then

MSE1 ≈ σ2
α
(2π fdT )2σ2

n

2σ2
e

=
(2π fdT )2σ2

n

2(1−a2)
(19)

• MSE2 is the static error variance, due to the additive noise nk filtered by the low
pass filter −T (z):

MSE2 def
= σ2

n T
∫ + 1

2T

− 1
2T

|T (e j2π f T )|2d f = σ2
n

K2
∞

|1−a2(1−K∞)2| (20)

Inserting (13) in (20), using again a2 = 1− σ2
e

σ2
α

and the previous assumption σ2
e << σ2

n ,
it follows that

MSE2 ≈ σ2
n .

σe

2σn
=

√
(1−a2)σnσα

2
(21)

These approximate closed-form expressions (19) and (21) will be useful in the per-
spective of an optimization (MAV criterion). But first we apply them to the case of the
CM criterion in order to explain the performance of CM-based methods.
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By imposing the CM criterion (7), and using [J0(ε)]2 ≈ 1− ε2

2 for ε << 1, we have
(1−a2)≈ 2(π fdT )2 and then

MSE1CM ≈ σ2
n (22)

MSE2CM ≈ π fdT σnσα√
2

(23)

Note that these approximate closed-form expressions assumed that fdT < fcT (for a
valid computation of MSE1 as (18) and (19)) and then are valid only for σ2

n
σ2

α
< 1

2 , since

with the CM criterion we get σe ≈
√

2π fdT , and then fcT ≈ K∞ ≈ σe
σn

≈
√

2π fdT
σn

.
However, for the MAV criterion, we can find the coefficient of the AR(1) model by

minimizing the MSE in (16) with respect to a, assuming (19) and (21):

a∗ =

√√√√1−4 3

√
(π fdT )4 σ2

n

σ2
α

(24)

and the theoretical corresponding MSE is

MSE∗ =
3
2
(
π fdT σ2

n σα
) 2

3 (25)

In Fig. B.1, we compare the MSE obtained with CM and MAV criteria. We also plot
the BCRB (for k = 2000) as reference.

• With the CM criterion, the MSE is approximately constant with respect to the
Doppler frequency and at low Doppler, the error seems to be far from the BCRB.
This agrees with equations (22) and (23) since at low fdT ≤ 10−2 and medium
SNR (i.e., σ2

n
σ2

α
∈ [0.01;0.5]), MSE2CM is small and the mean square error MSECM ≈

MSE1CM ≈ σ2
n .

• With the MAV criterion, MSE∗ seems to be approximately the same as the MSE
computed by Monte Carlo simulation for all the usual range of SNR between 0
and 20 dB, so we validate the closed-form expression (25).

• The most important observation is that with the optimization (MAV criterion),
we are closer to the bounds than with the CM criterion, especially for low fre-
quencies ( fdT = 10−4) and low SNRs (this corroborates the results of [1]).

In Fig. B.2, we complete our comparison with the AR(2) KF (under the CM cri-
terion) of [4], and the AR(1) KF of [13] where the AR(1) coefficient a is estimated
on-line from observations under the assumption that the channel is a true AR(1) pro-
cess (instead of a Jakes process). The performance of the first algorithm is close to that
of the AR(1) KF under the CM criterion (that corroborates the results in [1] and [4])
while the second one is poorer, and then the AR(1) KF optimized by the MAV criterion
performs better than both of them.
Although the knowledge of SNR =

σ2
α

σ2
n

is required to design the KF in (8), its value is
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also needed for MAV-based optimization while it is not for the CM criterion. For the
sake of fairness, we depict the sensitivity to imperfect SNR knowledge: Fig. B.2 plots
the MSE versus the true SNR for wrong values of a (obtained from (24) using arbitrary
values of the SNR, fixed to SNR′ = 10, 15, or 20 dB), it shows that the sensitivity to
the SNR knowledge is quite weak and that MAV-based optimization even with an SNR
mismatch outperforms other CM-based methods.

4. Conclusion

This paper addresses the problem of estimating a Rayleigh channel using a first
order AR model. An analytic study clearly shows that the most widely used choice
for the AR(1) pole estimation (the CM criterion) is not accurate for low SNR and low
Doppler fdT . Therefore, switching to an estimation error variance criterion as already
proposed in [1], we carry out the optimization of the AR(1) model and the calculation
of its performance. We provide an approximate expression of the MSE for the CM and
MAV criteria first, and of the AR(1) (MAV) parameter for a given SNR and Doppler
scenario. It is demonstrated that the MSE of the AR(1) KF (MAV) is proportional to
the (2/3) power of the product ( fdT ×σ2

n ), where σ2
n is the observation noise variance.

Appendix A. Approximations of ∆ in (12)

With the assumption σ2
e << σ2

n , it is straightforward to see that

∆ = (σ2
n +σ2

e −a2σ2
n )

2 +4a2σ2
n σ2

e = σ2
n [

σ2
n σ4

e

σ4
α

+4σ2
e −4

σ4
e

σ2
α
]≈ 4σ2

n σ2
e

Note that for an AR(1) model with CM criterion, we have σ2
e

σ2
α
= 1−a2

CM = 1−[J0(2π fdT )]2 =

1− [1− (π fdT )2 + (π fdT )4

2 − ....]2 ≈ 2(π fdT )2 ≤ 2π210−4 (due to the low Doppler
assumption, i.e., fdT ≤ 10−2). And due to the additional usual range SNR assump-
tion (i.e., 0 dB ≤ SNR ≤ 20 dB and thus 0.01 ≤ σ2

n
σ2

α
≤ 1), we verify the assumption

σ2
e << σ2

n .

Appendix B. Approximation of T (z) and Approximation of MSE1 in (18)

The approximations made to obtain (18) are:

1. The steady-state KF, T(z), can be approximated in the frequency domain using
z−1 = e− j2π f T ≈ 1− j2π f T for low frequencies compared to the sampling-rate,
i.e., for f << 1/T , by:

T (e j2π f T )≈ K∞

1−a(1−K∞)(1− j2π f T )
=

A
2π fcT + j2π f T

(B.1)

then
1−T (e j2π f T )≈ 2π fcT −A+ j2π f T

2π fcT + j2π f T
=

2π fV LF T + j2π f T
2π fcT + j2π f T

7



where A = K∞
a(1−K∞)

, 2π fcT = 1−a(1−K∞)
a(1−K∞)

, and 2π fV LF T = 2π fcT −A = 1−a
a .

Note that for proper tracking, the cut-off frequency of the steady-state filter, fc,
should be chosen higher than the Doppler frequency fd , but much lower than the
sampling rate 1/T . The two conditions are quite compatible in the low Doppler
scenario, and are summarized by fdT < fcT << 1.

Note also that 2π fV LF T = 1
a −1, and given 1

a =
[
1− σ2

e
σ2

α

]− 1
2 ≈ 1+ 1

2
σ2

e
σ2

α
, we have

2π fV LF T ≈ 1
2

σ2
e

σ2
α

. And according to Appendix A, we have for the AR(1) model

with CM criterion, σ2
e

σ2
α
≈ 2(π fdT )2 << 4π fdT . From now on, our complete

assumptions for the computation of the integral (17) will be:

fV LF T << fdT < fcT << 1

2. The function 1−T (e j2π f T ) can be (asymptotically) divided into three parts (as
can be checked by the plot of

∣∣1−T (e j2π f T )
∣∣2 in Fig. B.3):

(a) for 0 < f T < fV LF T , a constant part approximately equal to 2π fV LF T
2π fcT

(b) for fV LF T < f T < fcT , a linear part approximately equal to 2π f T
2π fcT

(c) for f T > fcT , a constant part equal to 1, not considered in the integral (17),
since Γα( f ) = 0 for | f |> fd , with fdT < fcT .

Then

MSE1 ≈ 2

+ fV LF∫
0

[
2π fV LF T

2π fcT

]2

Γα( f )d f +2

+ fd∫
+ fV LF

[
2π f T
2π fcT

]2

Γα( f )d f (B.2)

= 2I1[0;+ fV LF ]+2I2[+ fV LF ; fd ] (B.3)

but I2[0;+ fV LF ]< I1[0;+ fV LF ] since f < fV LF in this computation, and I2[+ fV LF ;+ fd ]
< I2[0;+ fd ], then

2I2[0;+ fd ]< MSE1 < 2I1[0;+ fV LF ]+2I2[0;+ fd ]

but given the form of Γα , it results that I1[0;+ fV LF ]<
fV LF

fd
I2[0;+ fd ]<< I2[0;+ fd ]

since fV LF << fd .

In conclusion, MSE1 ≈ 2I2[0;+ fd ] = 2
+ fd∫
0

[
2π f T
2π fcT

]2
Γα( f )d f = (2π fdT )2

2(2π fcT )2 σ2
α .
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Figure B.1: MSE comparison of the AR(1) KF estimator based on the literature CM criterion (7) or on the
MAV criterion (24), for different SNR, as functions of fdT .
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(CM), and AR(1) KF of [13], and the effect of a mismatch on the knowledge of the SNR for the AR(1) KF
(MAV) with an AR(1) coefficient a computed by (24) with (false) fixed values of SNR, SNR′ = 10,15 and
20 dB (solid lines), and (true) SNR (circles).
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Figure B.3: The high-pass filter 1−T (z) for various fdT , SNR = 20 dB, and σ2
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