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aLaboratoire Jean Kuntzmann, Université de Grenoble and CNRS, BP 53, 38041
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Abstract

We prove nonexistence of breathers (spatially localized and time-periodic oscilla-
tions) for a class of Fermi-Pasta-Ulam lattices representing an uncompressed chain
of beads interacting via Hertz’s contact forces. We then consider the setting in which
an additional on-site potential is present, motivated by the Newton’s cradle under
the effect of gravity. Using both direct numerical computations and a simplified
asymptotic model of the oscillator chain, the so-called discrete p-Schrödinger (DpS)
equation, we show the existence of discrete breathers and study their spectral prop-
erties and mobility. Due to the fully nonlinear character of Hertzian interactions,
breathers are found to be much more localized than in classical nonlinear lattices
and their motion occurs with less dispersion. In addition, we study numerically the
excitation of a traveling breather after an impact at one end of a semi-infinite chain.
This case is well described by the DpS equation when local oscillations are faster
than binary collisions, a situation occuring e.g. in chains of stiff cantilevers decorated
by spherical beads. When a hard anharmonic part is added to the local potential, a
new type of traveling breather emerges, showing spontaneous direction-reversing in
a spatially homogeneous system. Finally, the interaction of a moving breather with
a point defect is also considered in the cradle system. Almost total breather reflec-
tions are observed at sufficiently high defect sizes, suggesting potential applications
of such systems as shock wave reflectors.
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1 Introduction

The study of nonlinear waves in granular crystals is the object of intensive
research, both from a theoretical perspective and for practical purposes, e.g.
for the design of shock absorbers [33,64,26], acoustic lenses [68] or diodes [6].
Due to the nonlinear interactions between grains, several interesting types of
localized waves can be generated in chains of beads in contact. Solitary waves
are the most studied type of excitations and can be easily generated by an
impact at one end of a chain [58,21,32,51,1,60,64]. These solitary waves, in the
absence of an original compression in the chain (the so-called precompression),
differ from classical ones (i.e. KdV-type solitary waves [27]) due to the fully
nonlinear character of Hertzian contact interactions. Indeed, their decay is
super-exponential and their width remains unchanged with amplitude [20,69].

Another interesting class of excitations consists of time-periodic and spatially
localized oscillations. Such waves may correspond to Anderson modes [34] in
the presence of spatial disorder, or to defect modes localized at an impurity
in a granular chain under precompression [70]. A different class of spatially
localized oscillations that occur in the absence of defects consists of discrete
breathers, which originate from the combined effects of nonlinearity and spa-
tial discreteness (see the reviews [23,24]). These waves exist in diatomic gran-
ular chains under precompression [7,71,38], with their frequency lying between
the acoustic and optic phonon bands and can be generated e.g. through mod-
ulational instabilities. However, because precompression suppresses the fully
nonlinear character of Hertzian interactions, these excitations inherit the usual
properties of discrete breathers, i.e. their spatial decay is exponential and their
width diverges at vanishing amplitude, i.e. for frequencies close to the bottom
of the optic band [38].

For granular systems without precompression, the above discussion raises the
question of existence of spatially localized oscillations. Defect modes induced
by a mass impurity have been numerically observed on short transients in
unloaded granular chains [31,42], but the existence of permanent localized os-
cillations remains an open question. In this paper, we give a partial answer to
this problem by showing the nonexistence of time-periodic spatially localized
oscillations in uncompressed granular chains. This result seems surprising at
a first glance, because Hertzian models of granular chains fall within the class
of Fermi-Pasta-Ulam (FPU) lattices, which sustain discrete breathers under
some general assumptions on the interaction potentials and particle masses
(see [59] and references therein). However these conditions do not hold for un-
compressed granular chains. Using a simple averaging argument, we show that
the non-attracting character of Hertzian interactions between grains (repulsive
under contact, and vanishing in the absence of contact) precludes the existence
of time-periodic localized oscillations, both for spatially homogeneous systems
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and for inhomogeneous chains.

However, in contrast to the above picture, the existence of discrete breathers in
a chain of linear oscillators coupled by Hertzian potentials has been recently
reported [41]. This model with an on-site potential describes e.g. the small
amplitude waves in a Newton’s cradle [35], which consists of a chain of beads
attached to pendula (see figure 1, left). In [41], static and moving breathers
were numerically observed as a result of modulational instabilities of periodic
traveling waves, and extremely stable static breathers were generated from
specific initial conditions. In addition, a reduced model, the so-called discrete
p-Schrödinger (DpS) equation was derived as an asymptotic model for small
amplitude oscillations in the Newton’s cradle, and successfully reproduced the
above localization phenomena. The discrete breathers possess special proper-
ties both in the original cradle model and the simplified DpS system, i.e. their
spatial decay is super-exponential and their width remains nearly constant at
small amplitude.

Fig. 1. Left : prototypical Newton’s cradle. Right : array of clamped cantilevers
decorated by spherical beads (displacements are amplified for clarity).

In this paper we extend the above results in three directions. The first one
concerns traveling breather excitations, i.e. localized waves displaying an inter-
nal oscillation in addition to their translational motion. We show numerically
that such waves can be excited very simply in the cradle system by an impact
at one end of a semi-infinite chain, and check that this dynamics is also re-
produced by the DpS model. We also discuss some unusual properties of the
moving breathers obtained in this way. Due to the fully nonlinear Hertzian
interactions, these breathers display a strong localization (super-exponential
decay) and their dispersion remains very weak during propagation. In contrast,
introducing a precompression attenuates spatial localization and enhances dis-
persive effects (due to the fact that precompression adds effectively a linear
component to Hertzian interactions). We illustrate this idea using both nu-
merical simulations and the discrete nonlinear Schrödinger equation, which
allows us to approximate small amplitude traveling breathers under the effect
of precompression. In addition, we check that the whole phenomenology re-
mains valid at small amplitude when the linear local potential is replaced by
a smooth anharmonic potential. However, such local nonlinearities yield addi-
tional phenomena, such as the excitation of a surface mode after the impact
for soft local potentials, and for hard potentials the occurence of a direction-

3



reversing traveling breather. The latter is reminiscent of excitations known as
“boomerons” (direction-reversing solitons) that were found up to now only in
particular integrable models (see [16] and references therein).

Our second contribution concerns the computation of static breathers in the
Newton’s cradle and their numerical continuation. Using a modified Gauss-
Newton method introduced in [10], we obtain branches of site- and bond-
centered breathers parametrized by their frequency ω > ω0 (ω0 being the
frequency of the local linear oscillators). These branches bifurcate from the
trivial equilibrium when ω → ω0 and can be continued up to a strongly non-
linear regime. Moreover, the Floquet spectra of these breathers display (in
addition to the usual double eigenvalue +1) an extra pair of eigenvalues very
close to unity. As an effect of this near-degeneracy, small perturbations of the
breathers along an associated pinning mode generate a translational motion
with negligible radiation, according to the process analyzed in [2]. This pro-
vides a connection between these standing breathers and the traveling ones
mentioned above. In addition to these numerical computations, we obtain
an analytical quasi-continuum approximation of the breather profiles valid
at small amplitude. These approximate breathers have a compact support,
which provides a reasonable approximation to the super-exponential decay
of the exact breathers. This situation is analogous to what is known for the
approximation of solitons in uncompressed granular chains [58,20].

Lastly, we examine possible experimental realizations of these kinds of granu-
lar lattices and the related observation of moving breathers after an impact, as
well as their potential practical usefulness (e.g., in the form of granular protec-
tors; see below). In the usual Newton’s cradle, the period of local oscillations
(of the order of a second) is much larger than the collision time between two
beads (typically of the order of 0.1 ms [49]), so the propagation of compression
pulses and the oscillatory dynamics occur on two well-separated time scales.
Moreover, as shown in the present paper, the DpS regime giving rise to discrete
breathers is realized when local oscillations are faster than binary collisions.
As a consequence, moving breathers would not be observable in practice in a
Newton’s cradle. However, we argue that reasonably simple mechanical sys-
tems could be tailored so that the oscillation and collision time scales become
similar and the DpS regime takes place. As a prototype for which this situa-
tion occurs, we consider the chain of identical clamped cantilevers represented
in figure 1. Each cantilever is decorated by two spherical beads attached to its
center, and the beads of two successive cantilevers are tangent at the ground
state. Using a reduced oscillator chain model of this system (calibrated for
realistic material parameter values), we check that an impact on the first can-
tilever generates a moving breather. In addition, we argue that such devices
may have potential applications as granular protectors. Indeed, we observe
that moving breathers can be almost totally reflected by a localized impurity.
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The outline of the paper is as follows. In section 2 we prove the non-existence
of time-periodic spatially localized oscillations in a broad class of Fermi-Pasta-
Ulam lattices with non-attracting interactions, including uncompressed gran-
ular chains. Section 3 studies the properties of static and moving breathers
in granular chains with on-site potentials and in the DpS equation, and high-
lights the relation between the two models. The new effects introduced by local
anharmonic potentials are also discussed. In addition we introduce the mixed
granular-cantilever chain, and analyze an impact problem in this system in
connection with the previous findings. Section 4 illustrates how precompres-
sion modifies the properties of localized waves. Lastly, section 5 concludes this
study and analyzes the results from a more general perspective, in connection
with possible experiments.

2 Non-existence of breathers in FPU chains with repulsive inter-

actions

We consider an infinite chain of particles of masses mn > 0, interacting with
their nearest neighbors via anharmonic potentials Vn. This type of system
(which can be thought of in general, i.e., for unequal masses mn, as a spatially
inhomogeneous FPU lattice) corresponds to the Hamiltonian

H =
∑

n∈Z

mn

2
ẋ2
n + Vn(xn+1 − xn) (1)

where xn denotes the particle displacements from the ground state. We con-
sider interaction potentials Vn of the form

Vn(x) = Wn[(−x)+],

where (a)+ = max(a, 0), Wn ∈ C1(R+,R+), W ′
n(0) = 0 and W ′

n(x) > 0 for all
x > 0. The form of Vn implies that particle interactions are repulsive under
compression (i.e. for x < 0) and unilateral (interaction forces vanish under
extension, i.e. for x > 0).

Moreover we assume

W ′
n(x) ≤ f(x) ∀x ∈ [0, r], ∀n ≥ n0, (2)

for some real constant r > 0, integer n0 and a monotone increasing function
f ∈ C0([0, r]) satisfying f(0) = 0. For example, these assumptions are satisfied
with f(x) = supn≥n0

W ′
n(x) if the functions Wn are convex in [0, r] and belong

to some finite set for n ≥ n0 (this is the case in particular for spatially periodic
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systems). Another example is given by Hertzian interactions

Wn(x) =
1

αn + 1
γn x

αn+1,

where the coefficients γn, αn > 0 depend on material properties and particle
geometry. In that case one can choose f(x) = γ xα (and r = 1) provided
γn ≤ γ and αn ≥ α > 0 for all n ≥ n0.

The Hamiltonian (1) leads to the equations of motion

mn ẍn = V ′
n(xn+1 − xn)− V ′

n−1(xn − xn−1), n ∈ Z. (3)

In what follows we show that under the above assumptions, the only time-
periodic breather solutions of (3) are trivial equilibria. Due to the transla-
tional invariance of (1), breathers are defined as time-periodic solutions which
converge (uniformly in time) towards translations xn = c± ∈ R as n → ±∞.
This implies that relative particle displacements vanish at infinity, i.e. one has

lim
n→±∞

‖xn − xn−1‖L∞(0,T ) = 0 (4)

for a T -periodic breather. In what follows, we prove in fact a more general
nonexistence result of nontrivial periodic solutions vanishing as n → +∞.

Theorem 1 All time-periodic solutions of (3) satisfying

lim
n→+∞

‖xn − xn−1‖L∞ = 0 (5)

are independent of t and increasing with respect to n.

Proof. Let us consider a T -periodic solution of (3) and integrate (3) over one
period. This yields the equality

F̄n = F̄n+1,

where F̄n = 1
T

∫ T
0 V ′

n−1(xn(t)− xn−1(t)) dt is the average interaction force be-
tween masses n− 1 and n. Consequently F̄n = F̄ is independent of n.

Now let us check that F̄ vanishes thanks to the bound (2) uniform in n. We
have for all n

|F̄ |= 1

T

∫ T

0
W ′

n−1[ (xn−1(t)− xn(t))+ ] dt

≤‖W ′
n−1[ (xn−1 − xn)+ ]‖L∞ .
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Taking into account (5) and (2), the above inequality yields for n large enough

|F̄ | ≤ ‖f [ (xn−1 − xn)+ ]‖L∞ = f [‖(xn−1 − xn)+‖L∞ ]

since f is increasing. It follows that

|F̄ | ≤ f(‖xn−1 − xn‖L∞) → 0 as n → +∞

hence F̄ = 0.

Now we use the fact that the interactions between particles are repulsive, i.e.
we have −V ′

n(x) = W ′
n[ (−x)+ ] ≥ 0. Since the T -periodic functions Fn(t) =

V ′
n−1(xn(t) − xn−1(t)) are negative, continuous and satisfy

∫ T
0 Fn(t) dt = 0

as shown previously, we have consequently Fn(t) = 0 for all t and n. Using
(3), this implies ẍn = 0 and thus xn is an equilibrium solution (due to time-
periodicity). Moreover one has xn ≥ xn−1 since Fn = 0.

We note that the above arguments do not work if an on-site potential is added
to (1), because the average interaction forces are no more independent of n.
In the next section, we numerically show the existence of breathers for such
type of nonlinear lattices.

3 Granular chains with local potentials and their correspondence

to the DpS Equation

We consider a nonlinear lattice with the Hamiltonian

H =
∑

n

1

2
ẏ2n +W (yn) + V (yn+1 − yn), (6)

where

V (r) =
2

5
(−r)

5/2
+ . (7)

The system (6) corresponds to a chain of identical particles in the local poten-
tial W , coupled by the classical Hertz potential V describing contacts between
smooth non-conforming surfaces. Unless explicitly stated, the on-site potential
W will be chosen harmonic with

W (y) =
1

2
y2. (8)

In that case, the dynamical equations read

ÿn + yn = (yn−1 − yn)
3/2
+ − (yn − yn+1)

3/2
+ . (9)

Figure 1 depicts two examples of such systems. In practical situations, the
assumption of a local harmonic potential implies that the model will be valid
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for small amplitude waves and suitable time scales on which higher order terms
can be neglected. In order to capture higher order effects, different parts of
our analysis will be extended to symmetric anharmonic local potentials

W (y) =
1

2
y2 +

s

4
y4, (10)

where the parameter s measures the degree of anharmonicity.

In the work [41], long-lived static and traveling breather solutions of (9) have
been numerically observed, starting from suitably chosen localized initial con-
ditions, or from small perturbations of unstable periodic traveling waves. How-
ever, the classical result of MacKay and Aubry [50] proving the existence of
static breathers near the anti-continuum limit does not apply in that case.
Indeed, if Hertzian interactions forces are cancelled (or equivalently, if one
considers breathers in the limit of vanishing amplitude), one obtains an in-
finite lattice of identical linear oscillators, and the nonresonance assumption
of reference [50] is not satisfied. Moreover, other existence proofs based on
spatial dynamics and the center manifold theorem [40] do not apply, due to
the fully-nonlinear character of interaction forces (the same remark holds true
in the case of traveling breathers [36,39,66]). Variational tools [3,59] may be
suitable to obtain existence proofs in this context, but this question is outside
the scope of the present paper, where we shall resort chiefly to numerical and
asymptotic methods.

In section 3.1, we recall the relation between (9) and the DpS equation derived
in [41]. In section 3.2, we numerically compute breather solutions of (9) by
the Newton method, and compare them to a quasi-continuum approximation
deduced from the DpS equation. Section 3.3 concerns the stability and mobility
of breathers in model (6)-(10) and the DpS equation, and the generation of
traveling breathers by an impact is studied in the same models in section
3.4. In section 3.5, we consider a general class of granular chains with local
potentials, and show that the DpS regime occurs in the above impact problem
when local oscillations are faster than binary collisions. Section 3.6 provides
an application of the above results to a chain of stiff cantilevers decorated by
spherical beads.

3.1 The discrete p-Schrödinger equation

Small amplitude solutions of system (6)-(8) can be well approximated by an
equation of the nonlinear Schrödinger type, namely the discrete p-Schrödinger
(DpS) equation with p = 5/2

i v̇n = (vn+1 − vn)|vn+1 − vn|p−2 − (vn − vn−1)|vn − vn−1|p−2. (11)
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The most standard model reminiscent of this family of equations is the so-
called discrete nonlinear Schrödinger (DNLS) equation, studied in detail in a
number of different contexts, including nonlinear optics and atomic physics
over the past decade [45,19]. However, the DpS equation is fundamentally
different in that it contains a fully nonlinear inter-site coupling term, corre-
sponding to a discrete p-Laplacian.

To make the connection with the DpS equation more precise, we sum up some
basic elements of the analysis of [41]. Let us consider the lattice model (9) and
the DpS equation

2iτ0Ȧn = (An+1 −An) |An+1 − An|1/2 − (An − An−1) |An −An−1|1/2, (12)

where the time constant τ0 reads

τ0 =
5(Γ(1

4
))2

24
√
π

≈ 1.545

and Γ denotes Euler’s Gamma function. Given a solution of (12) and ǫ > 0
small enough, one obtains an approximate solution of (9)

yappn (t) = 2 ǫRe [An(ǫ
1/2t) eit ]. (13)

The approximate solution (13) and amplitude equation (12) have been derived
in [41] using a multiple-scale expansion. According to [18], for initial conditions
of the form yn(0) = 2 ǫRe [An(0) ]+O(ǫ3/2), ẏn(0) = −2 ǫ Im [An(0) ]+O(ǫ3/2)
with ǫ ≈ 0, this approximation is O(ǫ3/2)-close to the exact solution of (9) at
least up to times t = O(ǫ−1/2) (see also numerical results of [41] comparing
the DpS approximation and exact solutions of (9)). Moreover, for some family
of periodic traveling wave solutions of the DpS equation, the ansatz (13) is
O(ǫ3/2)-close to exact small amplitude periodic traveling waves of (9) [41].

Lastly, it is interesting to mention that the DpS equation depends on the terms
of (9) up to order O(|y|3/2) (see [41], section 2.1). It follows that this equa-
tion remains unchanged for smooth anharmonic on-site potentials W (y) =
1
2
y2 +O(|y|3), because the associated extra nonlinearity is at least quadratic.

Consequently, the addition of a local anharmonicity doesn’t change the dy-
namics of (9) for small amplitude waves, on the timescales governed by the
DpS equation.

3.2 Computation of static breathers

The work of [41] illustrated the existence of time-periodic and spatially local-
ized solutions of the DpS equation. Figures 2 and 3 (top panels) display the
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profiles of spatially antisymmetric or symmetric breather solutions of the DpS
equation (11). These are sought by using the standard stationary ansatz for
DNLS type equations of the form vn = exp(iµt) un with µ > 0 and un ∈ R.
The resulting coupled nonlinear algebraic equations read

−µun = (un+1 − un)|un+1 − un|1/2 − (un − un−1)|un − un−1|1/2 (14)

and are solved via a fixed point iteration of the Newton-Raphson type, for free
end boundary conditions.

Note that equation (11) has a scale invariance, since any solution vn(t) gener-
ates a one-parameter family of solutions a vn(|a|1/2 t), a ∈ R. Thanks to this
scale invariance, the whole families of antisymmetric and symmetric breathers
can be reconstructed from the case µ = 1 of (14). In particular, breather am-
plitudes are ∝ µ2 and the breather width remains unchanged when µ → 0, a
property that strongly differs from the broadening of DNLS breathers at small
amplitude (see e.g. [12], section 3).

In what follows we approach the two breather profiles using a quasi-continuum
approximation. Fixing µ = 1 and introducing

wn = (un+1 − un) |un+1 − un|1/2,

equation (14) becomes

wn+1 − 2wn + wn−1 + wn |wn|−1/3 = 0, (15)

where the nonlinear coupling has been linearized (at the expense of having
an on-site nonlinearity non-differentiable at the origin). The spatial profiles of
figures 2 and 3 suggest to use the so-called staggering transformation wn =
(−1)n f(n), which yields

f(n+ 1)− 2f(n) + f(n− 1) = −4f(n) + f(n) |f(n)|−1/3. (16)

Now we look for an approximate solution F of (16). For this purpose we use
the formal approximation F (n ± 1) ≈ F (n) ± F ′(n) + 1

2
F ′′(n), in same the

spirit as the approximations of soliton profiles performed in reference [58]
(the accuracy of this approximation will be checked a posteriori by numerical
computations) 2 . This leads to the differential equation

F ′′ = −4F + F |F |−1/3, (17)

2 Note that wn corresponds to a spatially modulated binary oscillation, and a con-
tinuum approximation is obtained for its envelope, whereas the continuum approx-
imation of [58] was performed on the full soliton profiles.
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which possesses a family of compactly supported solutions F (x) = ±g(x+φ),
where

g(x) =
( 3

10

)3
cos6

(x

3

)

for |x| ≤ 3π

2
, g = 0 elsewhere.

Replacing f by its approximation F and performing appropriate choices of
sign and spatial shifts in F , one obtains the symmetric approximate solutions
of (15)

w(1)
n = (−1)n+1g(n), w(2)

n = (−1)n+1g(n+
1

2
).

The case µ = 1 of (14) yields un = wn−1 − wn, therefore we get the fol-
lowing quasi-continuum approximations of the antisymmetric and symmetric
breather profiles

u(1)
n = (−1)n [g(n) + g(n− 1)], (18)

u(2)
n = (−1)n [g(n+

1

2
) + g(n− 1

2
)]. (19)

The first graphs of figures 2 and 3 show the excellent agreement of these
approximations with the numerical solutions of the stationary DpS equation.
Returning to the ansatz (13) and the time-dependent (non-renormalized) DpS
equation (12), we obtain approximate breather solutions of (9) taking the form

y(s)n (t) = 2ǫ u(s)
n cos (ωbt), ωb = 1 +

ǫ1/2

2τ0
, s = 1, 2. (20)

It is interesting to observe that approximation (20) is unaffected by smooth
on-site nonlinear terms for ǫ ≈ 0, since we have noticed that the DpS equation
remains unchanged.

In what follows we compare the above approximations with breather solu-
tions of (9) computed numerically for free end boundary conditions. Let us
note Yn = (yn, ẏn). We use a method described in [10] to compute zeros
Yn(0) = (yn(0), 0) of the period map of the flow of (9) (these initial condi-
tions correspond to breathers even in time). The method of [10] is based on
an adapted Gauss-Newton scheme and path-following.

An example of computation of a breather with frequency ωb = 1.1 is shown in
figure 4. The initial guess used for the Newton method is the site-centered ap-
proximate breather solution derived from the DpS equation. After 5 iterations,
the relative residual error

E =
‖{Yn(Tb)− Yn(0)}n‖∞

‖{Yn(0)}n‖∞
, Tb =

2π

ωb
,

reaches 1.5.10−9 and the relative variation (measured using sup norms) of par-
ticle positions between successive iterates drops to 1.7.10−11. Figure 4 com-
pares the initial breather positions computed by the Newton method and
their evolution at t = 100 Tb, which shows that the breather oscillations are
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extremely stable. The super-exponential spatial decay of the breather is shown
in figure 5.

Using the above numerical scheme, we obtain two branches of breather solu-
tions of (9) with different symmetries, parametrized by their frequency ωb > 1.
They consist of bond-centered breathers, i.e. spatially antisymmetric solutions
satisfying y−n+1 = −yn (figure 2) and site-centered breathers (figure 3). The
latter possess subtle symmetry properties. Since the Hertz potential is non-
even, equation (9) is not invariant by the symmetry Syn := y−n. However,
the set of Tb-periodic solutions of (9) is invariant under the transformation
S ′yn(t) = −y−n(t+ Tb/2). The site-centered breathers of (9) are left invariant
by S ′ and not by S (their asymmetry under S increases with ωb and becomes
visible in the bottom panel of figure 3). On the contrary, the DpS equation
admits both symmetries S and S ′, which both leave the site-centered DpS
breathers invariant.

These different types of symmetries are illustrated by figures 2 and 3, which
compare the approximations (20) with breather solutions of (9) computed by
the Newton method (middle and bottom plots). While approximation (20) is
excellent at small amplitude (case ωb = 1.01), its accuracy deteriorates in a
more strongly nonlinear regime (case ωb = 1.1).

More details on the continuation of discrete breathers in ωb are shown in figure
6, which compares the maximal amplitude and the energy of the bond-centered
and site-centered breather solutions of (9) when ωb is varied (the continuation
is performed for ωb ∈ (1, 2]). Both solutions bifurcate from yn = 0 when
ωb → 1+, and their amplitude and energy increases with ωb. While minor
differences between the breather amplitudes are visible, one observes that the
respective energy curves are indistinguishable.

More generally, considering system (6) with the local anharmonic potential
(10) and choosing s ∈ [−1, 1], we obtain branches of site-centered and bond-
centered breathers bifurcating from the origin when ωb → 1+ (results not
shown). The persistence of both types of symmetries is due to the evenness of
W .

In what follows we study in more detail the energy barrier separating site-
centered and bond-centered breathers. As illustrated below in section 3.3, this
allows us to approximate the so-called Peierls-Nabarro energy barrier, which
corresponds to the amount of energy required to put a stable static breather
into motion under a momentum perturbation.

A notion of energy barrier separating discrete breathers is usually defined as
follows (cf. also [52]). From (18)-(20), one can deduce a family of approximate
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Fig. 2. Top panel: spatially antisymmetric solution of the stationary DpS equation
(14), computed numerically for µ = 1 (marks). This solution is compared to the

quasi-continuum approximation u
(1)
n defined by equation (18) (continuous line). The

other graphs compare a bond-centered breather solution of (9) computed numer-

ically (marks) and its quasi-continuum approximation y
(1)
n (continuous line). The

middle plot corresponds to a small amplitude breather (ωb = 1.01), and the bottom
plot to a more strongly nonlinear regime (ωb = 1.1).

static breather solutions of (6)-(10)

yn(t) = 2ǫ [g(n+
1

2
−Q) + g(n− 1

2
−Q)](−1)n cos (ωbt), (21)

where ωb = 1 + ǫ1/2

2τ0
and Q ∈ R (the cases Q = 0 and Q = 1/2 corresponding

respectively to site-centered and bond-centered breathers). According to the
works of [52,44,65], approximate traveling breather solutions of (6)-(10) can be
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Fig. 3. Top panel: spatially symmetric solution of the stationary DpS equation
(14), computed numerically for µ = 1 (marks). This solution is compared to the

quasi-continuum approximation u
(2)
n defined by equation (19) (continuous line). The

other graphs compare a site-centered breather solution of (9) computed numerically

(marks) and its quasi-continuum approximation y
(2)
n (continuous line). The middle

plot corresponds to a small amplitude breather (ωb = 1.01), and the bottom plot to
a more strongly nonlinear regime (ωb = 1.1).

obtained from (21). Their dynamics is described by an effective Hamiltonian,
whose critical points correspond to site-centered and bond-centered breathers
having the same area

A =
∫ 2π/ωb

0

∑

n

ẏ2n dt.

The absolute energy difference ẼPN between the two breather solutions pro-
vides an approximation of the Peierls-Nabarro barrier. However, because the
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Fig. 5. Moduli of the initial breather positions computed by the Newton method,
plotted in semi-logarithmic scale. Computations are performed for a chain of 99
particles and a site-centered breather with frequency ωb = 1.1.

latter appears to be very small in system (6)-(10) (a phenomenon that will be
illustrated in section 3.3), a very precise computation of ẼPN would be neces-
sary. This yields additional numerical difficulties, due to the fact that the two
breather frequencies have to be retrieved from a given area A. Due to these
difficulties, we shall use a more straightforward approach and define (following
ref. [14]) the approximate Peierls-Nabarro barrier EPN as the absolute energy
difference between site-centered and bond-centered breathers having the same
frequency ωb.

We obtain extremely small values of EPN both for harmonic and anharmonic
on-site potentials, even quite far from the small amplitude regime. This result
is illustrated by figure 7 for s = −1/6, s = 0 and s = 1. For small amplitude
breathers (ωb ≈ 1.01 in our computations), the different values of s yield
comparable values of EPN , of the order of 10−14 − 10−15. We find that EPN
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solutions of (9) as a function of their frequency ωb. The continuous line corresponds
to bond-centered breathers, and the dashed line to site-centered breathers. Notice
that the energy curves are indistinguishable.

increases with the breather amplitude but remains very small in our parameter
range (e.g. EPN is close to 10−4 for ωb = 1.5 and s = −1/6). The harmonic case
yields even much smaller barriers (by 3− 4 orders of magnitude for ωb = 1.3).
As shown by figure 7, the smaller relative energy difference between site-
centered and bond-centered breathers is also achieved in the harmonic case.
These results indicate that extremely small perturbations of the breathers are
capable of putting them into motion (even more critically for harmonic on-site
potentials), a phenomenon that will be illustrated in the next section.

3.3 Breather stability and mobility

In this section we examine the stability properties of spatially antisymmetric
and symmetric breather solutions of (11) and (6), and link these properties
with the existence of traveling breather solutions. The linear (spectral) sta-
bility of breather solutions of (11) is investigated by means of the perturba-
tion [45]:

vn(t) = exp(iµt) [un + (an exp(λt) + b⋆n exp(λ
⋆t))] (22)

where un is a spatially symmetric or antisymmetric solution of (14) homoclinic
to 0. The resulting linear problem for the eigenvalue λ and the eigenvector
(an, bn)

T (where T denotes transpose) is solved by standard numerical linear
algebra solvers and the results are depicted by means of the spectral plane
(λr, λi) of the eigenvalues λ = λr + iλi.

From the bottom panels of Fig. 8, we can infer that spatially antisymmetric
solutions are spectrally stable and therefore should be structurally robust (a
result confirmed by our direct numerical simulations –data not shown here–).
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Fig. 7. Approximate Peierls-Nabarro barrier computed as a function of breather
frequency, for different degrees of anharmonicity of the on-site potential (top left
plot : s = −1/6, top right plot : s = 0, bottom plot : s = 1). The red curves give the
energy Ebc of bond-centered breathers defined by (6). The blue curves correspond to
the approximate Peierls-Nabarro barriers EPN (see text), and the black curve to the
relative energy ratio EPN/Ebc between the energy barrier and the bond-centered
breather energy.

This is due to the absence of eigenvalues of non-vanishing real part in this
Hamiltonian system (in which whenever λ is an eigenvalue, so are λ⋆, −λ and
−λ⋆).

On the other hand, the stability and associated dynamical properties are more
interesting in the case of the site-centered solution of Fig. 9. In this case, we
can observe the presence of a real eigenvalue pair. As can be seen in the
bottom panel of Fig. 9, the real part of the relevant eigenvalue pair (which
corresponds to the instability growth rate) grows linearly with the eigenvalue
parameter µ, inducing a progressively stronger instability for larger ampli-
tude solutions. The dynamical manifestation of this instability is illustrated
in Figure 10. Here we perturb the dynamically unstable solution of the right
panel of Fig. 9 by a uniformly distributed random perturbation (of amplitude
0.01). The projection of this random field on the unstable eigenvector of the
site centered mode excites the manifestation of the dynamical instability of
this mode which is, in turn, illustrated in the space-time evolution (where the
colorbar corresponds to the field |vn(t)|2) of Fig. 10. Clearly, the instability of

17



−10 0 10
−0.05

0

0.05

u n

n −10 0 10
−5

0

5

u n

n

−1 0 1
−2

0

2

λ i

λ
r −1 0 1

−10

0

10

λ i

λ
r

Fig. 8. The profiles (top panels) and the linear stability (bottom panels) of the
spatially antisymmetric solution of the DpS equation are shown for the values of
µ = 1 (left panels) and µ = 10 (right panels). This inter-site solution is linearly
stable.

the site-centered mode is associated with a “translational” eigenmode of the
linearization problem, whose excitation induces the motion of the localized
mode.

In the above analysis, the breather stability properties remain qualitatively
unchanged for all values of µ. This follows from the scale invariance of (11)
pointed out in section 3.2, which also implies the linear dependence of the
eigenvalues λ on µ. However, we note in passing that this simplification is
obviously not valid for the model (9).

Having determined the spectral stability of bond-centered and site-centered
breather solutions in the DpS equation, we now consider the same problem for
their analogues in the original lattice (6), including in our analysis the effect
of a possible addition of a local anharmonic potential (10).

We have computed the Floquet spectrum of (6)-(10) linearized at the bond-
centered breather and the site-centered breather, for different values of the
breather frequency ωb ∈ (1, 2] and the anharmonicity parameter s ∈ [−1, 1].
The Floquet spectrum includes a quadruplet of eigenvalues close to +1 and
eigenvalues on the unit circle accumulating near e±i2π/ωb . The spectral proper-
ties of these discrete breathers differ from usual ones [54] for several reasons.
Firstly, no bands of continuous spectrum are present on the unit circle for the
infinite chain. This is due to the fact that system (9) linearized at yn = 0 (the
limit of a breather solution at infinity) consists of an infinite chain of uncou-
pled identical linear oscillators, and thus the phonon band reduces to a single
frequency, equal to unity in the present case. Secondly, another nonstandard
property originates from the quadruplet of eigenvalues close to +1. Due to
the Hamiltonian character of (9), +1 is always at least a double eigenvalue of
the Floquet matrix. In addition, we always find an extra pair of eigenvalues
in the immediate vicinity of +1 corresponding to a pinning mode (see below).
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Fig. 10. The figure shows the space-time contour plot of the square modulus of
the field |vn(t)|2 for equation (11). The initial condition is a site-centered localized
mode (from the right panel of Fig. 9), perturbed by a uniformly distributed random
perturbation of amplitude 0.01. The perturbation leads to the manifestation of the
instability of the site-centered mode which, in turn, leads to its mobility.

This contrasts with the case of Klein-Gordon lattices, where this situation is
a codimension-one phenomenon, occuring near critical values of the coupling
constant and for particular classes of on-site potentials [2,9,4].

In what follows we describe the evolution of the quadruplet of eigenvalues close
to +1 for ωb = 1.1 and s ∈ [−1, 1]. The following figures display the moduli
and arguments of these eigenvalues for the bond-centered breather (figure 11)
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and the site-centered breather (figure 12). For the bond-centered breather, a
pair of Floquet multipliers λ, λ−1 emerges from the unit circle after a collision
at +1, for s > sb0 ≈ 0.26. For the site-centered breather, a pair of multipliers
λ, λ−1 (with λ > 1) exists for s < ss0 ≈ 0.05, and enters the unit circle for
s > ss0 after a collision at +1.
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Fig. 11. Arguments (upper plot) and moduli (lower plot) of the quadruplet of Flo-
quet eigenvalues λ close to +1, corresponding to system (9)-(10) linearized at the
bond-centered breather. Computations are performed for ωb = 1.1, and eigenvalues
are plotted as a function of the anharmonicity parameter s ∈ [−1, 1].
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Fig. 12. Same plot as in figure 11, for the site-centered breather with ωb = 1.1.

From the above spectral study, one can infer that for harmonic on-site poten-
tials (i.e. s = 0) and ω = 1.1, the site-centered breather is weakly unstable
and the bond-centered breather is spectrally stable. These results agree with
the above results obtained for the DpS equation. This provides a consistent
picture, given that the DpS equation correctly approximates breather profiles
of amplitudes ǫ = O((ωb − 1)2) for ωb ≈ 1 (section 3.2). The DpS admits
weakly unstable site-centered and stable bond-centered breather solutions,
and approximates the dynamics of (9) for O(ǫ) initial data on times of order
O(ǫ−1/2) [18]. Hence, we expect a parallel to the instability of site-centered
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modes of the DpS dynamics in Eq. (9). Note that these instabilities are ex-
tremely small for ωb close to 1, because the instability of the site-centered
breather is already very weak at the renormalized (slow) time-scale of the
DpS equation (see figure 9), and becomes O(ǫ1/2) times weaker at the level of
(9) for a breather with amplitude ǫ.

The above picture persists for s ≈ 0, but the site-centered and bond-centered
breathers display a change of stability at the two different critical values s =
sb,s0 > 0 (ss0 being quite small), after which their dynamical stability differs
from the stability of the DpS breathers. It would be interesting to analyze the
bifurcations of new types of discrete breathers near these critical values of s,
and this problem will be considered in a future work.

In what follows we illustrate the effect of the additional Floquet eigenvalues
close to +1 on the breather dynamics, again considering the case ωb = 1.1.
Figure 13 compares an eigenvector associated with one of these eigenvalues
and the renormalized discrete gradient

gn =
yn+1(0)− yn−1(0)

∑

n |yn+1(0)− yn−1(0)|2
,

which reveals that the two profiles are very close. The associated mode will
thus be referred to as a translation mode or pinning mode, and the effect
of a perturbation along its direction is to shift the breather center [9]. The
existence of this mode has the effect of enhancing the breather mobility. To
illustrate this, we perturb at t = 0 the velocity components of a stationary
breather, adding the discrete gradient gn multiplied by a velocity factor c.
The kinetic energy imprinted to the lattice is then c2/2. We consider below
the energy density at the n-th site, which is defined from (6):

en =
1

2
ẏ2n +W (yn) +

2

5
γ(yn − yn+1)

5/2
+ . (23)

Fig. 14 shows the energy density plot in the system of Eqs. (6)-(8), for a site-
centered and a bond-centered breather perturbed with c = 2 × 10−4. This
perturbation results in a translational motion of the breather at an almost
constant velocity with negligible dispersion, which illustrates the strong mo-
bility of discrete breathers in the present model. These results are consistent
with the approximation EPN of the Peierls-Nabarro barrier computed previ-
ously, since we found EPN ≈ 1.77.10−11 for s = 0 and ωb = 1.1 (see figure
7). The above momentum perturbation increases the kinetic energy of the
bond-centered breather by c2/2 = 2× 10−8, which is well-above EPN .

To describe the effect of breather perturbations below the Peierls-Nabarro
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barrier, it is convenient to consider the breather energy center

X =

∑n′+m
n=n′−m nen

∑n′+m
n=n′−m en

(24)

with n′ being the location of the maximum energy density of the breather and
m > 0 an integer which accounts for the width of the breather (we have fixed
m = 5). Figure 15 displays X(t) for c = 3.10−6, i.e. c2/2 = 4.5 × 10−12 lying
below EPN . In that case, only the unstable site-centered breather is able to
move along the lattice (it is able to jump 2 sites but gets pinned subsequently).
For the stable bond-centered breather, a transition from pinning to mobility
is obtained for c > cc ≈ 6.19.10−6. The value of the Peierls-Nabarro barrier
resulting from dynamical simulations is thus c2c/2 ≈ 1.92.10−11, which is quite
close to the approximation EPN computed previously.
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Fig. 13. Pinning mode (full line) and discrete gradient (dashed line) corresponding
to a bond-centered (left plot) and site-centered (right plot) stationary breather in
system (9), for the breather frequency ωb = 1.1. The components of the pinning
mode correspond to particle positions at t = 0 (initial particle velocities vanish).

3.4 Study of an impact problem

Having demonstrated the mobility of breather modes in the DpS equation, in
direct analogy with the dynamics of the full oscillator model, we attempt the
excitation of the first site of a Newton’s cradle and the associated DpS chain,
and observe the ensuing space-time evolution.

Consider the equation (12) on a semi-infinite lattice with n ≥ 1 and a free end
boundary condition at n = 1. We numerically compute the solution of (12)
with the initial condition

A1(0) = −i, An(0) = 0 for n ≥ 2. (25)

It can be clearly seen in Fig. 16 that the result is the formation of a localized
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Fig. 14. Energy density plot of a moving breather in system (6)-(8), obtained by per-
turbing along the pinning mode a bond-centered (left plot) and site-centered (right
plot) stationary breather with frequency ωb = 1.1. The initial velocity perturbation
has a magnitude c = 2× 10−4. The velocities v of resulting traveling breathers are
very close, i.e. v ≈ 5.446.10−4 for the site-centered case and v ≈ 5.364.10−4 for the
bond-centered case, resulting in nearly identical figures.
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Fig. 15. Time-evolution of the breather energy center after a momentum pertur-
bation of a bond-centered (full line) and site-centered (dashed line) breather. All
parameters are the same as in figure 14, except the initial velocity perturbation c.
We fix c = 3.10−6, which corresponds to an increase of kinetic energy below the
Peierls-Nabarro barrier.

excitation which is traveling robustly through the chain. This is the traveling
breather resulting from the mobility of the discrete breathers that we con-
sidered before. In addition to this strongly localized nonlinear excitation, we
can observe a weak residual excitation at the end of the chain (this is some-
what reminiscent of the phenomenology described in [32]). Strictly speaking,
we cannot consider this mode to be a surface mode of the chain [57], as our
observations indicate that its profile is fairly extended and non-stationary (or
periodic).

For all ǫ > 0 small enough, the above solution of DpS corresponds to an
approximate solution of (9) given by (13), satisfying yappn (0) = 0, ẏapp1 (0) =
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Fig. 16. The space-time evolution of the square modulus of the field, similarly to
Fig. 10, under the DpS equation is shown for an initial excitation of the domain
boundary site with An(0) = −i δn,1 (δi,j denotes the usual Kronecker symbol). The
corresponding spatial profile is depicted in the inset for the final shown simulation
time. Notice the robust propagating localized mode (traveling breather), as well as
the presence of a weak residual (fairly extended) excitation near the boundary.

2 ǫ+ O(ǫ3/2), ẏapp2 (0) = O(ǫ3/2) and ẏappn (0) = 0 for n ≥ 3. Figures 17 and 18
compare the corresponding approximate solution (13) and the solution of (9)
with initial condition

yn(0) = 0, ẏ1(0) = 2ǫ, ẏn(0) = 0 for n ≥ 2 (26)

for a small value of ǫ. One can see that the DpS equation and the full oscil-
lator model give rise to similar dynamics, i.e. the initial impulse splits into a
traveling breather and an extended wavetrain emitted from the boundary. The
amplitude of the latter is reasonably well reproduced by the DpS approxima-
tion over a long transient, while the traveling breather amplitude and velocity
are overestimated (e.g., the breather amplitude is approximately 13 × 10−4

with the DpS approximation and 9×10−4 for the full lattice). In addition, the
traveling breather velocity resulting from the DpS approximation is slightly
larger than in the full oscillator model. The same kind of waves are visible up
to moderate initial velocities. The traveling breather remains highly localized
(mainly supported by 7 lattice sites), and is followed by a small oscillatory
tail reminiscent of the periodic traveling waves analyzed in [41].

In what follows we analyze the effect of considering the local anharmonic
potential (10). Due to the smoothness of W , the DpS equation remains un-
changed with respect to the harmonic case, as observed in section 3.1. Conse-
quently, the dynamics of (9) after the impact is expected to remain unchanged
for small excitations, on the time scales given in section 3.1. However, it is
interesting to examine possible additional effects of anharmonicity occuring
on longer time scales or for large amplitude excitations. For example, a trap-
ping of large amplitude traveling breathers can occur in Klein-Gordon lattices
[14,52], due to the Peierls-Nabarro energy barrier separating site-centered and
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Fig. 18. Energy density plot showing the comparison between the solution of
(9)-(26) (left plot) and its approximation given by (12)-(13)-(25) (right plot), for
ǫ = 0.9548 × 10−3. Time t in the bottom plot is related to the slow time τ through
t = ǫ−1/2τ .

bond-centered breathers.

In order to characterize the breather motion we consider the traveling breather
energy center X(t) defined by (24). The average velocity of the traveling
breather is computed as the slope of the linear least squares approximation of
the function X(t), taking only into account the points for which the traveling
breather is sufficiently far from the boundary in order to eliminate boundary
effects. Figure 19 displays the traveling breather velocity and maximum energy
density (computed from (23)) as a function of the initial velocity ẏ1(0), for dif-
ferent values of the parameter s ≤ 0. As expected, the different graphs are very
close at small initial velocity where the DpS equation drives the dynamics, but
discrepancies appear at larger velocities. The graphs of figure 19 corresponding

25



to s < 0 are interrupted above some critical velocities, because the solution
blows-up in finite time when the initial velocity exceeds some threshold. Below
this value, the anharmonicity of the on-site potential with s < 0 decreases the
breather velocity. The energy of the traveling breather (including its kinetic
energy) becomes much smaller because a part of the initial energy remains
trapped in the form of a surface mode located near n = 1. This phenomenon
is illustrated in figure 20, which compares the traveling breather propagation
in two chains with s = 0 (left plot) and s = −0.7 (right plot), for ẏ1(0) = 0.94.
In the left panel, a highly-localized traveling breather is clearly visible, while
the right panel shows a surface mode and a lower-energy traveling breather
with smaller velocity. Typical profiles of the surface mode and the traveling
breather are displayed in figure 21. The possibility of exciting a surface mode
by an impact was already pointed out in reference [15], for a mixed Klein-
Gordon - FPU chain with a sinusoidal local potential, and a Morse interaction
potential instead of the fully-nonlinear Hertzian interactions.
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Fig. 19. Maximum energy density (left plot) and velocity (right plot) of the traveling
breather generated in system (6)-(10) with initial condition (26), for several values
of ẏ1(0) and anharmonicity parameter s ≤ 0.

Note that the above-mentioned blow-up phenomenon is due to potential (10)
with s < 0 and does not occur for W (y) = 1 − cos y, which corresponds
e.g. to the gravitational potential acting on the usual Newton’s cradle. In the
latter case, the dynamics resulting from the impact becomes rather similar
to the phenomena studied in [15]. For sufficiently large impact velocities the
traveling breather is replaced by a kink reminiscent of Nesterenko’s soliton
[58], resulting in the ejection of a finite number of particles at the end of the
chain (result not shown). It would be interesting to analyze how the transition
between traveling breather and kink excitations occurs in this system, but this
problem lies beyond the scope of the present paper.

In the case s > 0 of (10) we observe a different scenario illustrated by figure
22. The traveling breather doesn’t move at constant velocity, but instead be-
haves like a “bouncing ball” against the boundary at n = 1, i.e. it experiences
alternating phases of deceleration, direction-reversing, accelerated backward
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Fig. 20. Space-time diagrams showing the interaction forces fn = −(yn − yn+1)
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in system (6)-(10) for the initial condition (26) with ẏ1(0) = 0.94. Forces are repre-
sented in grey levels, white corresponding to vanishing interactions (i.e. beads not in
contact) and black to a minimal negative value of the contact force. Several values
of the anharmonicity parameter are considered : s = 0 (left plot), s = −0.7 (right
plot).
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Fig. 21. Snapshot of particle velocities in system (6)-(10) with anharmonicity pa-
rameter s = −1/6. The profile is plotted at t ≈ 587, for the initial condition (26)
with ẏ1(0) ≈ 1.87. The excitations of a surface mode and a traveling breather are
clearly visible.

motion towards the boundary, and rebound at the boundary (bottom panel
of figure 22). During a few rebounds, the breather center behaves like a New-
tonian particle in an almost constant effective force field. This phenomenon
seems to take place as soon as s > 0 (we have checked it for s ≥ 0.005), but not
for s = 0. The effective force field both increases with s and with the imprinted
initial velocity. For moderate initial velocities the traveling breather decelera-
tion is quite slow, as shown by the top panel of figure 22. Figure 23 displays a
traveling breather profile at the onset of direction-reversing. These traveling
breathers with direction-reversing motion are reminiscent of excitations known
as “boomerons”, consisting of direction-reversing solitons discovered in differ-
ent kinds of integrable models (see [16] and references therein), but the link
between both phenomena remains quite speculative at this stage. Although we

27



have no clear explanation of the origin of direction-reversing for the traveling
breather, one possibility might be its interaction with other nonlinear waves
visible in figure 23, which are confined between the traveling breather and
the boundary. In addition, the rebound dynamics can be followed by phases
of intermittent trapping or erratic motion of the breather (figure 22, middle
panel).

3.5 Dimensional analysis of the DpS limit

The DpS limit has been previously described for equation (9) written in a nor-
malized form. In this section, we consider a general class of granular systems
with on-site potentials and use suitable scalings to rewrite the system in the
form (9). Returning to the above impact problem, this allows us to analyze in
which parameter regime the DpS equation drives the dynamics. As we shall
see, this case occurs when local oscillations are faster than binary collisions.

We consider a chain of identical beads of mass m sitting in local harmonic
potentials, described by the Hamiltonian

H =
∑

n

m

2
ẋ2
n +

k

2
x2
n +

2

5
γ(xn − xn+1)

5/2
+ , (27)

where γ is the nonlinear stiffness of Hertzian interactions and k the linear
stiffness of local potentials.

Let us first consider two interacting beads, one being initially at rest and the
other having an initial velocity V , and temporarily neglect the local restoring
force of the on-site potentials. After collision, their contact time is approxi-
mately equal to 2.43 τh with τh = [m2/(γ2V )]1/5, and their maximal compres-
sion distance is close to 0.76 δ, where δ = (mV 2/γ)2/5 [49,21]. Moreover, the
stiffness constant of Hertzian interactions linearized at precompression δ is of
the order of κh = γ

√
δ.

Including back the local restoring forces, the displacement ξ at which Hertzian
and local forces equilibrate satisfies γ ξ3/2 = k ξ and is given by ξ = (k/γ)2.
In addition, the period of local oscillations is 2πτc with τc = (m/k)1/2.

Now we are ready to perform a suitable rescaling of (27). Setting xn(t) =
ξ yn(t/τc), the Hamiltonian (27) yields the equations of motion (9) in dimen-
sionless form. Moreover, the initial condition

xn(0) = 0, ẋn(0) = V δn,1 (28)
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Fig. 22. Space-time diagram giving the energy density (23) after an initial condition
of the form (26), for the on-site potential (10) with s = 1. The upper plot corre-
sponds to ẏ1(0) = 1.5 and the middle plot to ẏ1(0) = 1.9. The bottom plot provides
a zoom of the middle one.

reads in dimensionless form

yn(0) = 0, ẏn(0) = λ5/2 δn,1, (29)

where

λ = κh/k (30)
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Fig. 23. Particle velocities for s = 1 and the initial condition (26) with ẏ1(0) ≈ 1.87.
The traveling breather profile is shown at two different times close to direction-re-
versing (the left panel corresponds to t ≈ 238, and the right panel to t ≈ 241).
Nonlinear waves confined between the traveling breather and the boundary are also
visible.

measures the relative strengths of the Hertzian interaction at initial velocity
V and the local potential. Since κh = m/τ 2h , we have equivalently

λ =
m

kτ 2h
,

i.e. λ1/2 measures the relative duration of local oscillations and binary colli-
sions.

From (29) we deduce that the DpS regime takes place when λ5/2 is small.
For example, for a Newton’s cradle with strings of length 50 cm and binary
collision time 2.43 τh = 0.077ms (value taken from [49] for an impact velocity
of 1.1m.s−1), one obtains λ5/2 ≈ 1.75× 1019, hence we are extremely far from
the DpS regime. In section 3.6 we will introduce a mechanical system for which
local oscillators are much stiffer and the DpS dynamics is relevant.

3.6 A lattice model for cantilevers decorated by spherical beads

Several types of mechanical models have been devised to analyze the properties
of discrete breathers experimentally, see e.g. [13,63,46,30]. In this section we
introduce a simplified model of the cantilever system sketched in figure 1
(right picture). We consider the form (9) analyzed previously, but examine
the more general situation when the lattice is spatially inhomogeneous. With
this model, we shall observe that a moving breather generated by an impact
on the first cantilever can be almost totally reflected by a localized impurity
corresponding to a moderate increase of the bead radii on a single cantilever.

We begin by introducing a simplified model of the cantilever system of (the
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right panel of) figure 1, where cantilever compression is neglected and bead
deformations are treated quasi-statically. More precisely, each bead is seen as
an elastic medium at equilibrium, clamped at a cantilever at one side, and
either free or in contact with one bead of a neighboring cantilever at the
opposite side. So any bead deformation is fully determined by two cantilever
positions, and can be approximated by Hertz’s contact law. In addition, each
cantilever decorated by two spherical beads is described by a point-mass model
which approximates the dynamics of the slower bending mode, following a
classical approach in the context of atomic force microscope cantilevers [61].
Under these approximations, our model incorporates a single degree of freedom
per cantilever, namely its maximal deflection.

The point-mass model is obtained as follows. Using a rod model and under the
assumption of small deflection, a cantilever clamped at both ends and bent by a
force applied to its mid-point can be represented by an equivalent linear spring
of stiffness k = 192E Iℓ−3, where E is the cantilever’s Young modulus, ℓ its
length and I = w h3/12 its area moment of inertia, w, h denoting the cantilever
width and thickness respectively (see e.g. [48], pp. 77 and 81). For a cantilever
without attached beads, the first bending mode frequency satisfies ωmin ≈
22.4 [EI/(ρA)]1/2ℓ−2 ([48], p.102) where ρ denotes the cantilever density and
A = w h its cross section. A single cantilever is then represented by an effective
mass m∗ = k/ω2

min ≈ 0.38mc, where mc = ρAℓ is the exact cantilever mass.
The effective mass of a cantilever decorated by two beads of masses mb is
then m = m∗ + 2mb. For beads of radius R and density d we fix consequently
m = 0.38mc + (8/3)πdR3.

Now let us describe the model for a one-dimensinal chain of such cantilevers,
where all beads are made of the same material with Young’s modulus E and
Poisson coefficient ν. We denote by Rn = R R̃n the radius of the two beads of
the nth cantilever (R being a reference value and R̃n an adimensional number),
xn(t) the maximal cantilever deflections and mn = 0.38mc + (8/3)πdR3

n their
effective masses. The array of decorated cantilevers is then described by the
Hamiltonian

H =
∑

n

mn

2
ẋ2
n +

k

2
x2
n +

2

5
γn(xn − xn+1)

5/2
+ , (31)

where γn = γ ηn is the nonlinear stiffness constant of Hertzian interactions

between two beads on different cantilevers n and n+1, defined by γ = E
√
2R

3(1−ν2)

and ηn = [2R̃nR̃n+1/(R̃n + R̃n+1)]
1/2 (see e.g. [48]).

Setting xn(t) = ξ yn(t/τc) as in section 3.5, the Hamiltonian (31) yields the
following equations of motion in dimensionless form

µn ÿn + yn = −ηn(yn − yn+1)
3/2
+ + ηn−1(yn−1 − yn)

3/2
+ , (32)
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where µn = mn/m. Note that if all beads have radius R (i.e. R̃n = 1) then
ηn = µn = 1.

Our main purpose is to analyze an impact problem in a chain of N cantilevers
with free end boundary conditions, where the first cantilever is hit by a striker
at t = 0. For this purpose we consider a simpler initial condition where all
cantilevers with index n ≥ 2 are initially at rest and the first cantilever has
initial velocity V and zero deflection. This corresponds to fixing the initial
condition (28), which yields (29) in rescaled form.

Numerical simulations are performed for a chain of N = 200 stainless steel
cantilevers with ρ = 8 × 103 kg.m−3, E = 193 GPa, ℓ = 25 mm, w = 5 mm,
h = 1 mm, decorated by teflon beads with d = 2.2×103 kg.m−3, E = 1.46 GPa,
ν = 0.46 [60]. All beads have radius R = 2.38 mm, except at the middle of the
chain where R̃100 can be tuned. These values correspond to a cantilever array
at the macroscopic scale (as in reference [46]), but extensions to the microscale
might be also considered [63,73].

We fix the impact velocity V = 1m.s−1, which yields τh ≈ 0.047 ms. Since
τc ≈ 0.025 ms, we have λ ≈ 0.29 and λ5/2 is small. Consequently, under the
above conditions the DpS approximation is valid in the spatially homogeneous
case, or in sufficiently long homogeneous segments of a chain including defects.

The initial impact generates a traveling breather and a fairly extended wave-
train emitted from the boundary, as previously analyzed in section 3.4. The
traveling breather velocity is close to 2030 sites per second. Evaluating the
traveling breather characteristics at n = 80, we find a maximal bead velocity
close to 0.5m.s−1 (i.e. half the impact velocity), a maximal cantilever de-
flection close to 11µm and a maximal interaction force close to 2.8N. The
pulse duration is close to 3.8ms and the period of internal oscillations close
to 0.14ms ≈ T0/(1.1), T0 = 2πτc being the period of linear local oscillations.

When the breather reaches the defect site, it appears to be almost totally
reflected for a large enough inhomogeneity, whereas it remains significantly
transmitted for a sufficiently small inhomogeneity. This phenomenon is il-
lustrated by figure 24, which compares the cases R̃100 = 1.6 (almost total
reflection) and R̃100 = 1.1 (partial reflection). After the breather reflection
by the defect for R̃100 = 1.6, a small part of the vibrational energy remains
loosely trapped near the defect site. Such phenomena resulting from breather-
defect interactions have been already numerically observed in different types
of Klein-Gordon lattices [25,72,11]. In the present model, almost total reflec-
tion occurs for physically realistic parameter values, which suggests potential
applications of such systems as shock wave reflectors.
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Fig. 24. Space-time diagrams showing the interaction forces fn = −γn(xn−xn+1)
3/2
+

in system (31) for the impact problem described in the text (forces are expressed
in N). Forces are represented in grey levels, white corresponding to vanishing in-
teractions (i.e. beads not in contact) and black to a minimal negative value of the
contact force. Left plot : R̃100 = 1.6. Right plot : R̃100 = 1.1.

4 Traveling breathers under precompression

In section 3 we have analyzed the properties of discrete breathers in chains of
oscillators coupled by fully nonlinear Hertzian interactions. We have obtained
highly-localized static breathers, which display a super-exponential spatial
decay and have an almost constant width in the small amplitude limit. More-
over, small perturbations of the static breathers along a pinning mode generate
traveling breathers propagating at an almost constant velocity with very small
dispersion.

These properties are largely due to the fully-nonlinear coupling between oscil-
lators, which reduces the phonon band to a single frequency. Intuitively, the
absence of linear coupling terms enhances localization, because linear disper-
sion tends to disperse localized wave packets. Though this phenomenon can
be compensated by nonlinearity, breathers in nonlinear lattices with phonon
bands generally have a slow exponential spatial decay in the limit of vanishing
amplitude (see e.g. [40,38]). Moreover, due to resonance with phonons, exact
traveling breathers are generally superposed on nondecaying oscillatory tails,
a phenomenon mathematically analyzed in [36,39,66,37,5] (see also section 4.5
of [24] for more references); only under special choices of the speed (or the sys-
tem parameters) can it then be the case that the amplitude of these oscillatory
tails exactly vanishes [55,56].

Due to these noticeably different breather properties in the presence or absence
of phonon band, it is interesting to consider physical systems possessing a
tunable phonon band, allowing to pass from one situation to the other. This
is the case in particular for granular crystals under tunable precompression,
since the latter results in a perturbation of the interaction potential inducing
an additional harmonic component. In this section, we incorporate this effect
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to model (6), formally analyze the existence of discrete breathers through the
phenomenon of modulational instability, and numerically demonstrate that
the existence of a phonon band can drastically modify the outcome of an
initial impact.

4.1 Granular chain under precompression, and correspondence to the NLS
equation

We consider the system (6) with the modified interaction potential

V (r) =
2

5
(d− r)

5/2
+ + d3/2 r − 2

5
d5/2, (33)

where d > 0 is a parameter. We have thus for r ≈ 0

V (r) = v1
r2

2
+ v2

r3

3
+ v3

r4

4
+O(|r|5),

with

v1 =
3

2
d1/2, v2 = −3

8
d−1/2, v3 = − 1

16
d−3/2.

This modified potential possesses a harmonic component of size d1/2 in the
neighborhood of the origin, and it becomes linear for r ≥ d. The first term
of (33) corresponds to the classical Hertzian potential including a precom-
pression effect. For example, this type of interaction can be achieved in the
cantilever system of figure 1 in the case of a sufficiently long chain. This can
be done by applying a force at both ends of the system when the cantilevers
are unclamped, which results in a compression of all the beads by a distance
d (compression becomes uniform for an infinite system), and by clamping the
cantilevers at this new equilibrium state. The second and third terms of (33)
do not modify the equations of motion, and just aim at putting the modified
Hertz potential in a standard form with V (0) = 0, V ′(0) = 0.

System (6)-(10)-(33) consists of a mixed Klein-Gordon - FPU lattice, which
admits a phonon band with a finite width (of order O(d1/2) when d ≈ 0). The
phonons yn(t) = Aei (qn−ωt) + c.c. of the system linearized at yn = 0 obey the
dispersion relation

ω2(q) = 1 + 2v1(1− cos q), (34)

where q ∈ [0, π] denotes the wavenumber and ω the phonon frequency.

For this class of systems combining anharmonic local and interaction poten-
tials, the modulational instability (MI) of small amplitude periodic and stand-
ing waves has been studied in a number of references [22,17,43,28,29]. This
phenomenon has been analyzed in [28,29] through the continuum nonlinear
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Schrödinger (NLS) equation, which describes the slow spatio-temporal mod-
ulation of small amplitude phonons under the effects of nonlinearity and dis-
persion (see also the basic papers [62,47]). From the general results of [28,29],
system (6)-(10)-(33) admits solutions of the form

yn(t) = ǫA[ǫ2t, ǫ(n− c t)] ei(qn−ωt) + c.c.+O(ǫ3/2) (35)

on time intervals of length O(ǫ−2) (ǫ being a small parameter), where A(τ, ξ)
satisfies the NLS equation

i ∂τA = −1

2
ω′′(q) ∂2

ξA+ h|A|2A. (36)

In the above expressions, ω is given by (34), c = ω′(q) is the group velocity,
h = β/ω, ω′′ = v1ω2/ω and

β =
16v22(sin q)

2(1− cos q)2

4v1(1− cos q)2 + 3
+

3

2
[ 4v3(1− cos q)2 + s ],

ω2 = cos q − v1
ω2

(sin q)2

(see [28], equation (2.12) p. 557).

The so-called focusing case of the NLS equation occurs for ω′′(q) h < 0, i.e.
under the condition

Φ := −β ω2 > 0. (37)

In that case the spatially homogeneous solutions of (36) are unstable, and
(36) admits sech-shaped solutions corresponding (at least on long transients)
to small amplitude traveling breather solutions taking the form

yn(t) = ǫM
ei[qn−(ω−ǫ2ω′′/2)t+ϕ]

cosh [ǫ(n− c t)]
+ c.c.+O(ǫ3/2), (38)

where M = (−ω′′/h)1/2. These solutions decay exponentially in space and
broaden in the small amplitude limit ǫ → 0, in contrast with the traveling
breathers numerically obtained in section 3.4 in the absence of precompres-
sion. For Klein-Gordon lattices (i.e. for harmonic interaction potentials), the
existence of exact traveling breather solutions close to (38) has been proved
in special cases in [36,39,66] (breathers are superposed on a nondecaying os-
cillatory tail, exponentially small in ǫ). However these results do not directly
apply to our model having anharmonic interaction potentials.

The frequency ω(q) defined by (34) admits a unique inflection point in the
interval (0, π), at the wavenumber q = qc ∈ (0, π/2) satisfying cos qc = v1 (1−
cos qc)

2. In the generic case when β(qc) 6= 0, it follows that Φ changes sign
at q = qc (since w2 changes sign). Consequently, MI generically occurs for
wavenumbers in some interval lying at one side of qc. This interval may extend
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or not up to one edge of the phonon band, depending on parameter values.
For q = 0 (in-phase mode) the condition Φ > 0 reduces to s < 0, and for
q = π (out-of-phase mode) it reduces to 16v3 + s > 0. These conditions have
been also obtained in [22] through a Hill’s type analysis.

In the next section, we numerically check that MI can lead to the formation
of traveling breathers on long transients, and revisit the impact problem of
section 3.4.

4.2 Excitation of traveling breathers

In this section we fix d = 1/2, so that v1 ≈ 1.06, v2 ≈ −0.53 and v3 ≈ −0.17,
and consider different values of the anharmonicity parameter s = 1, s = 0 and
s = −1/6. For all these values, there exists a band of unstable phonon modes
characterized by Φ(q) > 0 (see figure 25). One can notice that Φ is much
smaller for s = 0 inside the band of unstable modes, due to the smallness of
h. In that case, slower MI should occur according to the NLS approximation,
but at the same time the applicability of the latter should be restricted to
smaller values of ǫ.
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Fig. 25. Graphs of the MI coefficient Φ defined by (37) as a function of wavenumber
q, for s = −1/6 (black curve), s = 0 (blue curve), s = 1 (green curve). Modulational
instability occurs in the bands where Φ > 0.

To illustrate the MI phenomenon, we integrate (6)-(10)-(33) numerically for
initial conditions

xn(0)= a sin (qn) (1 + b cos (2nπ/N)), (39)

ẋn(0)=−aω cos (qn) (1 + b cos (2nπ/N))

corresponding to slowly modulated phonons, with a = 0.15, b = 0.01, a
wavenumber q in the band of unstable modes (see fig. 25), and ω determined
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Fig. 26. Evolution of particle positions in the system (6)-(10)-(33) with periodic
boundary conditions (N = 200 particles). We consider the case s = −1/6 with
precompression d = 0.5. The initial condition (39) is plotted in the left panel (case
q = π/4). Particle displacements plotted at time t = 6619 (right panel) reveal
the formation of a traveling breather resulting from a modulational instability (the
envelope propagates rightwise).

by (34). We consider a chain of N particles with periodic boundary conditions.
Figure 26 displays the results for s = −1/6, q = π/4 and N = 200. The initial
perturbation generates a traveling breather over a long transient (at the end
of which a splitting of the pulse occurs). The same phenomenon occurs for
s = 1 and s = 0, albeit the latter case results in slower instabilities and less
localized traveling breathers (results not shown).

According to the previous computations, traveling breathers with profiles rem-
iniscent of (38) can be generated from slow modulations of small amplitude un-
stable phonons. This raises the question of the nucleation of traveling breather
from other types of initial conditions, in particular for a localized impact. In
section 3.4 we observed that this type of excitation systematically generates
traveling breathers. By extending this study to the case of potential (33), we
will show in which way linear dispersion may modify the impact dynamics.

In what follows we keep the same values of parameters d, s and integrate (6)-
(10)-(33) numerically (for free end boundary conditions), starting from the
initial condition (26) with ẏ1(0) ≈ 1.87. Depending on the value of s, the
initial excitation may lead to different dynamical phenomena, and notable
differences with respect to the case without precompression are observed.

The case s = 1 is described in figure 27, which shows the particle velocity
profiles at different times. A traveling breather reminiscent of the sech-type
envelope solitons (38) appears after the impact. It forms around t = 290
(top plot), and remains much less localized than the traveling breathers pre-
viously obtained without precompression (compare figures 27 and 23). The
breather propagates away from the boundary (middle and bottom plots) and
the “boomerang effect” that occurs without precompression disappears. In ad-
dition, the initial perturbation generates a dispersive wavetrain of substantial
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amplitude, and the traveling breather becomes ultimately superposed on an
oscillatory tail at both sides of the central pulse (bottom plot), which yields
a traveling breather profile reminiscent of the waves computed in [67] (see
also [56]).
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Fig. 27. Snapshot of particle velocities in system (9)-(10)-(33) with anharmonicity
parameter s = 1 and precompression d = 0.5, for the initial condition (26) with
ẏ1(0) ≈ 1.87. The profile is plotted at three different times t ≈ 291 (top panel),
t ≈ 724 (middle panel) and t ≈ 3000 (bottom panel), showing the formation of a
traveling breather that coexists with a sizeable dispersive wavetrain.
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The cases s = −1/6 and s = 0 yield a different situation described in figure
28. The difference with the case without precompression is striking (compare
figure 28 with figure 21). The initial localized perturbation generates an im-
portant dispersive wavetrain, and no traveling breather is excited, at least
on the timescales of the simulation. Moreover, in the present case we do not
observe the formation of a surface mode.

As a conclusion, according to our results, introducing a precompression at-
tenuates spatial localization and enhances dispersive effects, a phenomenon
linked with an additional linear component embedded within the Hertzian
interactions.
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Fig. 28. Same as in figure 27, for s = 0 (top panel, particle velocities at t ≈ 4399)
and s = −1/6 (bottom panel, particle velocities at t ≈ 1998).

5 Conclusion

We have analyzed the properties of discrete breathers in FPU lattices and
mixed FPU-Klein-Gordon lattices with Hertzian interactions. While static
breathers don’t exist in the absence of precompression and of onsite potentials,
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the addition of the latter creates highly localized breathers, which display a
particularly strong mobility, a phenomenon well-described by the DpS equa-
tion in the small amplitude regime and associated with the spectral properties
(i.e., the pinning mode) of such states. Beyond the DpS limit, we have identi-
fied different phenomena depending on the softening or hardening character of
the local potential, namely the generation of a surface mode after an impact
or the existence of direction-reversing traveling breathers. Importantly also
the stability of both the on-site and inter-site breather states obtained was
critically dependent on the strength (and sign) of the anharmonicity.

We have also introduced a mechanical model consisting of a chain of stiff
cantilevers decorated by spherical beads, which may allow to realize the above
localized excitations. According to our study, an impact at one end of the
cantilever chain should generate a highly-localized traveling breather. In this
regime, contrary to what is the case for a regular cradle under gravity, the
ranges of parameters of the problem (e.g., beads of about 1cm diameter, loads
of about 1N, and cantilever width of about 1cm) are deemed relevant for the
observation of such breathers and for the description of the system by the DpS
approximation examined herein.

Obviously, one has to stress that the lattice model (32) is simplified and im-
portant corrections may apply. For example, a finite-element modeling would
be helpful to validate the model or improve its calibration. In addition, it
would be important to take dissipation into account, following e.g. the ap-
proach of [8]. Since many sources of dissipation are present (friction, plasticity
effects, transmission of vibrational energy through the walls), one can won-
der if dissipation may overdamp the dynamics and completely destroy the
breathers. However, recent experimental results [7] have demonstated that
static breathers with lifetimes of the order of 10 ms could be generated in
diatomic granular chains. During this time, the moving breather computed in
section 3.6 would travel over approximately 20 sites (performing roughly 70 in-
ternal oscillations), which would allow for an experimental detection, provided
this excitation persists in the presence of dissipation, with moderate changes
in velocity and frequency. Although the setting of decorated cantilevers pro-
posed herein would have the additional source of dissipation through radiating
energy into the ground (through the clamping of the cantilevers), it is certainly
deemed worthwhile to consider such experimental setups and to examine sys-
tematically the resulting dynamics.

A different approach which may allow to generate static breathers is linked
with modulational instability. Indeed, static breathers have been excited by
modulational instabilities in experiments performed on diatomic granular chains
[7], a phenomenon also numerically illustrated in the Newton’s cradle [41]. In
this respect, an extensive study of MI in the cradle model (with the help of the
DpS equation) would be of interest. A related aspect concerns the actuation
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of the system through the driving of a bead with a particular frequency. In
fact, the experiments of [7] were realized based on such actuation of the chain
at modulationally unstable frequencies rather than the generation of suitable
spatially extended, modulationally unstable states. In that regard, it should be
noted that it is not straightforward to experimentally initialize desired spatial
profiles throughout the lattice in this system.

As we have seen, static breathers may be deformed by weak instabilities re-
sulting in a translational motion and traveling counterparts thereof. However,
in an experimental context, these weak instabilities are likely to be irrelevant
due to dissipation. To fix the ideas, let us assume a breather lifetime of the
order of 10 ms in the presence of dissipation, as in the experiments of [7]. In
the computations of section 3.6, the breather periods at small amplitude were
(roughly) close to 0.15 ms, therefore unstable Floquet eigenvalues 1+ ǫ would
have an effect over times of order 0.15ǫ−1 ms. Consequently, dissipation should
destroy the breather well before the instability becomes observable as soon as
ǫ < 0.015, and thus the instabilities identified in section 3.3 (where ǫ < 10−3)
would be largely dominated by dissipative effects.

From a numerical point of view, an interesting open problem concerns the
computation of traveling breathers. In the above computations, approximate
traveling breathers were generated by the dynamics after an impact at one
end of the chain. It would be interesting to compute exact traveling breather
solutions using the Newton method, as in references [2,67,56]. Moreover, the
existence (and physical explanation) of direction-reversing traveling breathers
remains to be elucidated. Furthermore, it would be relevant to understand in
more detail the nature of interactions of these traveling breather with static
defects. Studies in these directions are currently in progress and will be re-
ported in future publications.
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