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(Dated: August 20, 2010)

In previous work it was shown that MOND theories predict anomalously strong tidal stresses near
the saddle points of the Newtonian gravitational potential. An analytical examination of the saddle
between two bodies revealed a linear and a non-linear solution, valid for the outer and inner regions.
Here we present a numerical algorithm for solving the MOND equations. We check the code against
the two-body analytical solutions and explore the region transitioning between them. We then
develop a a realistic model for the MONDian effects on the saddles of the Sun-Earth-Moon system
(including further sources is straightforward). For the Sun-Earth saddle we find that the two-body
results are almost unchanged, with corrections increasing from full to new Moon. In contrast, the
Moon saddle is an intrinsically three-body problem, but we numerically find a recipe for adapting the
two-body solution to this case, by means of a suitable re-scaling and axis re-orientation. We explore
possible experimental scenarios for LISA Pathfinder, and the prospect of a visit to the saddle(s)
at the end of the mission. Given the chaotic nature of the orbits, awareness of the full range of
the possibilities is crucial for a realistic prediction. We conclude that even with very conservative
assumptions on the impact parameter, the accelerometers are abundantly sensitive to vindicate or
rule out the theory.

I. INTRODUCTION

Modified Newtonian dynamics (MOND [1]) is a scheme
that was first proposed for explaining observed dynami-
cal properties of galaxies without invoking dark matter.
The scheme was later incorporated into a proper the-
ory with a Lagrangian formulation [2], but valid only in
the non-relativistic regime. Still later a fully covariant
gravitational theory was found containing MOND phe-
nomenology as a non-relativistic limit. This theory was
named TeVeS [3] and alternatives have been proposed
(e.g. [4–6]). The observational features to be studied in
this paper depend only on their (shared) non-relativistic
limit. Constraints arising from lensing [7–9], or cosmol-
ogy [10] have no bearing here and indicate issues arising
from the relativistic extension of these theories.

The opposition between MOND and dark matter
leaves considerable doubts as to how to interpret new
astrophysical and cosmological data. A fair comparison
requires re-evaluating, within each approach, the whole
set of assumptions underlying the new observations (see
for example the controversy surrounding the bullet clus-
ter [11–14]). For this reason the debate would benefit
from a direct probe, in the form of a laboratory or So-
lar System experiment. Such a perspective motivates
widespread dark matter searches. The analogous “back-
yard” tests of MOND include searching for anomalies
in planetary and spacecraft trajectories [15–17], stronger
tidal stresses in the vicinity of saddle points of the New-
tonian potential [18] or Solar System manifestations of
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the MOND external field effect [19].
In this paper we focus on the MONDian effects on the

saddle points of the gravitational field, with particular
emphasis on the region where the Earth and Sun pulls
cancel (which, we stress, is not at the Lagrange point
L1). We provide realistic predictions for the future LISA
Pathfinder spacecraft [20], which could plausibly be redi-
rected to the Earth-Sun saddle, once its primary goals at
L1 have been completed. We also consider the possible
benefits of re-direction to the saddle point near the Moon
(there are not two separate Moon-Earth and Moon-Sun
saddle points) and discuss its related practical issues.

As already mentioned, the predictions we calculate
stem from the non-relativistic limit of TeVeS [3]. For
this theory gravity is described by the total potential
Φ = ΦN +φ, where ΦN is the Newtonian potential and φ
is an additional MOND component. The latter is phys-
ically relevant only when |∇ΦN| . a0, where a0 is the
Milgrom acceleration [1], with a0 ≈ 10−10 ms−1 in order
to fit galaxy observations without dark matter. The ex-
tra field is governed by the non-linear Poisson equation:

∇ · [µ (κ |∇φ| /a0)∇φ] = κGρ (1)

where ρ is the matter density, κ is a constant parameter
and G is the underlying gravitational constant. On the
left-hand-side, µ(y) is an unknown function that must
tend to 1 for y ≫ 1 but behaves like y for y ≪ 1. We
stress that this function is not the ratio of the Newto-
nian and actual accelerations, which we will denote as
µ̃(x) with x = a/a0, a function more often employed
by the astronomy community. Although for spherically
symmetric cases the conversion between µ̃(x) and µ(y) is
straightforward, in more general situations complications
may arise (see [10]). We will choose a particular form for
µ(y) following Ref. [18] (see Eq. 5 in Section III of the
present paper), and likewise take κ = 0.03 throughout
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this article. We’ll comment on other choices of µ and
their implications for our results, in the concluding Sec-
tion of this paper.

In regions where |∇ΦN| ≫ a0, we have µ ≈ 1 and
therefore φ yields accelerations that are κ/4π times the
Newtonian contribution. Hence by measuring the to-
tal gravitational force we would measure the Newtonian
gravitational constant to be (1 + κ/4π)G and not G.
However, given that here we take the value κ = 0.03,
we will ignore this negligible rescaling and assume G is
the standard value measured by experiment.

Analytical results exist for the above equation in the
case of two point masses [18], But these are valid only in
certain regimes. The “deep-MOND” solution of Ref. [18]
is valid close to saddle, while the “quasi-Newtonian” solu-
tion is valid for large distances. By tackling the problem
using numerical techniques we can present results accu-
rate even in the gap between these two regimes. This
is particularly important since this gap is in fact the re-
gion of most practical importance for probes like LISA
Pathfinder.

Furthermore, since the Earth-Sun saddle point lies
within the orbit of the Moon, we must concern ourselves
with the effect of the Moon on the LISA Pathfinder mea-
surements, and hence consider the more complex three-
body problem. Our numerical approach enables us to do
just that, and also to explore the possible advantages of
probing the hitherto unexplored lunar saddle point.

This article is laid out as follows. In Section II we
present the algorithm employed in our numerical code.
Then in Section III we test the code by comparing its re-
sults with the analytical solutions previously developed
for the two-body problem in [18]. Aware of the virtues
and limitations of the code in Section IV we explore the
solution for the full three-body problem, in a number
of configurations, and considering both the Earth-Sun
and Moon-Sun saddles. Specific recommendations for
the LISA Pathfinder mission are made in Section V and
more general considerations are included in the last Sec-
tion. In Appendix A we present details of our numerical
algorithm.

II. NUMERICAL METHOD FOR SOLVING THE

NON-RELATIVISTIC EQUATIONS

In this section we present an overview of our numeri-
cal approach for the solution of Eq. 1 (see Appendix A
for full details). Most importantly this involves solving
numerically only for the region immediately surrounding
the saddle point, as shown in Fig. 1. This region contains
no gravitational sources, so that Eq. (1) becomes homo-
geneous1. The gravitating sources make their presence

1 This of course neglects the very small density present in inter-

planetary space and any effects of the LISA Pathfinder measure-

FIG. 1: An illustration of the lattice location when calculating
for the Earth-Sun saddle region. The calculation is performed
for the a cuboid surrounding the saddle region, but not en-
closing any of the gravitating bodies. Also shown is the type
of non-uniform coordinates that we consider in order to boost
the resolution in the central regions of the lattice, i.e. near
the saddle point. For example, the y-resolution is a function
of the y coordinate only. Not to scale.

felt by the boundary conditions on our gridded volume.
So long as the boundary is sufficiently far from the saddle
point, so that 1 − µ ≪ 1, then to a very good approx-
imation, φ on the boundary is merely φ = κ

4πΦN, i.e.
a rescaled version of the Newtonian potential. We also
use the rescaled Newtonian solution inside the box as the
initial configuration supplied to our numerical relaxation
algorithm.

It turns out that solving Eq. (1) numerically in terms
of φ is sub-optimal since it is only ∇φ that appears in
this equation. However, solving in terms of either g =
−∇φ or u = −(4πµ/κ)∇φ results in there being a further
equation added to the system in order to specify the curl-
free nature of g or u/µ. Here we will use g, and so obtain:

∇ · µg = 0 (2)

∇× g = 0, (3)

(written in terms of u, the µ appears instead in the sec-
ond equation). Fortunately we can bypass the extra work
involved in dealing with the extra equation by choosing a
relaxation algorithm for Eq. (2) that preserves the curl of
g as it proceeds. Since we use a Newtonian initial config-
uration, with zero curl, we obtain a solution to Eq. (3) at
no additional computational cost. We represent the field
g on a non-uniform lattice of discrete points, as shown
in Fig. 1. Therefore, as we explain in Appendix A, in
reality we obtain a solution to a finite difference version
of Eq. (2). The algorithm preserves the finite difference
version of ∇× g exactly (i.e. to floating-point accuracy
in real life).

ment probe.
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Interestingly, this approach is the reverse of that used
by Milgrom [21], who solved for u using the Newtonian
solution to obtain ∇ · u = 0 initially. The field u was
then relaxed to a solution in which u/µ has zero curl
whilst not disturbing the divergence. However Milgrom
considered only 2D problems, for which there is just one
curl equation. In 3D there are three curl equations and
it is beneficial to instead obtain the solution to the curl
equations for free; hence our chosen algorithm.

III. THE TWO-BODY PROBLEM

We first consider a two-body setup, such as the Earth-
Sun system in the absence of the Moon or any other per-
turbations. As we shall show later, the Moon only per-
turbs slightly the results for the Earth-Sun saddle point
and hence this simpler problem provides great insight
for the three-body situation to be explored in the next
section. Furthermore there are analytical solutions for
the two-body problem, so it presents a natural arena for
checking our numerical algorithm. Conversely our nu-
merical results will fix a poorly constrained parameter
which appears in one of the analytical solutions.

In Ref. [18] solutions in two different regimes were
found for the MONDian two-body problem. The first
is valid for regions far from the saddle point and was
labelled the “quasi-Newtonian” solution; while the sec-
ond is valid closer to the saddle and was dubbed the
“deep-MOND” regime. Unfortunately from a practical
perspective, it would be difficult to fly a spacecraft very
close to the saddle point, where the deep-MOND solu-
tion is accurate, due to navigational difficulties but also
because, for example, the Earth-Sun saddle point moves
as the Moon orbits (see next section) and is perturbed
to a lesser extent by other solar system objects and by
the Galaxy. In contrast, for large distances from the sad-
dle, where the quasi-Newtonian solution is accurate, the
MONDian effects are simply too small. Hence it is in fact
intermediate distances, between the two regimes, which
are of most practical interest and for which our numerical
results have most value.

In this section, unless otherwise specified, we will fol-
low Ref. [18] and approximate the Newtonian accelera-
tion (providing the MOND boundary conditions) by:

gN = A

(

xi − 1

2
yj − 1

2
zk

)

. (4)

where A is a constant (related to masses of the Sun and
the Earth and their separation; see [18]), the problem is
symmetric about the x-axis (connecting Sun and Earth)
and the saddle is at (0,0,0). This is a valid approximation
in the region near the saddle point and is used in deriving
the analytical solutions. We shall use it for our numerical
work in this Section (but not in the one that follows) in
order to perform a fair comparison with the analytical
results.

We take the function µ(κ|∇φ|/a0) to have the form
implied by:

µ
√

1 − µ4
=

κ

4πa0

|∇φ|. (5)

This is merely for illustration purposes: it was the form
chosen in Ref. [18] since it eases analytical progress (with
our choice of κ = 0.03 also following that article). For
the idealized case of spherically symmetric matter distri-
butions this µ can be converted into the ratio of New-
tonian to (total) MOND accelerations µ̃, which is often
discussed in galactic astronomy (see eg. Ref. [9, 10, 22–
24]). However, galactic observations are of limited use in
guiding our choice for µ since large uncertainties exist in
the matter distribution within galaxies, which in practice
will not be spherical, and a large extrapolation in accel-
eration scale is required to obtain predictions for µ̃ in the
regime of interest here. The consideration of alternative
µ functions and the conversion of a null result from a
pass of LISA Pathfinder through a saddle region into a
constraint on µ is left for future work [25].

A. Analytical solutions

The analytical solutions are most easily expressed in
terms of a dimensionless version of u = −(4πµ/κ)∇φ,
given by:

U =
κ2

16π2a0

u = − κ

4πa0

µ∇φ. (6)

This may be also related to the acceleration via:

g = −∇φ =
4πa0

κ
(1 + U2)1/4

U

U1/2
, (7)

for the chosen µ form. The field U must be divergence
free in vacuum in order to satisfy Eq. (1), while in order
to keep φ curl-free for this µ function, U must satisfy:

4(1 + U2)U2 ∇× U + U ×∇U2 = 0. (8)

The deep-MOND regime is characterized by U ≪ 1,
when the (1+U2) term can be set to 1, whereas the quasi-
Newtonian limit is characterized by U ≫ 1. A transition
region separates the two, located near the ellipsoid:

x2 +
y2 + z2

4
= r20 , (9)

where r0 is the key length-scale of problem, given by:

r0 =
16π2a0

κ2A
. (10)

We have that r0 ≈ 381 km for the Earth-Sun saddle point
(ignoring all other gravitating bodies).
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1. Quasi-Newtonian solution

In the quasi-Newtonian regime, well outside ellipsoid
(9), the solution can be conveniently decomposed as:

U =
r

r0
N(ψ) +

r0
r

B(ψ) (11)

where (r,ψ,θ) is a spherical coordinate system centred on
the saddle point with the two gravitating bodies located
at ψ = 0 and ψ = π. The first term is just the Newto-
nian acceleration multiplied by κ2/16π2a0, and the sec-
ond “magnetic” term has finite curl and is sub-dominant.
The angular profiles are given by:

N(ψ) ≡ Nrer +Nψeψ (12)

Nr =
1

4
[1 + 3 cos(2ψ)] (13)

Nψ = − 3

4
sin(2ψ). (14)

for the Newtonian component, and by

B(ψ) = Br(ψ)er +Bψ(ψ)eψ (15)

Br =
2

5 + 3 cos 2ψ
+

π

3
√

3
, (16)

Bψ =
tan−1(

√
3 − 2 tan ψ

2
) + tan−1(

√
3 + 2 tan ψ

2
)√

3 sinψ

− π

3
√

3

cosψ + 1

sinψ
. (17)

for the magnetic component (these formulae are all de-
rived in [18]). Note that it is only in this regime that the
Newtonian-like and curl components can be split in this
manner.

2. Deep-MOND solution

Inside the ellipsoid (9) the curl contribution becomes
essential, and cannot be disentangled from the full field.
A semi-analytical solution was found in Ref. [18] to be:

U = C
( r

r0

)α−2

(F (ψ) er +G(ψ) eψ) (18)

with α ≈ 3.528, and angular profile:

F (ψ) = 0.2442 + 0.7246 cos(2ψ) + 0.0472 cos(4ψ) + . . . ,

G(ψ) = −0.8334 sin(2ψ) − 0.0368 sin(4ψ) + . . . , (19)

which is almost identical to the Newtonian profile (F ≈
Nr and G ≈ Nψ). These formulae were derived in [18].

The normalization C is set by the boundary conditions
and matching the two solutions suggests C ≈ 1. Here
we will determine C by comparison with our numerical
results.

B. Numerical results and comparison to analytical

solutions

We have first applied our numerical algorithm to the
case where the Newtonian acceleration on the lattice
boundary obeys the linear approximation to the two-
body problem given by Eq. (4), exactly as in the above
analytical results. This will allow a fair comparison be-
tween the two approaches. Considering the Earth-Sun
saddle (r0 ≈ 381 km) and using a 2573 lattice of phys-
ical extent 10 000 km and central resolution ≈ 2.6 km,
we find results for g as illustrated in Fig. 2. These can
be seen to yield a good match to the two analytical so-
lutions within their respective domains and provides the
appropriate interpolation between them.

Due to discretization asymmetries, the position of g =
0 is not precisely at the central site of the lattice. The
lowest value of |g| is instead found on a nearby site, but
this is just a few kilometres away and represents good
accuracy considering the 10 000 km box size. Before
performing the comparison against the analytical results
we first translate our numerical solution to take this offset
into account, which can be important at very small r
values. Without this, the gap between the thick solid and
dashed lines in Fig. 2 would have been more noticeable.

The numerical results enable us to determine the pre-
viously poorly constrained C parameter appearing in the
deep-MOND analytical solution. To determine this we
first converted g into U via Eq. (7) and then deter-
mined the ratio of the numerical results to the C = 1
analytical values for all lattice sites within bounds of
r/r0 = 0.05 → 0.5, chosen to be comfortably in the deep-
MOND regime. We find a ratio of C = 0.839 ± 0.016 at
each site, the central value from which we have used for
all comparisons against the deep-MOND solution.

However, g is not the key measurable quantity. We are
instead interested in the tidal stresses, to which LISA
Pathfinder is sensitive. When calculating the observ-
able stresses we must subtract from g the unobservable
rescaled Newtonian contribution (see discussion on the
rescaling of G in the Introduction). Hence we introduce
the notation:

Sij = − ∂2φ

∂xi∂xj
+

κ

4π

∂2ΦN

∂xi∂xj
, (20)

for the observable MOND stress tensor, where xi = x, y,
or z. Under the linear approximation to the Newtonian
acceleration field (Eq. 4), the Newtonian stress tensor
is just SNij = A diag(1,−1/2,−1/2) and hence we must
simply subtract a constant tensor from the raw MOND
results.

We illustrate the nature of this subtraction in Fig. 3
and Fig. 4, where it can be seen that the constant un-
observable contribution dominates the full stress in the
quasi-Newtonian regime (for diagonal elements of the
tensor). As a result of this any inaccuracies in our nu-
merical results become more important relative to the
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FIG. 2: A comparison between the numerical and analytical
results for components of g = −∇φ in the two-body Earth-
Sun case. Results are plotted as function of r for three pairs
of ψ values: 0 and π (top), π/4 and 3π/4 (middle) and ±π
(bottom), with symmetry relating the g-component values
within in each pair up to the sign in the analytical case. In
the numerical case this is also approximately true, except for
very low r where the discretization asymmetry prevents it
(this serves as an estimate of the discretization errors). Note
that gψ is zero analytically for ψ = 0 and π/2 at all r, and
that gr tends to zero for ψ = π/4 at in the large r limit. We
have used C = 0.839 for the deep-MOND analytical results
in this figure.
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FIG. 3: The full contribution to the two-body tidal stresses
from the MOND field and the re-scaled Newtonian contribu-
tion that must be subtracted from them in order to yield the
observable component. The positive results are for ∂gx/∂x
while the negative ones are for ∂gy/∂y. Results are shown
for the line y = z = 0, for which the analytical results shown
are symmetric to the interchange x → −x. This symmetry
is not quite realized in numerical case, as can be seen by the
small differences between the dashed (x > 0) and solid lines
(x < 0) for the numerical solution. The numerical stresses
become unreliable for |x| < 20 km.

size of the signal, once the subtraction occurs. Further-
more, when calculating the stress there are finite differ-
encing errors, which become increasingly important at
small |x|. This is evidenced by the differences between
the dashed (x < 0) and solid (x > 0) lines for the nu-
merical results, and their difference relative to the deep-
MOND analytical result. Hence neither regime is trivial
computationally. However, as already noted, for LISA
Pathfinder we are fortunately interested in the interme-
diate regime where the reliability of results is greatest.

When a real spacecraft performs a saddle fly-by, it will
not pass precisely through the saddle point. We dis-
cuss the likely impact parameter and trajectory for LISA
Pathfinder in Sec. V, but for illustrative purposes we con-
sider here the form of Syy and the numerical uncertainties
in it for a trajectory along the line y = 100 km. While the
normal Newtonian signal is much larger than that from
φ, the former is simply constant (though it would slowly
drift without the linear approximation used here). The
MOND signal, on the other hand, provides a distinctive
variation as the probe passes by the saddle. The form is
stable against numerical errors, although minor asymme-
tries can be seen near the point of closest passage. These
are slightly more significant when the lattice spacing is
increased by enlarging the box side to 20 000 km (from
the 10 000 km used thus far). However, the larger box
provides greater accuracy in the less important tails of
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FIG. 4: The observable contribution to the ∂gy/∂y tidal stress
from the MOND field for line y = z = 0. It can be seen that
the the numerical results perform well even after the subtrac-
tion of the unobservable re-scaled Newtonian contribution,
which heavily dominates the stresses in the quasi-Newtonian
regime. However, near the edge of the simulation volume the
stress is attenuated due to the smooth transition of φ to meet
the rescaled-Newtonian boundary conditions.

the signal (see Fig. 5).
To close this Section we present results using the full

two-body Newtonian acceleration field for the Earth-Sun
system, rather than the linear approximation (Eq. (4)).
As can be seen in Fig. 6, the effect of the approximation
is insignificant. Fig. 6 also shows the change in the form
of the signal for three different impact parameters: y =
25, 100 and 400 km. We see that the signal broadens
with increasing y, but more importantly, its amplitude
decreases.

IV. THE THREE-BODY PROBLEM

In this section we add a third body to the problem and
consider the perturbing effect of the Moon on the Earth-
Sun saddle. We also present results for the lunar saddle
point (which is intrinsically a three-body problem, as we
shall see).

We must first comment that the “realistic Solar sys-
tem”, as described in Ref. [18], is in fact not realistic at
all, and numerical work is needed to provide even quali-
tatively correct directions for a space mission. The argu-
ment in Ref. [18] regarding the Earth-Moon saddle, for
example, is entirely flawed because of its use of the lin-
ear approximation for the Newtonian field for the Earth-
Moon system while ignoring the gravitational effects of
Sun (cf. Eq. (72) in that paper). As it happens, the
perturbation induced by the Sun is too large for this ap-
proximation to be valid and in fact there is no true Earth-
Moon saddle point. Instead as explained in Fig. 7, the
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FIG. 5: The two-body MOND stress signal Syy along the line
y = 100 km for two simulation box sizes (10 000 km and
20 000 km) with fixed lattice size 2573. The zoomed region
with linear y-axis shows the minor differences between these
two sets of results near the point on this trajectory that is
closest to the saddle, in addition to minor asymmetries which
are due to discretization errors and more significant for the
larger box. The log-scale graph shows the tails of the signal,
which are improved in the larger box.

Sun-Earth-Moon system presents only two saddle points:
the Sun-Earth saddle, which is more or less as the two-
body analysis suggests, and a single saddle point close to
the Moon, which is intrinsically a three-body problem.
But even for the latter, we shall empirically find a recipe
for adapting the two-body results to the real situation.

A. The Sun-Earth saddle

For the Sun-Earth saddle, the effect of the third body
is not drastic, because the lunar mass is approximately
1/81th that of Earth and even at new Moon, the Earth
is only about twice as far away from the saddle point.

We will firstly consider the location of the saddle,
which is of great practical importance when planning a
spacecraft fly-by. It must be considered that the length
scale on which the MOND signal is significant, r0, is ap-
proximately 381 km (see Eq. 9), so the saddle has to be
located to a precision better than this. The saddle point
is approximately 258 800 km from Earth (around two-
thirds to the lunar orbital radius), and therefore even a
small perturbation is potentially important. As shown
in Fig. 8, at full Moon the saddle shifts about 250 km
towards the Sun. The magnitude of the shift remains
at approximately this level until the crescent phase ap-
proaches, when the Moon begins to approach the saddle.
The saddle then starts to experience a large perturba-
tion and, in the 3 day period surrounding new Moon,
it quickly moves over the left half of the quasi-ellipse
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FIG. 6: The MOND stress signal Syy along the lines y =
25, 100 and 400 km (top to bottom) for the full two-body
Earth-Sun case (thick black dashed) and when using the linear
approximation to the Newtonian acceleration (black solid). In
the upper panel the rescaled Newtonian stress is shown (grey)
for the y = 25 km case.

indicated in the figure. Note that the effect near the
new Moon is significantly enhanced if the Moon is at
its perigee during this period. While the perturbation is
always less than 10 000 km, and is less than 1 000 km
for most of the lunar cycle, this cannot be ignored if a
spacecraft is to be navigated through the saddle region.

While the perturbation caused by the Moon generally
breaks the axial symmetry present in the two-body dis-
cussion of the previous chapter, during a New or Full
Moon the symmetry remains unbroken. Hence we may
consider these two extreme cases via the same linear ap-
proximation to the Newtonian acceleration, but with dif-
fering A values (cf. Eq. (4)). We can then make the
following scaling argument. The conditions on the field
U are that it must be divergence-free, satisfy Eq. (8) and
match the boundary conditions. The first two of these
are unaffected by a rescaling of the spatial coordinates
r → αr while the boundary conditions are such that:

g → 4πa0

κ

(

x

r0
i − 1

2

y

r0
j − 1

2

z

r0
k

)

(21)

in the linear approximation of Eq. (4). Hence in scaled
coordinates r/r0 there is a single solution for U valid for
all A. Therefore while the form of Sij stresses is unaf-
fected by the change in r0, the spatial extent of the signal
is proportional to r0 and the stress magnitude scales in-
versely with r0. (This is a general argument to be used
later in the Moon saddle analysis).

At Full Moon the change in r0 is minor, increasing
by about 1 km from 381 km. However at new Moon,
the change is more significant, with r0 decreasing to

FIG. 7: Maps of the Newtonian |∇ΦN| for different con-
figurations of 3 point masses, showing differing numbers of
zero solutions. Black regions denote low |∇ΦN| values while
white denotes high values. The upper-left map is for the case
of equal masses arranged in an equilateral formation, which
yields 3 saddle points plus a central maximum in ΦN. The
second frame shows the same number of solutions, but is for
a configuration much closer to the Sun-Earth-Moon system,
albeit that the Earth’s mass is distributed evenly between
the lighter two bodies and the heavier body is slightly lighter
than the Sun. Mass is added to the heavier body in the third
frame, causing the lower saddle and central maximum to ap-
proach each other. Adding yet further mass causes them to
meet and disappear, leaving only two saddle points by the
time the solar mass is reached, as in the fourth frame. Giv-
ing the lightest two bodies masses corresponding to the Earth
and the Moon, then maintains this number of saddle points
but, as can be seen in the final frame, the lunar saddle point
is surrounded by only a small region of low acceleration and
it is also significantly tilted towards Earth.

327 km 2. Hence the Newtonian stresses will be slightly
higher at new Moon than in the two-body case, and very
slightly lower in the Full Moon case. Considering these
changes at a fixed r/r0 value, the MOND g will be un-
affected, therefore Sij at fixed r/r0 increases in inverse
proportion to r0. However, note that at new Moon, the

2 These figures assume the Moon-Earth separation is equal to the

semi-major axis for the lunar orbit; for the lunar perigee this

value should be decreased by 22 km and for the apogee it should

be increased by 15 km.
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FIG. 8: The perturbation in the position of the Earth-Sun
saddle due to the presence of the Moon when the lunar orbital
radius is fixed at its semi-major axis (thick), with addition
plots for apogee (outer) and perigee (inner) to highlight the
effect of orbital ellipticity. Negative ∆x values denote that the
saddle moves closer to Earth, which would lie to the left in this
figure, while the Sun would lie to the right. The saddle is only
slightly perturbed at Full Moon, moving slightly towards the
Sun, but as new Moon approaches the perturbation becomes
large and saddle moves quickly, covering the left half of the
quasi-ellipse in approximately 3 days, with new Moon being
the mid-point of this period. The perturbation at new Moon
is enhanced if new Moon coincides with the lunar perigee but
attenuated if at apogee.

linear approximation is not so robust because the gravity
field of the Moon varies on a smaller length scale than
that of the Earth.

To consider an arbitrary Moon position, and without
the approximation to the Newtonian acceleration field,
we require numerical methods. The results in Fig. 9,
which shows three different lunar phases, indicate that
the effect of the Moon on the MOND signal near the
Earth-Sun saddle point is minor. At Full Moon the signal
is essentially identical to the two-body case, since the
Moon is more than twice as far from the saddle point as
Earth. The saddle is displaced furthest away from the
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FIG. 9: The MOND stress signal Syy along the lines y = 25,
100 and 400 km (top to bottom) for the three-body Earth-Sun
case for different lunar phases: new Moon (thick, black, solid),
Full Moon (thick, black, dashed) and when the Moon appears
18◦ away from the Sun towards positive y (thin, black, solid).
Also shown in the y = 25 km case are the rescaled Newtonian
stresses (grey).

Earth-Sun line when the angle between the Moon and
the Sun (measured from Earth) is approximately 18◦,
and even then the line in the figure that corresponds to
this asymmetric case still has the same basic form as the
two-body signal. Some x → −x asymmetry is instilled,
but the overall conclusion is that the MOND signal for
the Earth-Sun saddle is largely unaffected by the phase
of the Moon.

B. The Lunar saddle

The lunar saddle can potentially provide significantly
larger stress signals than the Earth-Sun saddle and is
therefore of potential interest experimentally. However,
the larger stress signal implies that the MOND region is
smaller and so the challenge of navigating a space probe
through the saddle region becomes more difficult.

1. Newtonian gravity field

We must first consider the lunar saddle from a purely
Newtonian perspective, since the Newtonian physics sets
the saddle location and the boundary conditions for our
MOND calculation. It is useful to think of the lunar
saddle as a heavily perturbed Moon-Sun saddle, since
the Earth is the least important of the three bodies in
the saddle vicinity.

Although the gravitational pull of the Sun is effectively
constant on the scale of the lunar orbit, the Moon is ap-
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proximately 1/81th of the mass of Earth, and therefore
the distance from the unperturbed Moon-Sun saddle to
the Moon should be around 1/9th of the distance from
the Earth-Sun saddle to the Earth. Since tidal stresses
follow an inverse-cube law then the Sun makes only a mi-
nor contribution to the tidal stresses at either saddle, but
the Moon causes stresses at the unperturbed Moon-Sun
saddle around 9 times stronger than the tidal stresses
caused by the Earth on the Earth-Sun saddle. This im-
plies (cf. Eq. 10) that the value of r0 for the lunar sad-
dle should be around 9 times smaller than that for the
Moon-Sun saddle, before third-body perturbations are
considered.

However the perturbing effect of the Earth on the lu-
nar saddle is very large, as can be seen in Figures 10 and
11. At new Moon the Earth helps the Moon overcome
the pull from the Sun and hence the saddle is further
from the Moon than on average and the lunar stress con-
tribution is smaller, yielding a larger saddle region. At
Full Moon, the Earth acts with the Sun and therefore
the saddle is closer to the Moon, the stresses are greater
and the saddle region becomes very small. Additionally,
the Earth shifts the lunar saddle significantly away from
the Moon-Sun line, by up to ≈ 30◦ (measured at the
Moon), although of course it lies on this line at full and
new Moon (ignoring the possible small displacement of
the Moon off the Ecliptic). The lunar saddle is therefore
intrinsically a three-body problem.

Importantly, since the Moon dominates the tidal
stresses near the saddle, the form of the Newtonian accel-
eration in the saddle region is still approximately that of
the linear approximation form, just as in the Earth-Sun
case where the Earth dominates the stress. However, now
the effective “axis of symmetry” points from the Moon
to the saddle location. At once this suggests a recipe for
adapting the two-body MONDian solution to the lunar
saddle.

2. MOND stress signal

Given the observation that the Newtonian acceleration
field near the lunar saddle is roughly linear (as in Eq. 4),
it might be expected that the MOND solution would be
very similar to the two-body case, except for re-scalings
with r0. This is indeed seen in the numerical results
displayed in Fig. 12, where the new Moon case is indis-
tinguishable from the previous Earth-Sun results and the
even the non-axial quarter Moon case is only slightly dif-
ferent, once appropriate scalings with r0 are introduced.
For the purposes of this figure we have introduced a new
coordinate system (x′, y′, z), which is a rotated version
of (x, y, z) such that the x′-axis joins the Moon and the
saddle point, which still lies at (0,0,0). We have then
chosen y′ ≈ 0.26r0 and 1.05r0 lines for which to plot the
MOND stress signals, where r0 ≈ 81 km at new Moon
and r0 ≈ 38 km at quarter Moon. The two panels in this
figure are hence directly comparable with the lower two
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FIG. 10: Upper panel: The distance of the lunar saddle from
the Moon as a function of the lunar phase, where θmoon = 0
denotes new Moon and θmoon = 180◦ denotes Full Moon.
Middle panel: The effective r0 value for the lunar saddle as a
function of lunar phase. Lower panel: The deflection angle of
the saddle away from the Moon-Sun line (towards Earth).

FIG. 11: Four maps of the Newtonian acceleration strength
|gN| (as before dark means small |gN|, and so a saddle, in-
dicated by a X wherever it makes it clearer) in the vicin-
ity of Earth for Sun-Earth-Moon system (in plane z = 0).
Clockwise from top left the angle between the Moon and the
Sun, measured at Earth are 0◦ (new Moon), 18◦, 90◦ (First
Quarter) and 180◦ (Full). The Earth (0,0) and the Moon are
shown by crosses. White corresponds to values greater than
80 × 106a0, black indicates values less than 25 × 106a0, with
shades of gray indicating intermediate values. Note that the
Earth perturbs the Moon-Sun saddle region heavily, both in
orientation and size.
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FIG. 12: Stress signals for the lunar saddle, compared to the
results from the Earth-Sun saddle (in the linear approxima-
tion). Lunar results are expressed in a new coordinate system
(x′, y′, z), a rotated version of (x, y, z) such that the x′-axis
is the line joining the Moon and the saddle, with y′ ≈ 0.26r0
(top) and 1.05r0 (bottom). In the Earth-Sun case, the re-
sults are for y = 100 and y = 400 km, which correspond to
the 0.26r0 and 1.05r0, making the figure directly comparable
with the lower two panels of Fig. 6. At New moon r0 ≈ 81 km
while at Quarter Moon r0 ≈ 38 km.

panels in Fig. 6. However, we have not included results
equivalent to the upper panel there (y′ ≈ 0.066r0) since
at Quarter Moon this amounts to y ≈ 2.5 km which we
believe is to too small an impact parameter to consider
for LISA Pathfinder (see next section).

Hence the form of the lunar saddle MONDian signal
is essentially the same as for the Earth-Sun saddle; yet
it offers larger MOND and Newtonian stresses, but over
a smaller region. In practical terms, however, not much
benefit might arise if the navigational constraints dictate
a certain minimum likely impact parameter. The MOND
signal varies roughly as 1/r, so for this impact parameter
the likely stress level is largely independent of r0.

V. TESTING MOND WITH LISA PATHFINDER

We now explain more specifically how the results found
in this paper translate into a concrete signal, given the
navigational constraints and instrument noise properties
of LISA Pathfinder. We consider one example here and
in a companion paper [26] perform a more comprehensive
study of the issues highlighted.

A. Overview of LISA Pathfinder Project

The LISA Pathfinder (LPF) project [20] is an Euro-
pean Space Agency (ESA) mission designed to test the
technology intended to be employed in LISA (Laser In-
terferometer Space Antenna), a proposed gravity wave
observatory. While LISA itself is planned to consist of
three spacecraft in a triangular configuration of side-
length 5 × 106 km, the Pathfinder mission will consist
of two test masses within a single spacecraft and just

35 cm apart. These test masses will follow geodetic mo-
tion to exceptional precision due to protection from solar
radiation pressure and other unwanted non-gravitational
influences, while the spacecraft itself is designed to min-
imize its own gravitational impact. An interferometer
will study the relative motion of the test masses such
that LPF will be an excellent instrument for measuring
tidal stresses, such as those predicted in the preceding
two sections. The mission is presently in the “implemen-
tation” phase with its launch expected in 2012.

The nominal plan for the LPF mission is for it to en-
ter a large-amplitude Lissajous orbit (of near halo-orbit
dimensions) around the L1 Lagrange point of the Earth-
Sun system, at a distance of ∼ 1.5× 106 km from Earth.
Once the planned mission at L1 is complete, it can in
principle be extended, by breaking from the Lissajous
orbit and passing close to the Earth-Sun saddle point,
or alternatively near the lunar saddle. In this section we
compare the sensitivity of LPF to the possible MOND
signal, given its navigation and measurement capabili-
ties.

B. Spacecraft navigation

The objective of the LPF mission does not require the
spacecraft to have the large thrusters of an interplane-
tary probe, since the journey out to L1 is made possible
by a propulsion module from which LPF then separates.
Instead LPF will carry only low-thrust micro-propulsion
systems and the ability to navigate the probe near a sad-
dle point is not something that can be taken for granted.

Fortunately, the Lissajous orbit is unstable and hence
LPF can be ejected from the L1 region using a fairly
small change in its velocity. For example, a 30-day burn
can yield a dv of ∼ 1 ms−1 and put LPF on a trajec-
tory that brings it close to Earth in a reasonable time-
frame, of order one year. The precise orbit depends on
the timing of the burn relative to the phase of the Lis-
sajous orbit, the burn magnitude, subsequent correction
manoeuvres and any close lunar fly-bys. Without the
latter two, approaches near the Earth-Sun saddle in ap-
proximately 1 yr tend to have quite large impact param-
eters ∼ 10 000 km but closer approaches < 1 000 km
can be achieved using a lunar fly-by. Further correction
manoeuvres can aid targeting the saddle region and the
likely impact parameter is ultimately determined by the
ability to track the spacecraft and apply appropriate dv
manoeuvres. Due to Earth’s gravity the spacecraft will
be cruising through the saddles with a speed of the or-
der of ∼ 1 kms−1. In what follows we will take it that
LPF can be directed through a saddle region with veloc-
ity 1 kms−1 and an impact parameter ∼ 50 km. A more
complete study of these orbits is presented in [26].
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C. Sensitivity to MOND stress signal

Firstly, it should be noted that the design of LPF lim-
its it to being sensitive only to one of the diagonal el-
ements of the stress tensor, eg. Syy in our notation.
Additionally, in order to yield a stable radiation pres-
sure it is desirable to keep fixed the orientation of the
(roughly cuboid) probe relative to the Sun, with the side
on which the solar panel is mounted facing directly at the
Sun. Given the vast distance of the spacecraft from the
Sun, the solar panel is therefore effectively aligned nor-
mal to the x-axis and the spacecraft design then implies
that Sxx cannot be measured. This leaves the measure-
able stress as cos2(α)Syy + sin2(α)Szz , where α specifies
the orientation of the test masses relative to the y-axis.

Estimates of the sensitivity of LPF as a gradiometer
are normally expressed via the power spectral density of
the stress signal. This is defined as:

P (f) =
2

T

∣

∣

∣

∣

∣

∫ +T/2

−T/2

dt Sij(t) e
−2πift

∣

∣

∣

∣

∣

2

(22)

where f is the frequency, t is the time and T is the in-
tegration period. When integrated over f from 0 to in-
finity this yields the mean “power” in the signal, i.e. the
time-average of S2

ij , with the factor of 2 present because
negative frequencies are folded in with the positive ones.
For the present article we assume that LPF will attain a
sensitivity in the square-root of this quantity, the ampli-
tude spectral density, of 1.5× 10−14 s−2/

√
Hz between 1

and 10 mHz [20]. Beyond this range we will take the sen-
sitivity to degrade as 1/f at lower frequencies and as f2

at higher frequencies. This yields a good approximation
to published expectations [20].

We simulate gradiometer noise under the assumption
of Gaussianity (independent Fourier mode phases) and
the above spectrum. We add this to the theoretical stress
signal, which is the combination of the standard Newto-
nian and MOND components, and then apply a simple
cleaning algorithm to extract a likely measured MOND
signal. Specifically, we approximately remove the New-
tonian signal by performing a quadratic fit to the data.
In the linear approximation, the Newtonian stress sig-
nal is just a constant while the gravitational acceleration
near the saddle is so small that we may assume the probe
moves with constant velocity and therefore this fit takes
into account two further orders, beyond linear, in the
spatial Taylor expansion of the Newtonian acceleration.
We then apply a top-hat band-pass filter to remove all
frequencies outside the range 0.1 to 10 mHz, i.e. keeping
those of the approximate order as the MOND signal.

The results in Fig. 13 assume a spacecraft velocity of
1 kms−1 through the Earth-Sun saddle region, passing
on a trajectory with y = 50 km and z = 0, during a full
Moon. While the velocity of the probe is unlikely to be
aligned with the x-axis in this manner, the details of the
trajectory orientation do not appear to be greatly impor-
tant. A significant signal is clearly seen in both real-time
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FIG. 13: Theoretical and recovered stress signals Syy and Szz
for a y = 50 km, ẋ = 1 kms−1 trajectory, including a real-
ization of gradiometer noise and applying a simple cleaning
algorithm (see text). These results are for the three-body
Earth-Sun saddle with the lunar phase being full Moon.

and Fourier domains: Figs. 13 and 14, respectively. If
the actual trajectory saw LPF cross the saddle region
more quickly, then the MOND signal would be shifted to
higher frequencies where the signal to noise is even bet-
ter. An increase in the impact parameter rmin reduces
the signal roughly as 1/rmin for rmin ∼ r0, but as 1/r2min

for rmin ≫ r0.

VI. CONCLUSIONS

We solved the non-relativistic limit of TeVeS for two
and three-body saddle points using a particular µ func-
tion used previously in the literature. We predicted an
anomalous stress signal that is potentially detectable by
future space-probes. We found that past analytical calcu-
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FIG. 14: The amplitude spectral density (ASD) for the Szz
MOND signal for a y = 50 km, ẋ = 1 kms−1 trajectory,
compared to the simple noise model employed here. Note
that while the noise ASD is independent of the integration
time, there being a single MOND event means that its ASD
lessens with increasing integration time, where for the present
plot we conservatively integrate over 2 × 104 s.

lations for the two-body case are not only in agreement
with our numerical results, at least in their regimes of
applicability, but provide a good insight into three-body
problems of the Sun-Earth-Moon type, where the New-
tonian stresses at the saddle points are dominated by a
single body. Our results indicate that the most significant
effect of the Moon on the Earth-Sun saddle is to change
its location, while the MOND anomalous stress signal is
not greatly affected, and is stable to changes in the phase
of Moon. Furthermore, we have demonstrated that the
single lunar saddle point near the Moon yields a stress
signal of similar form but differs in stress magnitude and
spatial extent. However, for an impact parameter likely
from a spacecraft flyby, we note that these two factors
effectively cancel (at least in some regime).

Finally, we have demonstrated that a possible exten-
sion to the LISA Pathfinder mission, targeting the sad-
dles, would be sensitive to the anomalous stress signal
that we have calculated. This is in part due to the dis-
tinct form of the signal close to a saddle point, which
cannot be confused with the (much smoother) Newtonian
signal (or with any other signal derived from the param-
eterized post-Newtonian framework). It is also due to
the likely speed of the probe through the saddle region
yielding signal variations at frequencies that minimize
the instrument noise. While this conclusion assumes the
ability to pass within ∼ 100 km of a saddle point, we
believe that this is achievable even with the low thrust
propulsion system incorporated in the LISA Pathfinder
design. In future work we hope to implement our studies
as part of a concerted effort to explore realistic trajecto-
ries for LISA Pathfinder.

We conclude with a general remark on MONDian the-
ories which we hope will clarify a number of issues with
the proposed test. For all MONDian theories with a rela-
tivistic formulation (and not only TeVeS, as described in
the introduction), MONDian non-relativistic effects are
due to an extra field, φ, as opposed to the gravitational
field itself, i.e. the metric field, with ΦN associated with
g00. Indeed it’s very hard to covariantly modify a gravity
theory so that in the non-relativistic limit g00 is ruled by
a non-linear Poisson equation. In the Newtonian limit
(when µ ≈ 1 in Eqn.(1)) the field φ mimics the New-
tonian field and so renormalizes the gravitational con-
stant (G → G(1 + κ/(4π)) as discussed in the literature
(e.g. [3]). To satisfy constraints, φ must be sub-dominant
in this regime, and this is enforced by the parameter κ
appearing in its Poisson equation (1).

But this simple fact implies that one must trigger
MONDian behavior in φ at Newtonian accelerations aN
much higher than a0. Only thus can φ’s relative impor-
tance start to increase with decreasing aN , so that by
the time aN ∼ a0 the field φ is not only MONDian but
dominates ΦN , as required by astronomical applications.
It can be easily computed that if µ turns from 1 to a
single power-law, then MONDian behavior in φ should
be triggered when the Newtonian acceleration aN drops
below (4π/κ)2a0 ∼ 1.75 × 105a0 ∼ 10−5 ms−2. And in-
deed this is the rough Newtonian acceleration at r0. It
is therefore important to realize that for LPF realistic
impact parameters we would probe the regime where φ
has gone fully MONDian, but hasn’t yet dominated ΦN .
The MOND signal can be detected above the Newtonian
one because it has a distinctive spatial variation whereas
ΦN is just a DC component.

Bearing this in mind a number of issues may be clari-
fied. One concerns the self-gravity of LPF. This is only
balanced at the level of aN ∼ 10−9 ms−2, so one might
think that a test of MOND, in the regime aN ∼ a0, would
run against the wall of self-gravity. In fact we are testing
much higher Newtonian accelerations; for instance, for an
impact parameter of 40 Km we have aN ∼ 10−6 ms−2.
We’d need to approach the saddle much closer than about
400 meters before self-gravity became an issue (and the
spacecraft itself had to be included in the computation
of the location of the saddle).

This should also clear the matter of the generality of
the predictions made. There are several µ on offer for
astrophysical purposes. They all have the same rough
behavior in the regime under study, where φ is fully
MONDian but hasn’t yet dominated ΦN . A negative
result from LPF would rule out virtually all proposed µ.
It would only fail to rule out very contrived µ(y) (never
suggested in the literature), for which two power laws are
employed in µ(y): a very steep one from y = 1 (felt at r0)
to the point where aN = a0; and the usual linear power-
law for aN < a0: extremely contrived. We are currently
writing a follow up paper expanding on this matter,

The high sensitivity of LISA Pathfinder enables it to
potentially detect the anomalous MOND stress when the
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deviations from Newtonian dynamics are tiny, in con-
trast to the conditions present in outer reaches of galax-
ies [7, 22]. On the other hand, constraints are yielded
by planetary orbits [15] only at much stronger accel-
erations than LISA Pathfinder would probe. A saddle
point fly-by offers the chance to study MOND where we
have an exquisite knowledge of the mass distribution and
the ability to make full calculations of the MOND accel-
eration field, without assuming simplifying symmetries.
Furthermore, saddle point exploration would enable an
investigation of gravity at very low accelerations in the
close vicinity of Earth, which can be reached in a short
time-frame and without the increased mass distribution
uncertainties affecting probes sent to very large distances
from the Sun. A positive detection would, of course, vin-
dicate the MOND paradigm, while a null result would
provide clean and reliable constraints upon it.

In closing we note that several refinements to our
numerical calculations should be trivial. Including the
quadrupole and higher multipole moments of the sources
or the effect of Jupiter and other Solar system objects (or
even the galactic field) is straightforward, as they only af-
fect the boundary conditions for our problem. However
these effects are expected to be small. The shift of the
saddle location is of course non-negligible, but can be eas-
ily computed with effects already studied in [18]. Once
the new location is taken into account the change in the
detailed MOND tidal stresses can be computed just by
changing the boundary conditions of our code. However,
if the effect of the Moon on the Earth-Sun predictions
for realistic impact parameters is already so small, these
effects can be expected to be completely negligible.
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Appendix A: Details of numerical method

Here we briefly describe our numerical algorithm. This
is based upon representing g on the sites of a non-uniform
lattice of the form shown in Fig. 1, such that we obtain
greater spatial resolution near the saddle point. A relax-
ation algorithm then cycles over each lattice site x and
changes the values of g at x and the neighboring sites
so that the divergence equation Eq. (2) is solved locally,
that is:

Dx =
∑

j

(

µxg
j
x − µx−jg

j
x−j

)

= 0. (A1)

We then move to the next site and change the field val-
ues so that the condition is valid there, using the newly
updated values as we proceed. However, when enforcing
the above condition at these subsequent sites, the value
of Dx at the first site will be slightly changed. We there-
fore require many cycles over the whole lattice before the
above condition is closely matched globally.

We stress that we use a different discretization proce-
dure to Ref. [21], in that we define all three components
of g as well as µ at the same location, that is:

µx = µ(κgx/a0). (A2)

This is in contrast to the more elaborate scheme used in
Ref. [21], in which uj is defined on the j-links between
the lattice sites and then µ is defined at the centers of
the grid squares in the 2D case considered. Under that
scheme the calculation of ui/µ at any position in a 3D
calculation would require knowledge of 33 values of uj,
whereas to determine µxg

j
x here, we require merely the

knowledge of the three components of gx.
The presence of the non-linear function µ is a no-

table complication. Furthermore its form is not uniquely
known and therefore we desire to be able to solve for an
arbitrary function. The algorithm of Ref. [21] involves
solving the curl equation for u locally, while keeping the
µ values fixed at their old values. Once the µ values
are updated using the new u, the curl equation is no
longer matched, and this slows the convergence of the
algorithm. In contrast, here we proceed by solving the
divergence equation to first order in δg and δµ, where δ
denotes the change from one step to the next. Then, as
the system converges to the solution, the terms of order
δ2 become negligible very rapidly.

Crucial in the above is to ensure that in updating the
field configuration the curl of g remains zero. We define
the our preserved discrete curl as:

(∇× g)kx =
gjx+i − gjx
rix+i − rix

−
gix+j − gix

rjx+j − rjx
, (A3)

where rx is the position vector site x. In order to preserve
this discrete curl at each step of the relaxation we change
the fields according to:

δgjx =
+Cx

rjx+j − rjx
, (A4)

δgjx−j =
−Cx

rjx − rjx−j
, (A5)

where the value of Cx is chosen, as below, to yield
Eq. (A1) to first order. While the first equation acts
on all three components of g, the second acts on only
one component per site.

To determined Cx, consider that to first order in δg
and δµ:

δDx ≈
∑

j

µxδg
j
x + gjxδµx − µx−jδg

j
x−j − gjx−jδµx−j

rjx − rjx−j
.(A6)
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Writing δµ in terms of δg2 and substituting the above
values for δg then yields:

δDx

Cx

≈
∑

j

[

µx

∆j
−∆j

+

+ 2
∑

i

gix
∆i

+

gjx

∆j
−

dµx

dg2
x

(A7)

+
µx−j

(∆j
−)2

+ 2

(

gjx−j

∆j
−

)2

dµx−j

dg2
x−j



 (A8)

where we have used compact notation such that:

∆j
+ = rjx+j − rjx (A9)

∆j
− = rjx − rjx−j. (A10)

We can then insert the µ derivatives for our chosen µ
function. Finally, since we want Dx to be zero after each
change, we set:

δDx = −Dx, (A11)

and hence know the Cx required to obtain Dx = 0, at
least to first order. (If µ had not changed during this step,
the above procedure would have set Dx to be exactly
zero, i.e. to all orders in δg.)

Note that in addition to preserving the curl, Eqs. (A4)
and (A5) also exactly preserve the change in φ measured

across the lattice as:

∆φ =
∑

xj

(

rjx+j − rjx

)

gjx, (A12)

where xi and xk are fixed during the summation.

In practice, cycling over the lattice and solving the
discrete equation locally does not lead to rapid enough
convergence to the solution. As Dx is (approximately)
zeroed at later sites, Dx at earlier sites is moved slightly
away from its desired value and a large number of it-
erations of this procedure are required before each gx

has converged to a good approximation. We there-
fore preempt the changes to the field that will occur at
other points in the cycle using the fact that these very
changes are (largely) responsible for Dx being non-zero.
This is achieved by a method known as successive over-
relaxation (SOR, e.g. [27]) in which δgj → λδgj , where λ
is the over-relaxation parameter and is larger than unity.
We begin with λ = 1 and increase it once the system has
begun to settle down, since high values of λ can initially
result in the RMS value of Dx increasing, contrary to our
goal.

We coded the algorithm outlined in this Appendix us-
ing the LATfield library [28].
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