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Abstract

These lecture notes are devoted to formal and phenomenological aspects of F-theory.
We begin with a pedagogical introduction to the general concepts of F-theory, covering
classic topics such as the connection to Type IIB orientifolds, the geometry of elliptic
fibrations and the emergence of gauge groups, matter and Yukawa couplings. As a
suitable framework for the construction of compact F-theory vacua we describe a special
class of Weierstrass models called Tate models, whose local properties are captured by
the spectral cover construction. Armed with this technology we proceed with a survey of
F-theory GUT models, aiming at an overview of basic conceptual and phenomenological
aspects, in particular in connection with GUT breaking via hypercharge flux.
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1 Introduction

String phenomenology is the branch of string theory that takes the theory seriously as a consis-
tent, fundamental theory of gravitational and particle physics interactions in four dimensions.
Its primary goal is to understand the solutions of this theory and their implications for four-
dimensional particle phenomenology and cosmology. This includes the investigation of both
the mathematical structure of the space of string vacua and of their concrete phenomenological
properties.

In the perturbative region of the string landscape, two corners exhibit particularly at-
tractive four-dimensional solutions: The heterotic string heavily exploits the availability of
exceptional gauge symmetry, into which the observed gauge group of the Standard Model can
be embedded in elegant ways realising the idea of a grand unified theory (GUT). Many differ-
ent techniques have been developed to study these solutions in various regions of the moduli
space, ranging from heterotic orbifolds and free-fermionic constructions to smooth Calabi-Yau
compactifications with vector bundles, see e.g. the review [1] and references therein. Since
both gravity and gauge dynamics descend from the closed string sector, all aspects of four-
dimensional physics are sensitive to the global structure of the compactification space.

Perturbative Type II orientifolds with D-branes, on the other hand, are based on the
classical gauge groups U(N), SO(2N) and Sp(2N). This type of constructions can directly
accomodate the Standard Model gauge group, while GUT physics is not immediate. The huge
literature on Type IIA orientifolds with intersecting D6-branes and on Type IIB orientifolds
with D7/D3-branes (reviewed e.g. in [2–4]) exploits furthermore the localisation of the gauge
degrees of freedom along the D-branes, which are therefore of a different physical origin than
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the gravity sector in the bulk. This opens up the possibility of exploring a certain subclass of
phenomenological questions in the context of local models, while other aspects of the associated
four-dimensional physics remain sensitive to the full compactification details.

The strict separation between the phenomenological properties of the heterotic and brane
constructions ceases to exist at finite values of the string coupling gs. In fact, in all but a
minute class of brane constructions gs is dynamical and varies over the compactification space
in such a way as to leave the perturbative regime somewhere. The correct way to describe
Type IIB compactifications with 7-branes in this generic situation is called F-theory [5]. F-
theory is a fascinating subject by itself because it geometrises the backreaction of the 7-branes
on the ambient space and is therefore, in some sense, the way to think about 7-branes. It
incorporates certain strong coupling effects with breath-taking elegance. The rich and by now
classic literature on the more formal aspects of F-theory reflects the amount to which these
non-perturbative phenomena have mesmerized string theorists.

More recently it has been exploited that the four-dimensional solutions of F-theory are also
interesting from a phenomenological viewpoint [6–9]. This is because at strong coupling new
degrees of freedom - (p,q) strings - become light and realise exceptional gauge symmetries even
in a theory based on branes. The perturbative dichotomy between localisation of gauge degrees
of freedom and exceptional gauge dynamics is therefore resolved. This bears exciting prospects
for GUT model building and has been the subject of fruitful and intensive investigations
in recent times. Most importantly, F-theory compactifications also inherit the favourable
properties of M-theory and of Type IIB orientifolds with respect to moduli stabilisation: The
combination of 3-brane instanton effects and background fluxes allows in principle for the
stabilisation of Kähler and complex structure moduli within the framework of warped Calabi-
Yau compactifications. This is motivation enough to take F-theory seriously as a promising
corner for string phenomenology.

When dealing with F-theory compactifications one must be aware that to date there exists
no description of F-theory as a fundamental theory. In this respect F-theory has a status very
different from M-theory, which can - at least conjecturally - be conceived as the theory reducing
in its long-wavelength limit to eleven-dimensional supergravity coupled to membranes. Early
ideas [5, 10, 11] to define an analogous twelve-dimensional theory whose fundamental objects
are 3-branes have not lead to a consistent picture. Rather F-theory should be thought of as
a genuinely non-perturbative description of a class of string vacua which, in certain limits, is
accessible by string dualities from three different corners of the M-theory star. These are

• F-theory as backreacted Type IIB orientifolds with D7-branes and varying dilaton,

• F-theory as dual to E8 × E8 heterotic theory,

• F-theory as dual to M-theory on a vanishing T 2.

Of these three, the F/M-theory duality probably captures the dynamics in the most general
way. While particularly fruitful for concrete applications, the first two dualities can sometimes
be misleading because they describe only certain aspects of the dynamics of a typical F-theory
compactification.

These lectures intend to provide a pedagogical introduction to some of the technology and
the phenomenological applications of F-theory model building. A complimentary set of lecture
notes covering general aspects of F-theory is [12], while the specifics of F-theory GUT model
building are surveyed in the review [13].

In section 2.1 we begin with a definition of F-theory from the perspective of Type IIB
orientifolds with 7-branes. The F/M-theory duality is briefly sketched in section 2.2. Given
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the geometric nature of F-theory, the bread and butter of the business is to understand the
geometry of elliptic fibrations, which we approach in an elementary manner in section 2.3. The
connection to the Type II orientifold picture is made via Sen’s orientifold limit in section 2.4.
A closer investigation of the appearance of gauge degrees of freedom from the singularities of
the elliptic fibration concludes our first encounter with F-theory in section 2.5.

In section 3 we introduce some of the more advanced technology of F-theory compactifi-
cations. The basic algorithm to read off the gauge groups from a given model is presented in
section 3.1. The corresponding Tate models represent a convenient framework for F-theory
compactifications. Besides the pure geometry, gauge flux is an essential ingredient in F-theory
models (see section 3.2). Note that it is this aspect that is currently the least understood.
An account of charged matter and Yukawa couplings follows in section 3.3. In section 3.4 we
recall basic aspects of F-theory/heterotic duality; an important ingredient is the construction
of vector bundles on elliptically fibered Calabi-Yau 3-folds via the spectral cover construction.
Section 3.5 concludes our tour through the model building rules of F-theory with a review of
the recent application of the spectral cover construction in general F-theory models with no
heterotic dual.

In the final part of these lecture notes we apply what we have learned in sections 2 and
3 to the construction of SU(5) GUT vacua. This is by now a vast and dynamical field, and
rather than aiming at completeness we focus on some fundamental aspects. After briefly
describing the decoupling idea underlying local models in section 4.1, we investigate various
options for GUT symmetry breaking in section 4.2. GUT breaking by hypercharge flux is
critically assessed in section 4.3. The experimentum crucis in GUT model building is proton
decay, and we explain some of the challenges within the F-theory context in section 4.4. An
incomplete list of further phenomenological topics can be found in 4.5.

2 A first encounter with F-theory

2.1 The need for a non-perturbative formulation of Type IIB with

7-branes

Backreaction from 7-branes

In this section we approach F-theory as the strong coupling limit of Type IIB orientifolds
with O7/O3-planes and D7/D3-branes. For background on Type II orientifolds we refer to
existing reviews such as [2–4]. The usual philosophy in the description of perturbative Type
II orientifolds with D-branes is to neglect the backreaction of the branes and the orientifold
planes on the background geometry in the spirit of a probe approximation. This is justified as
long as asymptotically away from the brane the backreaction becomes negligible. In this case,
one can consider a large volume limit in which knowledge of the detailed form of the solution
is not required at least to understand the main properties of the string vacuum.

To see when this approximation is justified, we consider a p-brane in ten dimensions. It
represents a source term in the normal n = 9 − p spatial directions. At a heuristic level, this
leads to a Poisson equation for the background fields sourced by the brane. Schematically
denoting these sourced fields as Φ, one can write this as

ΔΦ(r) � δ(r) =⇒ Φ(r) � 1

rn−2
n > 2. (1)
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More precisely, within Type II supergravity the BPS solution for a stack of N p-branes along
directions μ = 0, 1 . . . , p, p < 7, takes the form [14]

ds2 = H−1/2
p ημνdxμdxν + H1/2

p

∑

i

dxidxi, (2)

e2φ = e2φ0H
3−p
2

p , Cp+1 =
H−1

p − 1

eφ0
dx0 ∧ . . . ∧ dxp, (3)

Hp = 1 +
(rp

r

)(7−p)

, r(7−p)
p = const eφ0 N. (4)

Here φ denotes the ten-dimensional dilaton and the Ramond-Ramond (p + 1)-form potential
Cp+1 couples electrically to the p-brane. The backreaction is governed by the harmonic function
Hp, which asymptotes to unity away from the brane. In particular, eφ0 denotes the asymptotic
value of eφ and can be taken as the value of the string coupling gs relevant in the large volume
limit.

However, the above logic goes through only if the codimension of the brane n > 2. The
critical case n = 2 corresponds precisely to D7-branes in Type IIB theory. A D7-brane
along, say, dimensions 0, . . . , 7 looks like a charged point particle localised in the two normal
directions 8, 9 - a cosmic string [15]. Solutions to the two-dimensional Poincaré equation scale
logarithmically with the distance to the source. Such a logarithmic profile is in sharp contrast
with the favourable asymptotics for lower dimensional branes encountered above.

Let us see how this heuristic argument applies in more detail. Recall, e.g. from [4], that
the string frame Type IIB effective action in the democratic formulation is given by

S
(S)
IIB =

2π

�8
s

(∫
d10x e−2φ(

√
−gR + 4∂Mφ ∂Mφ) − 1

2
e−2φ

∫
H3 ∧ ∗H3

−1

4

4∑

p=0

∫
F2p+1 ∧ ∗F2p+1 −

1

2

∫
C4 ∧ H3 ∧ F3

)
. (5)

Here �s = 2π
√

α′ and the field strengths are defined as

H3 = dB2, F1 = dC0, F3 = dC2 − C0 dB2,

F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2, (6)

supplemented by the duality relations F9 = ∗F1, F7 = −∗F3, F5 = ∗F5 at the level of equations
of motion.

The RR-field sourced electrically by a D7-brane is C8 and is dual to the axion C0 that
combines with the string coupling gs = eφ into the complex axio-dilaton

τ = C0 +
i

gs
. (7)

The D7-brane action is the sum of the two terms

SDBI = −2π

�8
s

∫
d7ζ e−φ

√
det(g + 2πα′F/2π), (8)

SCS = −2π

�8
s

∫
tr exp(2πα′F)

∑

p

C2p

√
Â(T )

Â(N)
, (9)
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where 2πα′F = 2πα′F + B2 in terms of the Yang-Mills field strength F and the last factor
denotes curvature contribution in terms of the A-roof-genus (see e.g. [16]) of the tangent and
normal bundle to the D7-brane. Define the complex coordinate z = x8+ix9 for the dimensions
perpendicular to the 7-brane. Taking into account constraints from supersymmetry, it turns
out that the axio-dilaton must be a holomorphic function in z. Therefore the Poincaré equation
for C8 in presence of a 7-brane at z = z0 takes the form

d ∗ F9 = δ(2)(z − z0). (10)

The integrated form of (10) is

1 =

∫

C

d ∗ F9 =

∮

S1

F1 =

∮

S1

dC0. (11)

A simple solution can be found that is valid close to the brane at z = z0,

τ(z) = τ0 +
1

2πi
ln(z − z0) + . . . , (12)

where we have omitted possible regular terms in z. Note in particular that gs → 0 at the
position of the brane z = z0.

1

Far away from the brane, the simple solution of τ must be modified. Nonetheless we see
already that the background exhibits a logarithmic branch cut in the complex plane normal
to the D7-brane. A careful analysis of the Einstein equations reveals [15] that asymptotically
away from the brane, spacetime becomes locally flat, but suffers a deficit angle. Contrary to
the backreaction of lower-dimensional branes, this effect does not asymptote away and the
probe philosophy is, strictly speaking, not applicable in this region.

Despite the non-trivial deficit angle at infinity, one can identify a region where the back-
reaction of the brane on the geometry is negligible. Following the lucid discussion in [17] one
can, ignoring the higher terms, rewrite the solution (12) as

τ(z) =
1

2πi
ln

z − z0

λ
=⇒ e−φ = − 1

2π
ln|z − z0

λ
| (13)

in the vicinity of the brane, where λ is related to τ0. At the point z − z0 = λ one encounters
gs = eφ → ∞. The presence of this special point breaks the naively expected rotational
invariance around the source, a clear sign of backreaction. However, for |z − z0| 	 |λ| the
geometry is approximately flat. It is this region that is the analogue of the asymptotic large
distance limit where the backreaction of p-branes with p < 7 discussed above is negligible.
The limit of weak coupling is the one where this region (and distances therein) is large enough
to trust effective supergravity, i.e. where λ → ∞.2 I.e. in this limit the inevitable increase
of gs away from the brane happens at larger and larger distances, and one remains at weak
coupling as long as one focuses on suitable radius around the brane.

Generically, however, the fact that gs develops a strongly varying non-trivial profile ob-
scures an interpretation of the background in terms of perturbation theory. As just discussed,

1This does not mean that the gauge theory on the 7-brane is trival: The relevant frame is the Einstein
frame, where the 7-brane gauge coupling is independent of gs and given to leading order by the volume of the
internal 4-cycle wrapped by the brane (for the case of compactification to 4 dimensions).

2In compactifications, while the profile of τ is set by the brane configurations, the integration constant τ0

or overall scale λ remains a modulus of the low-energy effective theory.
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in generic situations τ inevitably takes values of order 1 and larger in some regions of the com-
pactification manifold. Besides, the expression for τ must receive strong stringy corrections
in the vicinity of an orientifold-plane, which carries −4 units of C8-charge. A naive solution
τ(z) � − 4

2πi
ln(z − z0) which would be suggested by the above arguments is unphysical as the

dilaton would become negative close to the O-plane.
An exception to the inevitable variation of τ in the presence of 7-branes and O-planes is

the very special situation where all 7-brane charges cancel locally because a suitable number
of D7-branes and O7-planes lie on top of each other. In this case, gs is constant on the entire
compactification manifold and in absence of stabilising effects such as fluxes it can freely be
chosen to lie in the perturbative window gs 	 1 everywhere. In fact, one should reserve
the term ’perturbative’ for this non-generic configuration. This establishes that a proper
treatment of backgrounds with varying axio-dilaton is not an option, but rather required for
a satisfactory definition of generic configurations with 7-branes.

Monodromies and SL(2, Z) invariance

A peculiar feature of the 7-brane backreaction is the appearance of monodromies. The mon-
odromy associated with the simple solution (12) implies that as one encircles the position of
the D7-brane in the z-plane, the axio-dilaton transforms as

τ → τ + 1. (14)

At first sight this might come as a shock as it seems to make a consistent interpretation of
the background solution impossible. The deus ex machina approaching to our rescue is the
fact that Type IIB is invariant under SL(2, Z) transformations, of which (14) is the simplest
example. As is most readily verified after transforming (5) into Einstein frame (see e.g. [4]),
the classical Type IIB action enjoys the SL(2, R) invariance

τ → aτ + b

cτ + d
,

(
C2

B2

)
→

(
aC2 + bB2

cC2 + dB2

)
= M

(
C2

B2

)
, detM = 1. (15)

Note that C4 is invariant under these transformations. This classical symmetry is broken at
the non-perturbative level to SL(2, Z). The reason is that D(−1) instanton effects involve a
factor e2πiτ . Invariance of such quantum effects under transformations of the type

M =

(
1 b
0 1

)
: C0 → C0 + b

restricts b ∈ Z, thus reducing SL(2, R) to SL(2, Z).
Therefore as one encircles a D7-brane, the full background transforms by the SL(2, Z)

action T =
(

1 1
0 1

)
, and the monodromy action is merely a symmetry of the theory.

[p, q]-branes

Once we have accepted that a consistent interpretation of D7-branes forces us to take the
SL(2, Z) symmetry at face value, we are lead to more exotic objects than D7-branes which
have no interpretation in terms of perturbation theory. The new objects we must include are
[p, q]-branes and corresponding

(
p
q

)
strings [18]. To see this, recall from the Polyakov worldsheet

action that the fundamental superstring is charged electrically under the NS-NS B2-field.
Given the mixing of B2 with the RR 2-form C2 under general SL(2, Z) transformations as in
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(15) there must also exist an analogous object charged electrically under C2. This, of course,
is nothing other than the D1-string, and its corresponding coupling to C2 is the Chern-Simons
action. It is therefore appropriate to combine the F1- and the D1-string into an SL(2, Z)
doublet: An F1-string is represented as the vector

(
1
0

)
and a D1-string is a

(
0
1

)
object. A

general
(

p
q

)
string carries p units of electric B2-charge and q units of electric C2-charge. Such

objects exist as supersymmetric bound states for p, q co-prime [19]. Note that in perturbative
Type IIB theory only

(
1
0

)
strings are present as the fundamental objects, while the D1-string

enters as a solitonic, non-perturbative object.
In perturbative Type IIB theory, a D7-brane is by definition a hypersurface on which

fundamental strings can end. This motivates the definition, in strongly-coupled Type IIB
theory, of a [p, q]-7-brane as the hypersurface on which

(
p
q

)
strings can end. Two [p, q]-7-

branes of different p, q are called mutually non-local.
A general [p, q]-brane induces an SL(2, Z) monodromy Mp,q on the background fields as

one encircles the location of the brane. This monodromy generalises the perturbative action
(14) induced by T = M1,0 and can be shown to take the form

Mp,q = gp,q M1,0 g−1
p,q =

(
1 − pq p2

−q2 1 + pq

)
. (16)

Here gp,q =
(

p r
q s

)
is the SL(2, Z) matrix that transforms a

(
1
0

)
string into a

(
p
q

)
string.3 The

only eigenvector of Mp,q is a
(

p
q

)
-string itself, any other type of string gets transformed as

transported around the location of the [p, q]-7-brane.
Every [p, q]-brane as such can be mapped into a [1, 0]-brane, i.e. a conventional D7-brane,

by an SL(2, Z) transformation. Locally around each single 7-brane the geometry therefore
is indistinguishable from the one backreacted by a D7-brane. However, in the presence of
mutually non-local [p, q]-branes in the above sense, new phenomena arise because the various
branes cannot be simultaneously transformed into a D7-brane. And, most importantly, a
consistent compactification necessarily includes 7-branes of different type.

The simplest example where this becomes apparent starts from a perturbative Type IIB
orientifold on T 2 modded out by Ω(−1)FLσ. The geometric orientifold action σ transforms
the complex coordinate of the torus as z → −z. Its four fixed points are the location of
O7-branes. Local tadpole cancellation in perturbative models (in the sense introduced above)
requires 4 D7-branes (plus their image branes) on top of each O7-plane, resulting in a famous
SO(8)4 gauge group. The [p, q]-brane interpretation of this configuration was given by Sen [20],
who showed that eight-dimensional Type II compactifications require a set of three different
[p, q]-branes with [p, q]-labels

A : [1, 0], B : [3,−1], C : [1,−1]. (17)

In this notation A-type branes correspond to perturbative D7-branes. In fact the branes B
and C are chosen such that the combined monodromy MBC = M3,−1 M1,−1 acts on a

(
1
0

)
string

by orientation reversal,

M3,−1 M1,−1

(
1
0

)
= −

(
1
0

)
, (18)

as in the context of an orientifold theory. This identifies the BC-system as a perturbative
O7-plane.

3Note that r and s are not uniquely determined. This ambiguity drops out in all physically relevant
quantities.
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In generic configurations, however, objects with general SL(2, Z) monodromies will play
a role, simply because the action of M1,0 and MBC does not generate the full SL(2, Z). This
raises a puzzle: What are the consistency conditions for theories with mutually non-local
[p, q]-branes? Is any configuration of coincident branes like the BC system allowed? Given the
dyonic nature of [p, q]-branes, perturbative methods are bound to fail. For compactifications
to eight dimensions one might try to keep track of the SL(2, Z) monodromies by hand and
search for intrinsically consistent configurations, but already in six dimensions this becomes
intractable.

Even more spectacularly, there exists a miraculous reformulation of the problem that allows
us to almost blindly read off the consistent configurations of 7-branes. This formulation is the
much sought-after F-theory.

Towards a geometric description

The crucial insight [5] that underlies the formulation of such a non-perturbative theory is
the identification of the SL(2, Z) symmetry of ten-dimensional Type IIB supergravity with
the geometric SL(2, Z) action on the complex structure of a two-torus T 2. Inspired by the
SL(2, Z) transformation of τ one interprets the axio-dilaton as the complex structure of a
ficticious elliptic curve.

1

τ τ+1

a

b

Figure 1: SL(2, Z) action M1,0 on complex structure τ of a T 2.

The variation of τ in presence of a set of D7-branes is therefore modelled as the variation
of the complex structure of an elliptic curve transverse to the location of the 7-branes. Such
a structure defines an elliptic fibration, and the non-triviality of the fibration is a measure for
how strongly the axio-dilaton varies as a consequence of the backreaction of the branes.

The F-theory conjecture states that the physics of Type IIB orientifold compacitifications
with 7-branes on the complex n-fold Bn is encoded in the geometry of an (n+1)-fold Yn+1 which
is elliptically fibered over Bn. The elliptic fiber itself is not part of the physical spacetime
but merely a book-keeping device that accounts for the variation of τ . In particular, at the
location of 7-branes the axio-dilaton τ diverges as seen for the solution 12. If the complex
structure of an elliptic curves diverges, this indicates the shrinking of a one-cycle and thus the
degeneration of the elliptic curve. Thus the degeneration locus of the elliptic curve describes
the presence of 7-branes.

In fact, duality with M-theory yields additional restrictions on the relevant elliptic fibra-
tions. First, for N = 1 supersymmetry to be conserved, the space Yn+1 has to be Calabi-Yau.
Further, only the limit of vanishing elliptic fiber is to be considered. Both these facts will
become apparent in the context of F/M-theory duality reviewed in the next section.
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To return to the simple example alluded to before, understanding compactifications of
Type IIB orientifolds to eight dimensions involves F-theory on a Calabi-Yau 2-fold Y2. In this
case there is only one such Ricci flat 2-fold, the famous K3. The physically most interest-
ing situation of course corresponds to F-theory on an elliptically fibered 4-fold Y4, which is
supposed to capture Type IIB orientifolds compactified to four dimensions on the 3-fold B3.

2.2 F/M-theory duality and Calabi-Yau 4-folds

So far we have motivated F-theory as a clever way to think about Type IIB orientifolds with
7-branes. To determine the details of the effective action and of the physical degrees of freedom
though, it is useful to approach F-theory via duality with eleven-dimensional M-theory, taken
as its long-wavelength limit of eleven-dimensional supergravity coupled to M2/M5-branes.
This duality also provides a more direct way to uncover the appearance of the elliptic curve
in F-theory.

The starting point is therefore compactification of eleven-dimensional supergravity on
R

1,9 × T 2. Let τ be the complex structure of the torus T 2 = S1
A × S1

B. E.g. for the spe-
cial case of a rectangular torus we have τ = i RA

RB
in terms of the radii RA and RB of S1

A and

S1
B. The M/F-theory duality consists in taking the limit of vanishing torus volume in the

following two-step procedure [21]:

• The circle S1
A with radius RA is identified as the M-theory circle in the reduction from

M-theory to Type IIA theory in ten dimensions so that gIIA � RA

�s
. The limit RA → 0

therefore corresponds to taking the perturbative IIA limit of M-theory, and we recover
weakly coupled Type IIA theory on R

1,9 × S1
B.

• Now perform a T-duality along the remaining circle S1
B with radius RB. This yields

Type IIB theory on R
1,9 × S̃1

B with dual radius R̃B = �2s
RB

. The limit RB → 0 results in
ten-dimensional Type IIB theory.

Application of the T-duality transformation identifies the IIB coupling as gIIB � gIIA
�s

RB
�

RA

RB
� Im(τ). The last step applies to rectangular tori but has simple generalisations. A more

precise analysis as worked out in detail e.g. in [12] allows one to trace back the Type IIB RR
axion C0 to the type IIA RR one-form C1. The latter in turn derives from the real part of the
complex structure of the M-theory torus.

What we have sketched is a description of Type IIB theory in ten dimensions in terms of
M-theory on R

1,9 × T 2, where the IIB axio-dilaton τ = C0 + i
gs

is identified with the complex

structure of the M-theory T 2. F-theory on T 2 can therefore be defined as the ten-dimensional
IIB theory which is dual, in the above sense, to M-theory on R

1,9 × T 2. Note that for the
duality to work the volume of the M-theory T 2 has to vanish. This is the physical reason why
only the complex structure τ , but not the volume of the elliptic curve appears as a physical
field in Type IIB/F-theory.

The above logic extends adiabatically to the more general case of a non-trivial elliptic
fibration rather than a direct product R

1,9 × T 2. The physically most interesting situation is
of course that of M-theory compactification on R

1,2 × Y4, where Y4 : T 2 → B3 is a complex
4-fold elliptically fibered over a 3-complex dimensional base B3. If the 4-fold Y4 is Calabi-Yau
this yields a three-dimensional effective theory with four supercharges [22–24]. In the limit of
vanishing fiber volume the fourth dimension grows large and this setup is dual to the four-
dimensional effective theory obtained by Type IIB compactification on B3, or, by definition,
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F-theory on Y4. The four supercharges lead to an N = 1 effective theory in four dimensions.
Thus the Calabi-Yau property of Y4 is an obvious requirement from the M-theory perspective.

Kaluza-Klein reduction of the M-theory 3-form allows one to recover also the higher Type
IIB RR-forms. We denote by α and β the periodic coordinates along the M-theory torus
T 2 = S1

A × S2
B and focus on a generic non-singular fiber for the time being. Reduction of C3

yields

C3 = C̃3 + B2 ∧ dα + C2 ∧ dβ + B1 ∧ dα ∧ dβ. (19)

After T-duality along β and decompactification to four dimensions, C̃3 furnishes the degrees of
freedom of the RR 4-form C4 = C̃3∧dβ, while B1 becomes part of the four-dimensional metric
giβ. B2 and C2, on the other hand, translate into the NS-NS and R-R 2-forms in Type IIB.
Their transformation properties as a doublet under the SL(2, Z) group derive immediately
from the geometric SL(2, Z) transformation of the A and B cycle of the M-theory torus.

It is beyond the scope of these lecturese to enter a detailed discussion of the F-theory
effective action. An in-depth derivation of the four-dimensional F-theory effective action via
M/F-theory duality can be found in [25] (see also [12]), which we recommend for more details.
An important ingredient in Kaluza-Klein reduction, e.g. to determine the precise massless
supergravity spectrum, are the topological properties of Calabi-Yau 4-folds. Many aspects of
the geometry and topology of (elliptic) Calabi-Yau 4-folds can be found e.g. in [26]. Suffice it
here to recall for completeness that the Hodge diagram of Calabi-Yau 4-folds is characterised
by three independent Hodge numbers h1,1, h2,1, h3,1, to which h2,2 is related via

h2,2 = 2 (22 + 2h1,1 + 2h3,1 − h2,1). (20)

An important quantity for model building, which will appear prominently in the sequel, is the
Euler characteristic

χ(Y4) =

∫

Y4

c4(TY4) = 6 (8 + h1,1 + h3,1 − h2,1). (21)

2.3 The geometry of elliptic fibrations

The above considerations show that understanding the non-perturbative F-theoretic region of
the string landscape requires familiarity with the concept of elliptic fibrations, to which we
now turn in some detail. The problem splits into two parts: We first need to understand
elliptic curves as such, and then find a way to describe their fibration over the base Bn such
as to form an elliptically fibered Calabi-Yau manifold Yn+1,

π : Yn+1 → Bn. (22)

Elliptic curves as P2,3,1[6]

There are different ways to describe an elliptic curve, the simplest being as a hypersurface
or, more generally, as a complete intersection of some weighted projective space. As an
example consider the weighted projective space P2,3,1 spanned by the homogeneous coordinates
(x, y, z) � (λ2x, λ3y, λz), where (x, y, z) are complex coordinates and λ ⊂ C

∗. Due to the
scaling relation this space is 2-complex dimensional. An elliptic curve is a flat 1-complex
dimensional space, i.e. a Calabi-Yau 1-fold. It can thus be described by the hypersurface
cut out by the vanishing locus of a homogenous polynomial in (x, y, z) of degree 6 under
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rescaling by λ. Here we used the general fact that a hypersurface in weighted projective space
is Ricci-flat whenever the degree of its defining polynomial equals the sum of degrees of the
homogenous coordinates. A degree-six polynomial in P2,3,1 defines the space P2,3,1[6]. One can
show that after suitable coordinate redefinitions such a polynomial can always be brought into
the so-called Weierstrass form

PW = y2 − x3 − fxz4 − gz6 = 0, (23)

where f, g ∈ C specify the shape of the elliptic curve as detailed below. Note at this stage that
alternative representations of elliptic curves along these lines are the hypersurfaces P1,1,2[4] or
P1,1,1[3].

As argued at the end of section 2.1 the physics of the 7-branes is encoded in the degenera-
tions of the elliptic fiber. A general mathematical fact is that a hypersurface described by the
equation PW = 0 becomes singular whenever

PW = 0 and dPW = 0, (24)

where the last condition indicates a degeneration of the tangent space. It is easy to work
out these conditions for the Weierstrass curve (23). First use the scaling relations to go to
inhomogeneous coordinates by setting z = 1. Then the above conditions are equivalent to

y = 0,

−x3 − fx − g = (x − a1)(x − a2)(x − a3) = 0, (25)

(x − a1)(x − a2) + (x − a2)(x − a3) + (x − a1)(x − a3) = 0,

where a1, a2, a3 are the three complex roots of the cubic polynomial −x3 −fx−g. Clearly the
above requires that two or more of these roots coincide. As always, the structure of the roots
of this cubic polynomial is encoded in the discriminant Δ, which vanishes if and only if at
least two roots coincide. For the Weierstrass model the discriminant of the cubic −x3−fx−g
takes the simple form

Δ = 27g2 + 4f 3, (26)

which shows that the structure of the elliptic curve indeed depends on the parameters f and
g.

In fact, the dependence of the complex structure τ on f and g can be made more precise.
Since τ undergoes SL(2, Z) monodromies it is more convenient to work with the SL(2, Z)
invariant Jacobi j-function, which yields an isomorphism from the fundamental domain of
SL(2, Z) to the Riemann sphere. Instead of introducing the formal definition of j(z) in terms
of theta-functions it suffices here to note the expansion

j(z) = exp(−2πiz) + 744 + (exp(2πiz)) + . . . . (27)

A classical mathematical result is that the complex structure τ of a Weierstrass elliptic curve
is determined by f, g via the relation

j(τ) =
4(24f)3

Δ
. (28)
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From elliptic curves to elliptic fibrations

Armed with this representation of a single elliptic curve, we can proceed to elliptic fibrations.
Suppose we have some n-complex dimensional manifold Bn, covered by local coordinates ui.
Then a fibration of the Weierstrass curve (23) over Bn is obtained by promoting the constants
f and g in (23) to suitable polynomials in the coordiates ui of Bn, f = f(ui), g = g(ui).
This defines the corresponding Weierstrass model, also known as an E8-fibration. Note that
in principle one can also consider fibrations of the elliptic curves P1,1,2[4] or P1,1,1[3] (called
E7- and, respectively, E6-fibrations) and their generalisations. The crucial point, however, is
the following mathematical theorem (see e.g. [27]): Every elliptic fibration with a section can
be represented by a Weierstrass model defined in terms of the equation (23) with varying f
and g. All other representations such as the E7- and E6-fibrations are birationally equivalent
(equivalent up to a flop transition).

Via the relation (28) the complex structure τ is now dependent on the base coordinates ui.
In particular, the elliptic fiber degenerates on a codimension-one sublocus on Bn determined
by the vanishing of the likewise ui-dependent discriminant Δ = 27g2 + 4f 3. In view of what
we said before, this vanishing locus must be interpreted as a divisor wrapped by a stack of
7-branes. Indeed, suppose Δ vanishes to order N along the divisor S on Bn defined by w = 0.
Then eqns. (27) amd (28) imply that in the directions normal to this divisor

τ � N

2πi
ln(w) (29)

up to regular terms, which is exactly the behaviour expected for N coincident 7-branes. The
connection between this geometric description of 7-branes as the degeneration locus of the
elliptic fibration and the concept of [p, q]-7-branes comes about as follows: A single [p, q]-7-
brane is the locus on the base Bn along which a (p, q)-cycle on the elliptic fiber degenerates.
This can be shown by matching the geometric SL(2, Z) monodromies with the action (16) of
Mp,q. Locally around each 7-brane we are free to declare the degenerate 1-cycle in the fiber
to correspond to the (1, 0) fiber by a choice of basis for H2(T

2, Z). This corresponds to the
assertion that locally each brane looks like a D7-brane by an SL(2, Z) transformation. In IIB
theory, a stack of N coincident 7-branes in generic position with respect to the O7-plane gives
rise to gauge group U(N). In the F-theory picture the gauge group along a divisor is described
by the details of the degeneration of the elliptic fiber as we will see below.

First, however, we need to discuss the Calabi-Yau property in greater detail. The first
Chern class of an elliptic fibration Yn+1 is related to the first Chern class of the base space Bn

and the degeneration locus of the fibration as [28]

c1(TYn+1) � π∗
(
c1(TBn) −

∑

i

δi

12
[Γi]

)
, δi = O(Δ)|Γi

. (30)

Here

π : Yn+1 → Bn (31)

denotes the projection from the fibration to the base, and its pullback π∗ maps H2(Bn, Z) →
H2(Yn+1, Z). Furthermore, the discriminant is supposed to vanish to order δi along the divisors
Γi on the base, with dual 2-form [Γi]. Strictly speaking this formula is correct only for elliptic
K3-manifolds, but the extra complications due to higher co-dimension degenerations on the
base do not affect the present argument [29]. We see that the Calabi-Yau property of Yn+1
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forces Bn to acquire positive curvature such as to compensate for the degenerations of the
fiber. In particular, Bn itself is not Calabi-Yau. Since the discriminant locus describes the
positions of the 7-branes, we find that the total amount of 7-branes leading to a consistent
compactification is thus constrained by the curvature of the base space via

∑

i

δi [Γi] = 12 c1(TBn). (32)

This equation is reminiscent of the 7-brane tadpole cancellation condition in perturbative
Type IIB theory

∑

i

Ni[Γi] = 4[O7]. (33)

This demonstrates the very different nature of string model building in perturbative Type
IIB orientifolds and F-theory in that the 7-brane consistency conditions are automatically
incorporated in a well-defined geometry.

From a mathematical perspective, the relation (32) constrains the degree of the polynomials
f and g that appear in the Weierstrass model as follows: The class of the left-hand side is
just the class of the full discriminant Δ, and (32) tells us that [Δ] = 12c1(TBn). In view of
Δ = 27g2 + 4f 3 this determines the class of f, g. In general f and g are not globally defined
functions of the base space, but rather sections of a line bundle L. In terms of the canonical
bundle KBn , which has first Chern class c1(KBn) = −c1(TBn), it follows that f and g are
sections of K−4

Bn
and K−6

Bn
, respectively. Homogeneity of the defining Weierstrass polynomial

then forces also x and y to transform as sections of the base. In all, we find

x ∈ H0(Bn, K−2
Bn

), y ∈ H0(Bn, K−3
Bn

), z ∈ H0(Bn,O), (34)

f ∈ H0(Bn, K−4
Bn

), g ∈ H0(Bn, K−6
Bn

). (35)

Example: F-theory on K3

As a simple example consider K3 on the locus of its moduli space where it arises as an elliptic
fibration over B1 = P

1. In terms of the normalised volume form t of P
1, the first Chern class

of KP1 is simply c1(KP1) = −2t. This follows from the Hirzebruch-Riemann-Roch theorem,
whereby

χ = 2 − 2g =

∫

P1

c1(TP1). (36)

The standard notation is of course KP1 = O(−2). More generally a section of the line bundle
O(−n) is a homogenous polynomial of degree n in the homogeneous coordinates [u0, u1] of P

1.
Together with the original scaling relation of the Weierstrass model the elliptically fibered K3

is spanned by the coordinates

(u0, u1; x, y, z) � (u0, u1; λ
2x, λ3y, λz) � (μu0, μu1; μ

4x, μ6y, z). (37)

Famously, the discriminant Δ is thus a polynomial of degree 24 on the base, with 24 zeroes
known as the position of the 24 7-branes of compactification of IIB theory on P

1. Not all of
these 24 branes describe perturbative D7-branes. As discussed already around eqn. (18), in
the strict perturbative limit the tadpoles are cancelled locally by grouping the 24 branes into
four stacks of six branes. Each stack corresponds to 4 D7-branes, i.e. A-type branes, on top
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of a system of BC branes. The latter furnish the F-theoretic description of the IIB O7-plane.
This can be derived via a monodromy analysis [20].

At a more advanced level, the F-theory solution teaches us several exciting lessons: In [20]
Sen showed how the O7-brane splits as one removes one or more A-branes from the A4BC
system. Recall from the discussion after (12) that in such a situation where tadpoles are no
longer cancelled locally the naive supergravity solution must break down close to the O7-
plane. In F-theory, the geometry adjusts itself via this non-perturbative brane split so as to
render the configuration self-consistent. This not only reveals that the O7-plane is a dynamical
object per se; it also furnishes a highly non-trivial check that F-theory correctly captures the
non-perturbative degrees of the theory. Indeed it is quite remarkable that a comparatively
straightforward analysis of the geometry of K3 alone dictates all consistent configurations
[p, q]-brane configurations. Along these lines, the authors of [30] found more general solutions
with constant, but non-perturbatively large axio-dilaton for which the 24 branes group e.g.
into three bunches of the type A5BC2 and more. This shows that the number of branes of a
given [p, q]-type on a given compactification space changes from configuration to configuration
due to the appearance of monodromies as we start moving the branes around.

2.4 Sen’s orientifold limit

After this first encounter with the geometric description of F-theory, let us go back and
analyse more closely how to recover the weakly coupled Type IIB orientifold picture. This
is accomplished by a procedure due to Sen [31]. Recall from the discussion after eqn. (12)
that in the IIB limit one considers the 7-branes as probe objects and takes the axio-dilaton
as non-varying and perturbatively small. We already noted that strictly speaking this can
only be realised if all 7-brane tadpoles are cancelled locally by placing a suitable amount of
7-branes on top of the orientifold planes. More generally, there can however exist a limit in
which one can approximately take τ small and non-varying even though not all tadpoles are
cancelled locally. As argued after eqn. (13) this corresponds to the limit λ → ∞. Since the
profile of τ is encoded in the Jacobi function (28) a constant τ can be achieved as long as j(τ)
is non-varying over the base B3 of the F-theory 4-fold. To arrange for this one Sen makes the
general ansatz for the sections f and g

f = −3h2 + εη, g = −2h3 + εhη − ε2

12
χ, (38)

where ε is an arbitrary constant. Sen’s orientifold limit corresponds to the limit ε → 0 with
h, η and χ generically non-vanishing. In this case one finds that indeed the string coupling
becomes arbitrarily weak everywhere except at the location h = 0, where gs → ∞. It can thus
be considered as a perturpative parameter of the theory. The discriminant locus factorises to
leading order in ε as

Δε = −9ε2h2(η2 − hχ) + O(ε3) (39)

so that the fibration degenerates at h = 0 and at η2 − hχ. The latter may factorise further
depending on the particular form of the polynomials η and χ. By closer inspection of the
monodromies around these loci it can be shown that h = 0 corresponds to the location of
an O7-plane, while the latter locus is that of an ordinary D7-brane. The inclusion of higher
order terms in ε, on the other hand, destroys this factorisation of Δ into orientifold and brane
piece. This process can be thought of as recombination of the O7-plane and the D7-brane.
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Since in perturbation theory there are no light strings stretching between the O7-plane and
a D7-brane, this recombination is truly non-perturbative. The involved recombination modes
are expected to be

(
p
q

)
strings.

The Type IIB theory is defined on the Calabi-Yau 3-fold X which is a double cover of the
base B branched over h = 0. Concretely, suppose the base B3 is embedded into some projective
space with projective coordinates ui. Then one can define X as the complete intersection in
the projective space spanned by the coordinates ui and ξ which is defined by the original
hypersurface polynomial and the additional constraint

ξ2 − h(ui) = 0. (40)

Conversely, given a Type IIB orientifold on X together with a Z2 action σ, one can construct
the F-theory uplift by reversing Sen’s limit above. This has been worked out and applied in
the more recent literature [32–34].

Note that the form of the 7-brane locus η2−ξ2χ = 0 (where we replace h in η2−hχ = 0 by
ξ2 according to (40)) shows that for generic polynomials η, χ the defining equation for a single
D7-brane configuration with a well-defined F-theory uplift is non-generic [17,35]. Brane-image
brane configurations require a specialisation of these polynomials, e.g. by factorisation of χ.
The relation of such non-generic brane splits to elliptic fibrations of E7- and E6-type has been
investigated in [36, 37].

Finally we would like to point out that the limit ε → 0 with all other polynomials generic is
not the only way to make τ non-varying along B3. There exist in addition the two possibilities
of taking either f ≡ 0 or g ≡ 0 [30]. In these cases, τ is constant and fixed at non-perturbatively
large values, in agreement with the appearance of exceptional gauge groups. These configura-
tions correspond to generalisations of the Z2 orientifold action of the strongly coupled Type
IIB string to Zn actions.

2.5 Gauge symmetry from degenerations

From a physics perspective the most essential data of an elliptic fibration are the locus and
the type of fiber degenerations because these allow us to deduce the nature of the 7-branes
wrapping the corresponding divisor. The different ways how the complex structure of the
elliptic fiber can degenerate have been classified by Kodaira [28] for the case of a Weierstrass
model of K3. The relevant criterion to be imposed here is that the singularities can be resolved
without destroying the Calabi-Yau property. These results have subsequently been generalised
to higher Calabi-Yau spaces (see [38]4 and references therein for a physics discussion).

Consider a Weierstrass model Yn+1. One distinguishes degenerations that merely render
the fibration singular without inducing an actual singularity in Yn+1 versus loci where the
Calabi-Yau (n + 1)-fold becomes singular itself. The simplest kind of degeneration of the first
type corresponds to a so-called I1 singularity, which arises in the fiber over just a single 7-
brane. For a [p, q]-7-brane the (p, q) 1-cycle of the elliptic fiber pinches off and the elliptic fiber
forms a sausage-type P

1 whose north and south pole touch each other. Following Kodaira, I1

singularities arise in a Weierstrass model whenever Δ develops a simple zero while f and g are
non-zero. In this case two of the roots ai in the cubic (25) coincide. From eqs. (27), (28) the
simple zero in Δ leads to the logarithmic profile (12) of τ characteristic of a single 7-brane.

4 Note that this reference is devoted to an analysis of elliptic Calabi-Yau 3-folds. For higher dimensional
manifolds extra effects due to a more complicated monodromy structure can occur, and as of this writing
no complete classification exists in the literature. Also, the results of ref. [38] apply to situations where the
discriminant locus itself is non-singular as a divisor of Y3.
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When Δ vanishes to higher order, generically also Yn+1 develops an actual singularity as
a manifold. For the simplest case of Y2 = K3 the possible singularities that can occur are
precisely the ones listed in the famous ADE classification [28]. For higher dimensional Yn+1

with n > 2 also the action of monodromies along the brane have to be taken into account.
This can create more general singularities including non-simply laced examples of B and C
type and such exceptional cases as G2 or F4.

Let us focus for simplicity on Calabi-Yau 4-folds Y4. One intuitive way to understand the
connection between a singularity over the divisor S ⊂ B3 and a Lie algebra G is as follows:
The singularity in Y4 can be resolved by standard methods of algebraic geometry. For our
purposes it suffices to consider cases that allow for a so-called split simultaneous resolution.
As described e.g. in [39] this means that there exists a new, non-singular Calabi-Yau Y 4

defined by replacing the singular fiber over S by a tree of P
1s which we call in the sequel

Γi, i = 1, . . . , rk(G). Note that in this process h1,1 increases by rk(G). These P
1s have the

property that they intersect one another like the simple roots of the Lie algebra G in the
following sense: The resolution 2-cycles Γi, are fibered over the 7-brane S ⊂ B3. Denote the
resulting divisors of Y 4 by

D̂i : Γi → S. (41)

By construction these are P
1-fibrations. Consider furthermore the linear combination D̂0 =

Ŝ−
∑

i aiDi, where Ŝ is the elliptic fibration over S and ai denote the Dynkin labels for the Lie

algebra G associated with the singularity over S. Then D̂0, D̂i encode the extended Dynkin
diagram of G in the sense that their Poincaré dual 2-forms [D̂i] ∈ H2(Y 4) satisfy

∫

Y 4

[D̂i] ∧ [D̂j ] ∧ ω̃ = −Cij

∫

S

ω̃, i, j, = 0, 1, . . . , rk(G) (42)

for ω̃ ∈ H2(B3) and Cij the Cartan matrix of G. Conversely, the singular F-theory limit can
be understood as the limit in which the Γi shrink to zero volume. The singularity is the result
of a collision of rk(G) zero size P

1s.
The appearance of the corresponding gauge groups along the 7-brane wrapping the singular

locus can be understood by F/M-theory duality. As sketched in (19), Kaluza-Klein reduction
of C3 along non-singular fibers results in the Type IIB closed string 2-forms B2 and C2. As we
have just seen, in the fiber above the discriminant locus extra two-cycles appear along which
C3 can be reduced. For simplicity consider an An−1 singularity associated with gauge group
SU(n). As argued above, the resolution P

1s Γi, i = 1, . . . (n − 1) correspond to the nodes of
the Dynkin diagram of An−1. Massless vector states arise from two sources:

• The M-theory 3-form C3 can be reduced along Γi, leading to 1-forms Ai =
∫

Γi
C3 along

the 7-brane. These are interpreted as the gauge potentials for the abelian group factors
in the Cartan subalgebra of SU(n).

• The M-theory M2-brane can wrap chains of 2-cycles Sij = Γi ∪ Γi+1 ∪ . . . ∪ Γj for any
i ≤ j. Taking into account the two possible orientations this gives rise to n2 − n states
along the brane. In the singular limit of vanishing volume of the Γi these states become
massless and lead to the W -bosons of SU(n).

In all this yields the n2 − 1 generators of SU(n). This logic can be generalised to other simple
groups.
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In addition there can be extra abelian gauge factors which do not arise as the Cartan
generators of a non-abelian gauge group and which are strictly speaking not localised along
individual divisors. An unambiguous way to determine the total rank of the gauge group of a
singular Weierstrass model is to note that all U(1) generators derive from reduction of C3 as
C3 = Ai ∧ ωi + . . ., where the two-forms ωi have one leg along the T 2 fiber and one leg along
the base [29, 40]. Therefore

r = h1,1(Y n+1) − h1,1(Bn) − 1 (43)

gives the total rank of the F-theory gauge group including possible abelian gauge factors.5

The physics of these extra U(1)s in compactifications to four dimensions has been discussed
in [37].

Let us stress that for model purposes it is essential to have control over the resolution Y 4

of the singular fibration Y4, e.g. to determine the complete rank of the gauge group or in the
context of 3-brane tadpole cancellation, see section 3.2. In fact, for the class of Calabi-Yau
4-folds constructed as hypersurfaces or complete intersections of toric spaces powerful tools
have been developed to perform this resolution in terms of the divisors D̂i explicitly [41, 42].
These have recently been exploited in the context of F-theory model building in [37, 43–45].

To conclude this section, we point out that the appearance of exceptional and more gen-
eral gauge groups has a beautiful interpretation in terms of

(
p
q

)
-strings [46, 47]. This can be

understood already for F-theory on K3, where the possible gauge groups are exhausted by
the ADE classification. By definition, only

(
p
q

)
-strings can end on [p, q]-7-branes. Due to the

appearance of monodromies, however,
(

p
q

)
-strings stretched between two branes along different

paths can lead to inequivalent states. A mild version of this phenomenon was encountered
already in the perturbative limit. A

(
1
0

)
-string encircling a BC system gets orientation re-

versed, see eqn. (18). The resulting unoriented strings correspond to strings between a stack
of branes and their orientifold images. More generally, one can classify allowed paths that lead
to BPS-strings and determine their interactions via consistent splitting and joining. Suffice it
here to highlight from [46] that the various

(
p
q

)
-strings occurring for the [p, q]-7-brane system

AnBC2 indeed span the adjoint of E5+n, n = 1, 2, 3, in agreement with the monodromies for
the generalised orientifolds of [30]. The underlying reason for this new richness is that

(
p
q

)
-

strings of different types can form string junctions with more than just two endpoints. This
overcomes the limitation to two-index representations as carried by the Chan-Paton factors
of perturbative

(
1
0

)
-strings. The latter allow only for the construction of U(N), Sp(2N) and

SO(N) groups.

3 Technology for F-theory compactifications

3.1 Tate models

Given the importance of the singularity structure for an analysis of the F-theroy landscape,
we find it useful to present the methods to detect the singularities in slightly greater detail.
There exists an algorithm due to Tate that allows one to read off the singularity structure
of an elliptic fibration, say Y4 : T 2 → B3. Tate’s formalism consists in a local coordinate
redefinition that brings the Weierstrass constraint PW = 0 in (23) into the Tate form

PW = x3 − y2 + x y z a1 + x2 z2 a2 + y z3 a3 + x z4 a4 + z6 a6 = 0. (44)
5In addition, there are h2,1(Bn) bulk U(1) fields, corresponding to reduction of the RR 4-form C4 along

3-cycles on Bn.
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For a general Weierstrass model this can be achieved locally via the so-called Tate algorithm
described in detail in [38]. In the sequel we will only be working with the inhomogeneous Tate
form by setting z = 1. The an(ui) depend on the complex coordinates ui of the base B. They
encode the discriminant locus of the elliptic fibration. To recover the Weierstrass model one
first introduces the combinations

β2 = a2
1 + 4a2, β4 = a1a3 + 2 a4, β6 = a2

3 + 4a6. (45)

One can check by completing the square and the cube in (44) that the Weierstrass sections f
and g are related to these via

f = − 1

48
(β2

2 − 24 β4), g = − 1

864
(−β3

2 + 36β2b4 − 216 β6). (46)

The discriminant Δ = 27g2 + 4f 3 can then be expressed as

Δ = −1
4
β2

2(β2β6 − β2
4) − 8β3

4 − 27β2
6 + 9β2β4β6. (47)

In general, the discriminant Δ will factorize with each factor describing the location of a 7-
brane on a divisor Si in B3. The precise group is encoded by the vanishing degree of the ai

and Δ. This has been classified in Table 2 of ref. [38], which we are reproducing (in the form
given in [33]) for convenience of the reader in table 1.6

For example, an SU(5) gauge group along the divisor

S : w = 0 (48)

corresponds to

a1 = b5, a2 = b4w, a3 = b3w
2, a4 = b2w

3, a6 = b0w
5, (49)

where the bi generically depend on all coordinates ui of the base B but do not contain an
overall factor of w. It is straightforward to evaluate the discriminant Δ of the elliptic fibration
in terms of the new sections bi as

Δ = −w5
(
b4

5P + wb2
5(8b4P + b5R) + w2(16b2

3b
2
4 + b5Q) + O(w3)

)
(50)

with
P = b2

3b4 − b2b3b5 + b0b
2
5, R = 4b0b4b5 − b3

3 − b2
2b5. (51)

Generically the expression in brackets in (50), denoted as S1, does not factorize further and
thus constitutes the single-component locus of an I1 singularity. Cohomologically, one thus
finds that the class [Δ] splits as [Δ] = 5[S] + [S1].

As stressed in section 2.3, the most general elliptic fibration with a section can always be
written as a Weierstrass model. A special subclass of such models, however, can be brought
into the Tate form not just locally around the discriminant locus, but globally. I.e. for those
models the defining constraint is (44) in terms of globally defined sections ai ∈ H0(B, K−i

B ).
Clearly each such global Tate model defines also a Weierstrass model in that each set of ai

defines the Weierstrass sections f and g as in (46). The converse, however, is not true globally
as the transformation from f and g to ai involves branch cuts.

6Note that this table was derived for the case of elliptic Calabi-Yau 3-folds, see footnote 4.
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sing. discr. gauge enhancement coefficient vanishing degrees
type deg(Δ) type group a1 a2 a3 a4 a6

I0 0 — 0 0 0 0 0
I1 1 — 0 0 1 1 1
I2 2 A1 SU(2) 0 0 1 1 2
I ns
3 3 [unconv.] 0 0 2 2 3
I s
3 3 [unconv.] 0 1 1 2 3

I ns
2k 2k C2k SP (2k) 0 0 k k 2k
I s
2k 2k A2k−1 SU(2k) 0 1 k k 2k

I ns
2k+1 2k + 1 [unconv.] 0 0 k + 1 k + 1 2k + 1

I s
2k+1 2k + 1 A2k SU(2k + 1) 0 1 k k + 1 2k + 1

II 2 — 1 1 1 1 1
III 3 A1 SU(2) 1 1 1 1 2

IV ns 4 [unconv.] 1 1 1 2 2
IV s 4 A2 SU(3) 1 1 1 2 3
I∗ns
0 6 G2 G2 1 1 2 2 3
I∗ ss
0 6 B3 SO(7) 1 1 2 2 4
I∗ s
0 6 D4 SO(8) 1 1 2 2 4

I∗ns
1 7 B4 SO(9) 1 1 2 3 4
I∗ s
1 7 D5 SO(10) 1 1 2 3 5

I∗ns
2 8 B5 SO(11) 1 1 3 3 5
I∗ s
2 8 D6 SO(12) 1 1 3 3 5

I∗ns
2k−3 2k + 3 B2k SO(4k + 1) 1 1 k k + 1 2k

I∗ s
2k−3 2k + 3 D2k+1 SO(4k + 2) 1 1 k k + 1 2k + 1

I∗ns
2k−2 2k + 4 B2k+1 SO(4k + 3) 1 1 k + 1 k + 1 2k + 1

I∗ s
2k−2 2k + 4 D2k+2 SO(4k + 4) 1 1 k + 1 k + 1 2k + 1

IV∗ns 8 F4 F4 1 2 2 3 4
IV∗ s 8 E6 E6 1 2 2 3 5
III∗ 9 E7 E7 1 2 3 3 5
II∗ 10 E8 E8 1 2 3 4 5

non-min 12 — 1 2 3 4 6

Table 1: Refined Kodaira classification resulting from Tate’s algorithm. In order to distinguish
the “semi-split” case I∗ ss

2k from the “split” case I∗ s
2k one has to work out a further factorization

condition, see §3.1 of [38].

Models which are globally of the Tate form are very convenient because one can immedi-
ately read off the gauge group from table 1 without going through the algorithm of [38] to
bring the Weierstrass polynomial locally into the form (44). It is important to keep in mind,
though, that they do not give rise to the most general singularity structure. In particular,
there is a sense in which such models are based on an underlying gauge group E8. Consider
the situation that the gauge group G realised along the divisor S is contained within E8. Then
in the global Tate model the dynamics of the gauge sector can be understood via breaking an
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original E8 symmetry down to the commutant of a complimentary gauge group H such that
E8 → G × H . This can be seen by organising the sections of the Tate model as a sum of two
terms, the first of which corresponds to singularity enhancement E8, while the second encodes
an H-bundle responsible for the breaking down to G. For more technical information on this
point we refer to [37] and references therein.

3.2 Fluxes and 3-brane tadpoles

While the entire information of 7-brane charge is contained in the geometric data of the F-
theory Calabi-Yau 4-fold, the induced 5- and 3-brane charge is extra data encoded in the
background flux. In the Type IIB orientifold picture one distinguishes closed string fluxes -
most notably the three-form flux G3 = F3 − τH3 - and brane fluxes F . The latter are the
background value of the Yang-Mills field strength on the 7-branes. In F-theory, both RR
3-form fluxes and brane fluxes enjoy a uniform description in terms of the M-theory four-form
flux G4. In principle, brane fluxes arise by the reduction

G4 =
∑

i

F (i) ∧ ωi + . . . , (52)

where ωi denote those normalisable harmonic 2-forms of Yn+1 that are neither elements of
H1,1(Bn) nor represent the fiber class itself. For example, this expression straightforwardly
describes abelian gauge flux associated with a Cartan U(1) generator contained in the gauge
group G along S. In this case ωi ≡ ωG

i are the 2-forms Poincaré dual to the resolution
divisors D̂i introduced in (41). Such flux breaks the gauge group G to the commutant of the
Cartan generator, a mechanism that will be heavily exploited in the context of GUT symmetry
breaking in section 4.2.

More general fluxes, however, are extremely hard to describe in detail because they encode
the information of a non-abelian gauge bundle. This is best understood in the context of
the global Tate model introduced before. The flux we have in mind is associated with the
orthogonal gauge group H ⊂ E8 and therefore does not affect the gauge group G. An auxiliary
tool to study such fluxes is given by the spectral cover construction, which is the subject of
section 3.5. Note that gauge flux is essential to achieve a chiral matter spectrum, see the
discussion in the next section.

The total amount of F-theory fluxes is constrained by the 3-brane tadpole cancellation
condition, which is dual to M2-brane charge cancellation in M-theory. Here we simply quote
the result [48]

χ(Y 4)

24
= NM2 +

1

2

∫

Y 4

G4 ∧ G4, (53)

where NM2 is the number of M2-branes filling the three non-compact dimensions. By F/M-
duality NM2 = ND3, the number of spacetime-filling D3-branes.

The object χ(Y 4) is the Euler characteristic, introduced in eqn. (21), of the resolved Calabi-
Yau 4-fold. It encodes all curvature induced 3-form charge of the 7-branes. Indeed in mod-
els with a weakly coupled Type IIB description one can match χ(Y 4) with the curvature-
dependent terms in the Chern-Simons action of the O7-plane and D7-branes [35]. Special
care has to be taken in the computation of χ(Y 4): As long as the 4-fold is non-singular,
χ(Y4) =

∫
c4(Y ), and for a Weierstrass model over B3 a simple formula exists [26, 48]

χ(Y4) = 12

∫

B3

c1(B3)c2(B3) + 360

∫

B3

c3
1(B3). (54)
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For the phenomenologically relevant case of F-theory compactification with non-abelian gauge
groups, however, Y4 is singular and the computation of its Euler characteristic requires the
resolution of Y4 to Y 4. For general singular Calabi-Yau 4-folds the computation of χ/24 can
become quite involved [49, 50]. However, as stressed above, for the class of 4-folds that can
be described with the help of toric methods a well-defined algorithm exists that allows one
to deduce χ/24, see [43–45] for examples of this type in the context of global F-theory GUT
models. Furthermore for global Tate models with non-abelian singularities solely along a
single divisor S, a simple closed formula for χ/24 has been conjectured [43], see the discussion
around (100).

Note that the value of χ for a singular 4-fold Y4 is usually significantly lower than the
expression (54) for the corresponding smooth Weierstrass model. This is of direct relevance
for the construction of four-dimensional F-theory vacua because moduli stabilisation and the
engineering of a realistic particle spectrum require the inclusion of four-form flux. In consistent
models the flux is not allowed to overshoot χ/24 as this would necessitate the inclusion of anti
3-branes, which would lead to instabilities.7 Typically, F-theory vacua with high rank non-
abelian gauge groups are therefore much more constrained than vacua with lower rank.

3.3 Matter curves and Yukawa points

In previous sections we have described the localisation of the non-abelian gauge degrees of
freedom in F-theory along divisors Da of the base space Bn of the elliptic Calabi-Yau. Each
such divisor carries a Ga gauge theory with four supercharges, corresponding to N = 1 Super-
Yang-Mills in four dimensions. Besides the vector multiplet in the adjoint representation of
Ga there arises extra massless charged matter.

In Type IIB orientifolds on a Calabi-Yau 3-fold X, chiral multiplets in the adjoint repre-
sentation of Ga correspond to D7-brane moduli [51]. These include brane deformation moduli

and Wilson line moduli, counted respectively by H
(0,2)
− (Da) � H

(0)
− (S, KS) and H

(0,1)
− (S). The

subscripts indicate that only the odd eigenspaces of the cohomology groups under the orien-
tifold action σ are relevant. In F-theory there is no clear separation between open and closed
string moduli. In fact the brane position moduli become part of the complex structure moduli
H(3,1)(Y4). For a precise account of these fields and the Wilson line moduli in the effective
action derived by dimensional reduction of the dual M-theory we refer to [25].

Apart from these non-chiral matter fields, there exist two types of potentially chiral charged
matter: so-called bulk states that propagate along the whole divisor and matter at the inter-
section locus of two divisors Da and Db. The appearance of these chiral multiplets parallels
the situation in Type IIB orientifolds, which is therefore worthwhile recalling in this context.
For this we will follow mostly the discussion in [52].

Bulk matter

Consider two parallel stacks of Type IIB D7-branes along the same divisor S, each carrying
internal gauge flux 2πα′F a and 2πα′F b, respectively. This flux is the curvature of two vector
bundles Va and Vb with Chern character

tr
[
e2πα′Fi

]
= ch(Vi). (55)

7One might argue that the anti 3-brane should be stabilised in a warped region as in KKLT and thus do
no further harm, but this assumes a sufficient amount of 3-form flux allowed by the 3-brane tadpole to create
a warped throat in the first place.
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In the sequel we restrict ourselves to line bundles La, Lb characterised entirely by their first
class c1(Li) = tr 1

2π
�2
sFi. For simplicity we assume that S is at general position with respect

to the O7-plane so that the gauge group is U(Na) × U(Nb). The bulk matter describes chiral
multiplets in the bifundamental representation propagating along the whole divisor S. Such
matter is in general counted by so-called extension groups

Extn(ι∗La, ι∗Lb), n = 0, . . . , 3, (56)

where ι : S → X denotes the inclusion of the divisor S into the Calabi-Yau 3-fold X. This was
derived in detail from an analysis of B-model vertex operators in [53]. The value n = 1 refers
to anti-chiral multiplets transforming as (Na, Nb), while n = 2 corresponds to chiral multiplets
in the same representation. For consistency, the states counted by the groups corresponding
to n = 0 and n = 3 must be absent. These states do not describe matter fields but rather
refer to gauge multiplets. One can show that the sheaf extension groups eqn. (56) translate
into certain cohomology groups for the line bundles on the divisor S, concretely

Ext0(ι∗La, ι∗Lb) = H0(S, La ⊗ L∨
b ),

Ext1(ι∗La, ι∗Lb) = H1(S, La ⊗ L∨
b ) + H2(S, L∨

a ⊗ Lb),

Ext2(ι∗La, ι∗Lb) = H2(S, La ⊗ L∨
b ) + H1(S, L∨

a ⊗ Lb),

Ext3(ι∗La, ι∗Lb) = H0(S, L∨
a ⊗ Lb). (57)

The net chirality follows as [52]

Ibulk
ab =

3∑

n=0

(−1)ndim Extn(ι∗La, ι∗Lb) = −
∫

X

[S] ∧ [S] ∧ ( c1(La) − c1(Lb) ) . (58)

As a variant of this setup one can also consider a single brane stack with gauge group G
along S and consider gauge flux in terms of a non-trivial embedding of a vector bundle with
structure group G2 ⊂ G. This breaks G to the commutant G1 of G2. In this case chiral
multiplets charged under G2 arise, which originate from the adjoint representation of G. More
precisely, the group theoretic decomposition

G → G1 × G2 (59)

adG → (adG1 , 1) ⊕ (1, adG2) ⊕
∑

(Rx, Ux) (60)

leads to bulk matter in suitable representations Rx under the visible gauge group G1. The
individual states are counted by appropriate cohomology groups with values in the bundle
representation Ux. For instance, a non-trivial gauge line bundle L associated with a Cartan
U(1) of G breaks G → G̃ × U(1), and if the representations of G̃ carry U(1) charge q, the
relevant bundle is Lq. This generalises the appearance of La ⊗ L∨

b in (57) for bifundamental
states.

Even though derived originally in the perturbative Type IIB context, these expressions
continue to hold for general 7-branes in F-theory. This can be derived e.g. with the help of
the eight-dimensional twisted field theory introduced in [7].

Localised matter

From the intersecting brane perspective it is natural to expect that additional massless matter
appears at the intersection of two 7-branes. What happens in F-theory is that as two singular
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loci collide transversely, the singularity type of the elliptic fibration enhances over intersection
common locus [54]. This intersection occurs in complex codimension one along the base. In
F-theory compactifications on Calabi-Yau 4-folds, two divisors Da and Db intersect along a
complex curve Cab = Da ∩Db. The appearance of extra matter can be understood in terms of
the tree of zero-size P

1s over each singular locus. Along the intersection locus the two sets of
P

1s unite to form the (affine) Dynkin diagram of a new gauge group Gab. Its rank is the sum of
the gauge groups Ga and Gb along the two divisors. Note that group theoretically there may
be several types of enhancements possible, each leading to different types of matter states.
By abuse of notation one calls the group Gab the enhanced gauge group along the intersection
locus even though in actuality there exists no N = 1 SYM theory with a corresponding vector
multiplet. However, from the reduction of the M-theory 3-form and from wrapped M2-branes
along the various P

1s in the fiber one does find as many massless states along Cab as is necessary
to form the adjoint of Gab. These states include the states propagating along Da and Db but
also contain extra matter localised at Cab. Under the group theoretic decomposition

Gab → Ga × Gb (61)

adGab
→ (adGa , 1) ⊕ (1, adGb

) ⊕
∑

(Rx, Ux) (62)

the localised states transform in the representation (Rx, Ux). These states descend from M2-
branes wrapping chains of P

1s associated both with the Dynkin diagram of Ga and Gb, in
analogy to the chains Sij defined in the paragraph after (42). Away from the intersection
locus Cab, such chains are not of zero size and the extra matter becomes massive.

Note that for enhancements to non-classical groups Gab the irreps (Rx, Ux) need not cor-
respond to two-index representations, as would be the case for perturbative Type IIB models.
The larger set of possibilities is again due to the multiple endpoints of multi-pronged

(
p
q

)

strings, which furnish a genuine strong coupling effect. While the Chan-Paton factors of a
fundamental

(
1
0

)
string with two endpoints always give rise to two-index representations, a

multi-pronged string can accomodate more general charges.
An analysis of the twisted defect SYM theory along the matter curves [7] confirms that

this massless matter is counted by the same expressions familiar from perturbative Type IIB
models [53],

H i(Cab, Fx ⊗ K
1
2
Cab

), i = 0, 1. (63)

Here i = 0 and i = 1 respectively count chiral and anti-chiral multiplets in representation
(Rx, Ux), and Fx is schematic for suitable combinations of gauge flux restricted onto Cab. The
chiral index follows via Hirzebruch-Riemann-Roch as

χ = dimH0(Cab, Fx ⊗ K
1
2
Cab

) − dimH1(Cab, Fx ⊗ K
1
2
Cab

) =

∫

Cab

Fx. (64)

We will be more specific about the concrete chirality formulae in the context of the spectral
cover construction of gauge flux in section 3.5.

The type of singularity enhancement can be read off from the discriminant locus with the
help of Tate’s algorithm. As a non-trivial example we consider again the SU(5) gauge theory
along the divisor S introduced above. In this case the localised matter states arise at the
intersection of the SU(5) brane S with the I1-locus S1. Since the latter carries no non-abelian
gauge group, the singularity gets enhanced by rank one. Two types of rank-one enhancements
are possible for SU(5) [6, 7]:
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• Enhancement A4 → D5 corresponding to SU(5) → SO(10). The extra matter trans-
forms in the 10 representation of SU(5) as can be determined from the branching rule

45 → (24)0 + (1)0 + 102 + 10−2. (65)

The subscripts denote the (formal) U(1) charges under the decomposition SO(10) →
SU(5) × U(1).

From Tate’s algorithm this D5 enhancement occurs along the curve

P10 : w = 0 ∩ b5 = 0, (66)

along which the discriminant (50) scales like w7, as required for a D5 singularity.

• Enhancement A4 → A5 corresponding to SU(5) → SU(6). The SU(6) locus hosts
matter in the 5 arsing via

35 → (24)0 + (1)0 + 51 + 5−1. (67)

This enhancement occurs whenenver

P5 : w = 0 ∩ P = b2
3b4 − b2b3b5 + b0b

2
5 = 0, (68)

consistent with the scaling Δ ∝ w6 in (50).

In addition there can appear localised GUT singlets 1 on matter curves away from (but
possibly intersecting) the SU(5) brane S. These localised states appear at self-intersections
of the I1-part S1 of the discriminant, along which the gauge group enhances to A1 [37].

Yukawa points

In compactifications on Calabi-Yau 4-folds, two or more matter curves can meet in points.
Here the singularity type of the fiber enhances even further by the same mechanism that leads
to the enhancement along matter curves. Consider for example the intersection of three matter
curves Cab, Cbc, Cac in one point. Group theoretically the representations of the matter states
along the three curves combine to form the adjoint adabc of an enhanced gauge group Gabc.
Even though there exists no actual gauge theory associated with Gabc, the cubic interaction
term for the adjoint of this (hypothetical) enhanced gauge group leads to Yukawa interactions
for the massless matter [6,7]. This can be argued by a closer analysis of the local gauge theory
description of the geometry responsible for the enhancements. The resulting cubic interaction
in the product theory Ga × Gb × Gc can be determined by decomposing the triple product
ad3

abc into gauge invariant triple products for the irreducible representations of Ga, Gb and Gc.
This picture is in perfect agreement with expectations from weakly-coupled Type IIB theory,
where Yukawa couplings are known to be localised at the intersection of matter curves.

To illustrate this picture in the context of our SU(5) gauge theory, we note that there
exist three possible rank-two enhancements of A4 to E6, D6 and A7 with the following Yukawa
structure [6, 7]:

• The 10 10 5 Yukawa is localized at a point of E6 enhancement b5 = 0 = b4.

• The 10 5 5 is localized at a D6 point b5 = 0 = b3.
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sing. discr. gauge enh. coeff. vanish. deg object
type deg(Δ) type group a1 a2 a3 a4 a6 equation

GUT: I s
5 5 A4 SU(5) 0 1 2 3 5 S : w = 0

matter: I s
6 6 A5 SU(6) 0 1 3 3 6 P5 : P = 0

I∗ s
1 7 D5 SO(10) 1 1 2 3 5 P10 : b5 = 0

Yukawa: I∗ s
2 8 D6 SO(12)∗ 1 1 3 3 5 b3 = b5 = 0

IV∗ s 8 E6 E6 1 2 2 3 5 b4 = b5 = 0

extra: I s
7 7 A6 SU(7) 0 1 3 4 7 P = R = 0,

(b4, b5) �= (0, 0)

Table 2: Relevant gauge enhancements in a generic SU(5) GUT geometry (borrowed from [43]).

Indeed b4 = 0 = b5 and b5 = 0 = b3 correspond to a single and double zero of P5 in agreement
with the order of 5 representations appearing in the coupling.

• At P = 0 = R but (b4, b5) �= (0, 0) the singularity type enhances to A6. This realizes
the coupling 5 51. The state 1 represents a (possibly localised) GUT singlet.

We summarise the various codimension singularities of generic SU(5) models and their
physical relevance in table 2.

3.4 F-theory-heterotic duality

Generalities on the duality

Thus far we have approached F-theory via Type IIB orientifolds and via duality with M-theory.
In this section we highlight some of the most basic aspects of the duality with the heterotic
string. This duality is a particularly fruitful source of inspiration for many applications to
concrete model building.

The basic assertion is that F-theory on an elliptic K3 : T 2 → P
1 is dual to the heterotic

string on T 2 [5]. This can be argued by comparing the moduli space of both theories. In
particular, the heterotic string coupling exp(2φ) is dual to the volume of the base P

1 of the
F-theory K3.

This basic duality can be extended ”adiabatically” by fibering an elliptic K3-surface and,
respectively, an elliptic curve over a common n-complex dimensional base Bn in such as way
as to produce Calabi-Yau manifolds on either side of the duality. Thus F-theory on a K3-
fibered Calabi-Yau (n + 2)-fold Yn+2 : K3 → B2 is dual to the heterotic string on the elliptic
Calabi-Yau (n + 1)-fold Zn+1 : T 2 → Bn. Since Yn+2 exhibits a double fibration structure as a
K3-fiberation over B2 and, as always, as an elliptic fibration Yn+2 : T 2 → Bn+1, the base Bn+1

is by itself P
1-fibered, Bn+1 : P

1 → Bn. Therefore only a very special subclass of F-theory
compactifications possesses a straightforward heterotic dual in terms of an elliptic fibration
Zn+1.

On the heterotic side, a perturbative SO(32) or E8 × E8 gauge group descends from the
respective ten-dimensional theory by compactification on a smooth Calabi-Yau. If present,
singularities on the heterotic compactification space lead to extra gauge group factors not
related to this perturbative gauge group which can be of potentially huge rank and which
are due to massless non-perturbative states. In the sequel we will focus on E8 × E8 heterotic
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models with only the perturbative group, i.e. on models for which the elliptic fibration Zn+1 is
smooth. Heterotic models on smooth Calabi-Yau spaces are defined in terms of a holomorphic
vector bundle V1 ⊕ V2 with structure group H1 ×H2 embedded into E8 ×E8. This breaks the
gauge group down to the commutant G1 × G2. The vector bundle data must therefore map
into the singularity structure of the elliptic fibration Yn+2 on the dual F-theory side.

Heterotic/F-theory duality is particularly powerful in compactifications to six dimensions,
where it relates the heterotic string on a K3 which is elliptically fibered over P

1 to F-theory on a
K3 fibration over that same P

1. This implies that the base B2 of the F-theory elliptic fibration
is itself a P

1-fibration over P
1. Such a fibration is called a rationally ruled or Hirzebruch surface

Fk, where k = 0, 1, . . . determines the structure of the fibration. The geometry of elliptic
fibrations over Fk and applications to F-theory/heterotic duality in six dimensions have been
discussed in detail in the pioneering [29] (more general elliptic 3-folds are analysed in [40]).
The value k of the F-theory base Fk determines the second Chern class or instanton number
of the heterotic bundle V1 ×V2 embedded into E8 ×E8 as (12−k, 12+k), k = 0, 1, . . . 12. The
heterotic dilaton is now related to the volume of the fiber and of the base P

1 of the F-theory
B2 as

exp(2φ) =
volf
volb

. (69)

For compactifications to four dimensions, the set of possible F-theory K3-fibrations is
constrained by the fact that only a small number of complex base spaces B2 allow for elliptic
Calabi-Yau spaces Z3 : T 2 → B2 as required on the heterotic side. In fact, for smooth heterotic
compactifications with N = 1 supersymmetry Z3 must have SU(3) holonomy and B2 can only
be a (blow-up in r points of) P2, a (blow up of) Fk or the Enriques surface K3/Z2 [55] (see [40]
for more explanations). The base B3 of the dual F-theory elliptic 4-fold is then a P

1-fibration
over these complexes surfaces. Such a fibration is characterised by a line bundle T over B2

with first Chern class c1(T ) = t as follows: Consider the rank 2 bundle O⊕T over B2. Its fiber
consists of two copies of C, the fibers of the trivial line bundle O and of T . In the same manner
as one forms a P

1 by projectivising two complex coordinates (0, 0) �= (z1, z2) � λ(z1, z2), a
P

1-fibration can be obtained as the projectivisation P(O ⊕ T ) = B3. I.e. one projectivises
each fiber C ⊕ C and then fibers over B2. Let r = c1(O(1)), where by abuse of notation O(1)
is the line bundle over B3 that reduces, along each P

1 fiber, to OP1(1). Then one can show
that [56]

r(r + t) = 0, c1(B3) = c1(B2) + 2r + t. (70)

The upshot is that the class t generalises the integer k characterising the Hirzebruch surface Fk

for F-theory in 6 dimensions. In oder to understand the generalisation of the relation between
k and the instanton number (12 − k, 12 + k) of the heterotic bundle, we need to familiarize
ourselves with the construction of vector bundles on elliptic 3-folds Z3. Thanks to the work
of Donagi [57] and Friedman, Morgan and Witten [56] a large class of holomorphic vector
bundles on elliptic fibrations are known in terms of the spectral cover construction. In the
sequel we give a brief summary of the basic idea and quantities characterising a spectral cover
bundle.

The heterotic spectral cover construction

The construction of a rank n spectral cover bundle involves two concepts: that of a spectral
surface C(n) and of a spectral line bundle N , both describable in terms of cohomological data

27



on B2. Under F-theory/heterotic duality this data maps to the geometry of the singular Y4

and to gauge flux G4.
The basic idea of the spectral cover construction is to first construct a stable (S)U(n)

bundle on the elliptic fibre over each point of the base, which is then extended over the whole
manifold Z3 by gluing the data together suitably. Recall that in general, an (S)U(n) bundle
defines a rank n complex vector bundle. Its restriction to the elliptic fiber Eb over b ∈ B2 can
be shown to be isomorphic to the direct sum of n complex line bundles

V |Eb
= N1 ⊕ . . . ⊕Nn, (71)

each of which has to be of zero degree. If G = SU(n) as opposed to U(n), V |Eb
must in addition

be of trivial determinant, i.e.
⊗n

i=1 Ni = OEb
. The zero degree condition on Ni implies that

there exists for each Ni a meromorphic section with precisely one zero at some Qi and a pole
at p, the zero of the elliptic curve. I.e. Ni = OEb

(Qi − p). Consequently, stable (S)U(n)
bundles on an elliptic curve are in one-to-one correspondence with the unordered n-tuple of
points Qi, and the reduction of U(N) to SU(n) is encoded in the additional requirement that∑

i(Qi − p) = 0 in the group law of the elliptic curve.
Having understood the restriction of a rank n bundle V to each elliptic fibre, [56] proceed

to construct the whole of V . In intuitive terms, the above implies that over an elliptically
fibered manifold a U(n) vector bundle determines a set of n points, varying over the base.
More precisely, the bundle V over Z3 with the property

V |Eb
=

n⊕

i=1

O(Qi − p) (72)

uniquely defines an n-fold (ramified) cover C(n) of B2, the spectral cover. It is defined by a
projection

πn : C(n) → B2 such that C(n) ∩ Eb =
⋃

i

Qi. (73)

C(n) is conveniently described, as a hypersurface in Z3, by its Poincaré dual two-form. The
Weierstrass model Z3 possesses a section σ which identifies the base B2 as an element of
H4(B2, Z). This section has the important property

σ · σ = −σ c1(S). (74)

The class of C(n) can then be written as

[C(n)] = nσ + π∗(η) ∈ H2(Z3, Z) (75)

for η some effective class in H2(B2, Z). In particular the first piece nσ shows that the spectral
surface is an n-fold cover of the base B2.

Several distinct bundles over Z3 may well give rise to the same spectral cover C(n) since
the latter only encodes the information about the restriction of V to the fibre Eb. To recover
V from the spectral data we need to specify in addition how it varies over the base, i.e. V |B2.
As discussed in [56] this is uniquely accomplished by the so-called spectral line bundle N on
C(n) with the property

πn∗N = V|B2 . (76)
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For the first Chern class c1(N ) ∈ H2(C(n); Z) of the spectral bundles one can make the
general decomposition ansatz [56, 58]

c1(N ) =
r

2
+ γ. (77)

Here we have abbreviated

r = − c1(C(n)) + π∗
nc1(S), γ =

1

n
π∗

nc1(V ) + γu, (78)

where γu is chosen such that it satisfies πn∗γu = 0. This yields

γu = λ (nσ − π∗
nη + nπ∗

nc1(S)), (79)

for a number λ ∈ Q. Let us further parametrize c1(V ) by some element ζ ∈ H2(S; Z) [58],

ζ = c1(V ). (80)

The parameter λ ∈ Q is subject to certain constraints to be discussed shortly. Note that this
bundle exists for generic complex structure since it only involves σ and the pullback of classes
from B2.

The parameter λ ∈ Q has to be chosen such that c1(N ) defines an integer class in
H2(C(n); Z). On the non-Calabi-Yau space X the adjunction formula leads to

−c1(C(n)) = (n − 2)σ + π∗
n(η − 2c1(B2)). (81)

Putting everything together, we have

c1(N ) = − σ + n
(

1
2

+ λ
)

σ +
(

1
2
− λ

)
π∗

nη (82)

+
(
−1

2
+ nλ

)
π∗

nc1(B2) + 1
n

π∗
nζ. (83)

E.g. for an SU(5) bundle, integrality of c1(N ) therefore puts the value of λ ∈ Q subject
to the constraints

5
(

1
2

+ λ
)
∈ Z ,

(
1
2
− λ

)
η +

(
5λ − 1

2

)
c1(S) ∈ H2(S; Z) . (84)

From these data one can compute the higher Chern classes. For an SU(n) bundle these
are [56, 59]

∫

B2

c2(V ) =

∫

B2

ησ − 1

24
χSU(n) −

1

2

∫

B2

πn∗(γ2), (85)

∫

Z3

c3(V ) = λ η(η − nc1(B2)),

where χSU(n) =
∫

B2
c2
1(B2)(n

3 − n) + 3n η
(
η − nc1(B2)

)
.

To summarize, a U(n) spectral cover bundle is characterised by the following topological
data:

• the class of the spectral surface [C(n)] = n σ + π∗η, η ⊂ H2(B2, Z);

• the first Chern class of the spectral line bundle c1(N ) as in (77).
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Under F-theory-heterotic duality the bundle data map partly into the singular geometry
of Y4 and partly into gauge flux G4. The gauge groups G1 and G2 are localised on the divisors
given by the base B2 located at north and south pole of the P

1 of the fiber of B3 : P
1 → B2.

• The classes ηi for the two bundles embedded into E
(1)
8 and E

(2)
8 correspond on the F-

theory side to [56]
η1 = 6c1(S) − t , η2 = 6c1(S) + t, (86)

where t = c1(T ), see the discussion around (70).

• The quantity γu appearing in (79) maps into G4 flux; in particular [60]

∫

Y4

G4 ∧ G4 = −
∫

B2

πn∗(γ2
1 + γ2

2). (87)

In [56], also methods for the construction of gauge bundles with more general structure group
including E6, E7, E8 are developed. If one embeds a bundle with structure group H1 ×E8 into
E8 × E8, the visible heterotic gauge group is G = G1. On the F-theory side this maps into a
single gauge group G1 along the base of the P

1-fibration B3. Note that this is precisely the
structure encountered for global Tate models.

3.5 The spectral cover construction for F-theory models

Let us come back to general F-theory models on an elliptically fibration Y4. As we have
reviewed, the global structure of the Weierstrass model Y4 is specified by the sections f ∈
H0(B3, K

−4
B3

) and g ∈ H0(B3, K
−6
B3

). Locally this can be brought into the form of eqn. (44) of
a Tate model. A special class of fibrations is even globally of the Tate form and thus based
on an underlying E8 gauge symmetry, broken to gauge group G along a single divisor S.

If one is interested not in the full details of the global 4-fold geometry, but merely in the
physics on the divisor S, one can restrict the Tate model to the neighbourhood of S ⊂ B3.
This restriction of the Tate constraint to the neighbourhood of S likewise goes under the name
spectral cover construction, whose application we just described in the context of heterotic
model building. By heterotic/F-theory duality it is clear that spectral covers have a natural
appearance also for F-theory compactifications with a heterotic dual. More recently, however,
it has been appreciated [61, 62] that spectral covers are useful to describe the geometry and
gauge flux of F-theory compactifications even without (simple) heterotic duals - at least in
and to some amount even beyond a local picture.

The general philosophy

Before discussing the technicalities, let us try and gain an intuitive understanding of the
appearance of the spectral cover construction. For general F-theory models, the essence of the
spectral cover idea is to zoom into the local neighbourhood of the divisor S : w = 0 within B3

by discarding all terms of higher power in the normal coordinate w that appear in the sections
bn, defined in (49) for the case of SU(5). The restrictions of bn to the divisor S,

bn = bn|ω=0, (88)

are therefore sections entirely on S. In this local picture the brane S is described as the base
of the bundle KS → S, given by s = 0. The neighbourhood of S is then modelled by a spectral
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surface viewed as a divisor of the total space of KS. In the sequel we will concentrate on the
Tate model for an SU(5) GUT symmetry along S with associated spectral surface

C(5) : b0s
5 + b2s

3 + b3s
2 + b4s + b5 = 0. (89)

One can think of C(5) as encoding the information about the discriminant locus in the local
vicinity of S. In particular, as we will see the intersections of C(5) and S determine the 10-
matter curves (66) on S. It is also clear from the relation (88), though, that all the information
in bn contained in terms higher in w is lost in the spectral cover approach.

The spectral cover approach to F-theory model building serves in particular as an auxiliary
construction to construct the gauge flux required for chirality of the model. Given the local
nature of the spectral covers, it is reasonable to suspect that this yields a correct description
of gauge flux near the brane S and in particular along the matter curves on S. This is good
news as it is the restriction of the fluxes onto these curves which governs the chirality of a
model, but more work is needed to fully understand the continuation of the fluxes in a global
construction.

Recall from section 3.4 that in models with a heterotic dual, the elliptic 4-fold Y4 also has
the structure of a K3 fibration K3 → B2 over a complex surface B2; i.e. the base space B3

of the elliptic fibration Y is itself globally P
1 fibered over B2. If in addition on the heterotic

side the second E8 factor is broken by an E8 bundle, then the only non-abelian gauge group
is localised along B2, which in the SU(5) example we would identify with the GUT divisor S.
The GUT divisor is therefore the base of a globally defined fibration in models with heterotic
dual. In general F-theory models, we have seen that this is not the case. However, from the
discussion of the split resolution in section 2.5 we know that one can locally view S as the
basis of an ALE fibration which describes the singularity structure along S [7]. The ALE fiber
contains a distinguished set of two-cycles Γi

E8
whose intersection form is related to the Cartan

matrix of E8. For generic non-zero size of these two-cycles the E8 symmetry is broken. If the
divisor S exhibits enhanced gauge symmetry G this is because some of the Γi

E8
, called Γi

G in
the sequel, in the fiber shrink to zero size. The intersection matrix of the two-cycles Γi

H with
non-zero size is related to the Cartan matrix of the commutant H ⊂ E8 of G.

This picture is of course very reminiscent of the breaking of E8 to G in the heterotic
string by means of a gauge bundle with structure group H . Furthermore, as seen at the
end of section 3.4 in F-theory, some of the degrees of freedom of the heterotic vector bundle
are encoded purely geometrically, while others map to gauge flux. The geometric part is
interpreted in the local field theory of [7] as encoding the vacuum expectation value of the
Higgs field ϕ ∈ H(0)(S, KS) associated with the normal fluctuations of the 7-brane. The
spectral cover now is designed to describe the size of the non-zero two-cycles responsible for
the breaking of E8 to G along S.

Finally we stress once again that for the special case of global Tate models the underlying
E8 structure is exact. It is clear then that the spectral cover construction, which geometrises
the breaking of E8 to G via the Higgs bundle of structure group H , has a chance to capture
more than just the very local neighbourhood of the divisor S.

Technical details of spectral covers for an SU(5) model

In what follows we restrict ourselves to the spectral cover description of a G = SU(5)GUT

singularity along a divisor S ⊂ B3. The complement of SU(5)GUT in E8 is denoted by
H = SU(5)⊥. For more background and for details on more general configurations we refer
to [61, 62].
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The starting point is to construct an auxiliary non-Calabi-Yau 3-fold W as a fibration over
S which encodes the singular geometry of S in B3. This space W serves as a compactification
of the total space of the bundle KS → S introduced before. We will therefore think of S
either as a divisor on B3 or as the base of a fictitious 3-fold W. The definition of W is as the
projectivized bundle over the GUT divisor S

W = P(OS ⊕ KS), pW : W → S, (90)

where pWW is the projection to the base of the bundle. The base S is viewed as the vanishing
locus of the section σ in W. This section satisfies the important relation

σ · σ = −σ c1(S). (91)

This should ring a bell and remind us of the relation (91) encountered for the heterotic
spectral cover construction on the physical elliptic Calabi-Yau space Z3. Indeed from now on
the construction proceeds in the same fashion as described in section 3.4, replacing the base
B2 of the elliptic Calabi-Yau fibration Z3 by the GUT divisor S, viewed as the base of the
P

1-fibration W. Unlike Z3, W is not Calabi-Yau and has first Chern class

c1(W) = 2σ + 2c1(S). (92)

The spectral cover is constructed as a 5-fold cover of S within W,

π5 : C(5) → S. (93)

While in the heterotic context the intersection points of C(5) with the elliptic fiber encode
the information about the vector bundle V restricted to the fiber, see eqn. (73), here the 5
intersection points with the P

1-fiber denote the 5 eigenvalues of the SU(5)H-valued Higgs field
ϕ along S [61, 62], which in turn specifies the local neighbourhood of S inside B3 [7, 62].

Given the implicit underlying E8 structure of the ALE fibration, the massless matter
representations of G = SU(5) can be understood as the irreducible representations Rx in the
decomposition 248 →

∑
adi +

∑
x(Rx, Ux),

248 �→ (24, 1) + (1, 24) + [(10, 5) + (5, 10) + h.c.]. (94)

The matter curve P10 is the locus b5 = 0 on S. It is associated with the spectral cover in the
fundamental representation of H = SU(5)⊥ because the 10 appears as (10, 5) in (94). Let us
also define the object P10 viewed as a curve in W [62],

P10 = C(5) ∩ σ ⊂ W. (95)

Then the matter curve on S is related to P10 as

[P10] = [P10]|σ = (5σ + π∗
5η)|σ = η − 5c1(S) (96)

with the help of (91), i.e. the restriction of P10 is cohomologically equivalent to the matter
curve P10.

The matter curve for the 5 on X is more complicated and was analyzed in detail in the
context of the heterotic string in [63–65], to which we refer for more detials.
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Gauge flux in SU(5) GUT models

So far all that the spectral cover approach has done for us is to rewrite the geometric data
in a seemingly more complicated manner. Its actual power, however, becomes apparent once
one includes gauge flux into the compactification. In the context of SU(5) GUT theories one
distinguishes between the gauge flux along the GUT divisor S itself and the flux along the
matter branes which constitute the I1 locus of the discriminant. The first type of gauge flux
takes values in G = SU(5)GUT and will thus further break the SU(5) GUT symmetry. As for
flux on the matter branes, the spectral cover approach makes use of the fact that C(5) describes
the geometry in the vicinity of S and in particular the local geometry of the I1 component. In
the machinery of the spectral cover, gauge flux on I1 is therefore given in terms of the so-called
spectral line bundle N along C(5) defined by its first Chern class

c1(N ) ∈ H(1,1)(C(5); Z). (97)

Since C(5) is a five-fold cover of S in W one can push this line bundle forward to S via π5∗.
This defines a rank-5 vector bundle

V = π5∗N (98)

on S. Following the general logic of the ALE fibration over S the structure group of this
bundle V is identified with the commutant SU(5)⊥ ⊂ E8 of the GUT SU(5) along S and
therefore indeed associated with the flux on I1.

Therefore the construction of gauge flux on the matter branes is reduced to the problem
of constructing an SU(5)H bundle V on the basis of the P

1-fibration W. At this point we
can again refer to the discussion of the spectral line bundle and its associated spectral cover
bundle in the heterotic context, which proceeds, mutatis mutandis, in the same manner. The
spectral cover approach thus provides a concrete dictionary to describe a certain subclass of
gauge fluxes in terms of a few parameters. Moreover, it allows for the computation of the
chiral index for the various matter representations localised along the matter curves in terms
of these input parameters and is therefore of considerable practical use for model building
purposes. It would lead too far to derive these formulae for the chirality in full detail here.
We simply state without proof that the chiral index of states in the 10 representation localised
on the curve P10 on S is given by [62],

χ10 = σ · C(5) · γu = −λ

∫

S

η (η − 5c1(S))︸ ︷︷ ︸
P10

, (99)

with γu as in eqn. (79) for SU(5)H bundles. Consistently, this is also the number of chiral
families in the 5 representation.

Let us conclude this general presentation of the spectral cover construction by taking
up our initial concerns about its global validity. We have stressed several times that as of
this writing it yet remains to find a general description of gauge flux in terms of global G4

flux. Nonetheless it is remarkable that the spectral cover construction does capture some of
the global aspects of the geometry correctly. More precisely this is the case for the special
subclass of elliptic fibrations that can globally be described as a Tate model with non-abelian
gauge group G ⊂ E8 solely along a divisor S. If we take the spectral cover construction at face
value for a second one can conjecture a simple closed expression for the Euler characteristic
of the resolution Y G of the singular 4-fold given by [43]

χ(Y G) = χ∗(Y ) + χH − χE8 . (100)

33



Here χ∗(Y ) = 12
∫

B
c1(B3) c2(B3) + 360

∫
B

c3
1(B3) denotes the expression valid for a smooth

elliptic fibration over base B3, and the remaining two terms are listed in table 3. They involve
data solely on S and reflect the underlying E8 structure of the spectral cover construction,
in which we think of first enhancing the singularity over S to E8 and then breaking it via
the H-bundle down to G. This formula can be derived for models with a heterotic dual by
F-theory-heterotic duality. The point is now that for global Tate models the underlying E8

structure is correct globally. Indeed for global Tate models in which an explicit resolution
of the singularities is available, the result of (100) can be compared to the value of χ(Y G)
computed explicitly via resolution. This has been performed in [43, 44] for a number of cases
using the machinery of toric geometry, finding perfect agreement. For such geometries it is
not unreasonable that also the gauge flux constructed via the spectral covers has a global
extension. It is this expectation that underlies the global F-theory models as existent in the
literature as of this writing, but a more complete understanding of gauge flux without relying
on the spectral cover construction is desirable. For example [66] proposes a global extension
of spectral cover fluxes in terms of a so-called spectral divisor designed so as to reproduce the
expressions for the chirality of states along the GUT branes, i.e. the local aspects associated
with non-abelian gauge symmetry. It remains to be seen how to capture also genuinely global
aspects of the flux such as the integral

∫
Y 4

G4 ∧ G4 appearing or the chiral index of singlets
under the non-abelian group G.

G = E8/H H χH

E9−n, n ≤ 5 SU(n)
∫

S
c2
1(S)(n3 − n) + 3n η

(
η − nc1(S)

)

SU(3) E6 72
∫

S

(
η2 − 7ηc1(S) + 13c2

1(S)
)

SU(2) E7 18
∫

S

(
8η2 − 64ηc1(S) + 133c2

1(S)
)

- E8 120
∫

S

(
3η2 − 27ηc1(S) + 62c2

1(S)
)

Table 3: Redefined Euler characteristic for En-type gauge groups. Here η is given by η = 6c1(S) +
c1(NS).

4 Phenomenological applications to GUT model build-

ing

As stressed in the introduction, F-theory combines two characteristic aspects of Type II orien-
tifolds with D-branes on the one hand and of heterotic string vacua on the other which are of
general phenomenological interest and of significant use in the context of realistic GUT model
building, in particular

• the appearance of exceptional gauge groups as in E8 ×E8 heterotic string constructions
and

• the localisation of gauge degrees of freedom, matter states and Yukawa interactions as
in perturbative D-brane models.

Beginning with [6–9] there have been intense recent investigations exploring the prospects
of F-theory compactifications for GUT phenomenology. While in principle applicability of
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F-theory is by no means restricted to GUT models, the relevance of exceptional gauge groups
in the context of unification singles out this class of constructions as the one with the most
distinctive F-theoretic features as compared with intersecting brane models in perturbative
orientifolds. Promising starting points for the construction of GUT models are the gauge
groups SO(10) and SU(5). Most efforts in the F-theory literature have focused on the latter,
mainly due to complications with GUT breaking via internal fluxes.

Given the localisation of gauge degrees of freedom in F-theory, a considerable number of
phenomenological questions can be discussed already at the level of local models. Among
these are the structure of the GUT matter curves and the details of GUT matter Yukawa
couplings. Several other issues, by contrast, can only be addressed in a satisfactory manner in
the context of a globally defined compactification. This is true in particular for all aspects of
U(1) symmetries - including SU(5) GUT breaking via hypercharge flux and abelian selection
rules - and the physics of GUT singlets (e.g. certain aspects of neutrino physics), which are
localised away from the GUT divisor.

It is beyond the scope of these lectures to survey all exciting aspects of F-theory GUT model
building that have emerged recently; rather we will outline some of the general philosophy
behind the construction of SU(5) GUT models. Armed with this background the interested
reader can easily delve into more advanced topics.

4.1 SU(5) GUT models and the principle of decoupling

SU(5) is the mother of all GUT groups. In Georgi-Glashow SU(5) models [67], the embedding
of the MSSM gauge group SU(3) × SU(2) × U(1)Y rests on the identification of the U(1)Y

generator with the Cartan generator diag(2, 2, 2,−3,−3) within SU(5). The MSSM matter is
organised into SU(5) multiplets as

10 ↔ (QL, uc
R, ec

R), 5m ↔ (dc
R, L), 1 ↔ νc

R,

5H ↔ (Tu, Hu), 5H ↔ (Td, Hd). (101)

The triplets Tu, Td, which are not present in the MSSM, must receive high-scale masses via
doublet-triplet splitting. An alternative SU(5) GUT scenario called flipped SU(5) [68, 69]
starts from SU(5) × U(1)X and the MSSM matter is related to the identifications (101)
by ”flipping” ec

R ↔ νc
R and dc

R ↔ uc
R. Since U(1)Y arises as a combination of U(1)X and

the Cartan generator diag(2, 2, 2,−3,−3) of SU(5), flipped SU(5) is a unified model only if
SU(5) × U(1)X is itself embedded into a higher group such as SO(10). For definiteness we
focus for now on Georgi-Glashow SU(5) models.

The geometric origin [6–9] of the SU(5) GUT gauge group, the matter representations and
the Yukawa couplings in terms of codimension one, two and three singularities of the elliptic
fibration has been provided in sections 3.1 and 3.3, see table 2. Matter charged under SU(5)
localises on the curves P10 and P5 on the GUT divisor S, while the role of νc

R can be played by
any GUT singlets with a suitable 5H 5m 1 coupling. Note that for generic SU(5) geometries,
the matter curve for the 5 representation is a single connected object; in this situation all
three generations of 5m and the vector-like pair 5H + 5H are localised on the same curve. We
will see later that this is unacceptable for phenomenological reasons and the model must be
further refined.

The MSSM Yukawa couplings follow from the SU(5) GUT interactions by decomposition
of the SU(5) representations as

10 10 5H −→ QL uc
R Hu, 10 5m 5H −→ L ec

RHd + QL dc
R Hd. (102)
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The 10 10 5H Yukawa coupling localises at a point of E6 singularity, which is a strong coupling
phenomenon. It is for the sake of this coupling that exceptional symmetry is essential. In
perturbative Type II orientifolds this interaction is forbidden by global U(1) selection rules
and can only be generated by D-brane instantons [70]. The natural presence of this crucial
coupling, from which the up-quark masses descend, is the prime motivation to pursue F-theory
as the framework for GUT models with branes; in perturbative models, the volume of D-brane
instanton generating 10 10 5H Yukawa coupling would have to be tuned so as to prevent too
large suppression. On the other hand, in flipped SU(5) models, where 10 10 5H gives rise to
down quark masses, such a non-perturbative suppression can be a welcome rationale to argue
for the hierarchy between the top and bottom quark mass.

An important question concerns the nature of the GUT brane S, which must be a Kähler
surface embedded into the base space B as a holomorphic divisor. In full generality no water-
proof restrictions on S can be given other than it had better support one of the GUT breaking
mechanisms which will be discussed in section 4.2. A reasonable, though not strictly necessary
organising principle, however, is to require the existence of a well-defined decoupling limit for
gravity [8]. This paradigm is inspired by the separation of the four-dimensional GUT scale
MGUT = 1016 GeV and the Planck scale MP l. = 1019 GeV as well as by UV completeness of
GUT models.

The four-dimensional Planck scale arises from dimensional reduction of the Einstein-Hilbert
term in Einstein frame

S = M8
∗

∫

R1,3×B

√
−gR ⇒ M2

P l. = M8
∗ Vol(B). (103)

Here M∗ is the M-theory fundamental length scale inherited via M/F -theory duality and can
be viewed, in the IIB limit, as the value of �−1

s in the Einstein frame. On the other hand, the
GUT scale, determined by the breaking scale of SU(5) down to the Standard Model gauge
group, is parametrically given by the volume of the GUT divisor S,

M4
GUT � Vol−1(S). (104)

For example in the context of GUT breaking via hypercharge flux as discussed in section
4.2 this approximate relation arises because the volume of S sets the flux induced mass of
the XY gauge bosons within SU(5); after all these states propagate along the whole divisor
S. The observed hierarchy of about 10−3 between MGUT and MP l. translates into a small
hierarchy between the typical radii of the GUT brane and the six-dimensional F-theory base
of approximately

�s︸︷︷︸
0.2x

< RS︸︷︷︸
2.2x

< RB︸︷︷︸
5.6x

, x = 10−16 GeV−1. (105)

The relation to �s has been chosen in such a way that in addition

α−1
GUT = M4

∗ Vol(S) � 24. (106)

This equality in turn follows parametrically by reduction of the eight-dimensional Yang-Mills
action SY M = M4

∗
∫

R1,3×S
F 2.

Note that for phenomenologically viable models it is enough to stabilise the moduli in
agreement with the crude estimate of (105). A fortiori, it is often postulated [8,9,71] that the
GUT brane S allow for a limit

Vol(B) → ∞, Vol(S) finite (107)
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such as to decouple gravity completely - at least in principle. Alternatively to this physical
decoupling limit one can consider the mathematical decoupling limit [71]

Vol(S) → 0, Vol(B) finite, (108)

even though the two are not completely equivalent [44]. This mathematical decoupling limit
can be taken if the surface S is Fano, which amounts to requiring that

∫
C

K−1
S > 0 for every

holomorphic curve C in S. The list of such Fano surfaces is very restrictive and consists of
the del Pezzo surfaces P

1 × P
1, P

2 and dPr, r = 1, . . . , 8. The latter are defined as P
2 with

r points in generic position blown up to P
1. Since these surfaces are used extensively in the

F-theory GUT literature, we briefly collect some of their basic topological properties: The
second homology H2(dPr, Z) is spanned by the elements l, E1, . . . , Er, where Ei denote the
i-th blow-up P

1 and l the hyperplane class inherited from P
2. The non-vanishing intersection

numbers are l · l = 1, Ei · Ej = −δij . The anti-canonical bundle is given, by slight abuse of
notation, by c1(K

−1
dPr

) = c1(dPr) = 3l −
∑r

i=1 Ei with c1(dPr)
2 = 9 − r and c2(dPr) = 3 + r.

Generic Fano surfaces are shrinkable in the sense of (108). At closer inspection, however,
the existence of suitable matter curves and possible global embeddings in SU(5) models poses
certain restrictions on the shrinkability of the GUT divisor and forbids shrinkability to a point
in generic situations. Rather the GUT brane can only shrink to a curve or to a point in such a
way that another divisor shrinks simulateneously. For more information on these restrictions
we refer to [44, 71].

4.2 Options for GUT breaking

Let us now discuss possible ways to break SU(5) to the observed SU(3)×SU(2)×U(1)Y MSSM
gauge group. As in all constructions with D-branes there exist three options to accomplish
this:

• Via a GUT Higgs (scalar field) in the adjoint representation 24 of SU(5). This effec-
tively realises the GUT breaking mechanism of conventional field-theoretic GUT models.
The string theoretic origin of the Higgs would be a brane deformation modulus counted
by H(0)(S, KS). An obvious challenge associated with this approach is the generation of
a suitable potential for the GUT Higgs field which leads to dynamical symmetry break-
ing. In principle 7-brane deformation moduli are stabilised by background fluxes, but
no concrete setup has been described so far that incorporates dynamical GUT breaking.

• Via Wilson line moduli. These correspond to elements of H (0,1)(S) and likewise
transform in the adjoint of SU(5). The same remarks concerning the generation of
a potential for dynamical symmetry breaking apply with the added complication that
Wilson line moduli are not even sensitive to background fluxes. Alternatively one can
consider GUT breaking by discrete Wilson lines. These are available whenever the brane
S has a discrete, but non-trivial first homotopy group π1(S). The VEV of the discrete
Wilson line is now topological and part of the defining data of the compactification.
Note that this is exactly the same strategy as pursued in Calabi-Yau compactifications
of the E8 × E8 heterotic string with SU(N) gauge bundles. In some sense this is the
cleanest approach to GUT symmetry breaking. The implementation of F-theory models
along GUT divisors with non-trivial π1(S) has not been achieved in the literature so far,
but seems a promising avenue for future research.
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• Via hypercharge flux. This corresponds to turning on non-trivial gauge flux FY

associated with the hypercharge generator TY = diag(2, 2, 2,−3,−3) ⊂ SU(5). As for
Wilson lines the flux is part of the defining topological data of the compactification
and circumvents the quest for the dynamical generation of a symmetry breaking scalar
potential. This approach does not rest on any strong coupling effect and is equally
possible for perturbative Type IIB models.

Note that the last two GUT breaking mechanisms are not available in conventional, four-
dimensional field theoretic GUTs. Studying their possible consequences for the more detailed
phenomenology of SU(5) GUTs is therefore particularly interesting.

4.3 Some constraints from hypercharge flux

For definiteness we focus on the last GUT breaking mechanism. This is also the only possibility
for del Pezzo surfaces, which have no geometric deformations and no Wilson line moduli. The
use of hypercharge flux was suggested in the context of F-theory model building in [8, 9] and
first realised in compact models with 7-branes within perturbative Type IIB orientifolds in [52].
In IIB language one simply embeds a non-trivial line bundle LY along the GUT brane into
SU(5) by identifying its generator with the above hypercharge generator TY . In F/M-theory
language this corresponds to G4 flux of the form G4 = FY ∧ ωY . Here ωY is the 2-form dual
to the P

1 in the fiber over S that corresponds to the node in the SU(5) Dynkin diagram
associated with the Cartan generator TY .

In presence of U(1)Y gauge flux the GUT matter decomposes into representations of
SU(3) × SU(2) × U(1)Y as

24 �→ (8, 1)0Y
+ (1, 3)0Y

+ (1, 1)0Y
+ (3, 2)5Y

+ (3, 2)−5Y
, (109)

5 �→ (3, 1)2Y
+ (1, 2)−3Y

,

10 �→ (3, 2)1Y
+ (3, 1)−4Y

+ (1, 1)6Y
,

5H �→ (3, 1)−2Y
+ (1, 2)3Y

, 5H �→ (3, 1)2Y
+ (1, 2)−3Y

.

The cohomology classes counting the MSSM matter contain factors of Lq
Y with q the U(1)Y

charge of the state. In order to guarantee the same number of states within each SU(5) family,
the net U(1)Y flux through each matter curve must therefore vanish [8, 9]. As we will discuss
in section 4.4, absence of dimension 4 proton decay operators requires that the 5 matter curve
P5 split into a 5m matter curve and a Higgs curve. Then what we need is that

c1(LY ) · P10 = 0 = c1(LY ) · P5m
. (110)

On the other hand, if in addition the Higgs curve splits into two curves PHu and PHd
, non-zero

hypercharge flux through these Higgs curves allows for an elegant solution to the doublet-
triplet splitting problem if it is chosen such as to project out the massless (3, 1)2Y

within
5H [8].

Three challenges have to be met for constructions with hypercharge flux breaking, two of
which can be solved successfully, while one of them remains as an open question of intense
current debate.

Massless U(1)Y

U(1)Y must remain massless after GUT symmetry breaking. In the language of IIB 7-branes
with gauge flux, it is well-known that the Chern-Simons coupling 8 %eea leads to a Stückelberg
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mass for U(1)Y by dimensional reduction of the RR four-form C4 along 2-cycles on S,

SStuckelberg �
∫

R1,3

F 4D
Y ∧ c

(i)
2 trT 2

Y

∫

S

c1(LY ) ∧ ι∗ωi. (111)

Here ωi denotes a basis of H2(B, Z) and we have decomposed C4 = c
(i)
2 ∧ωi with c

(i)
2 denoting

two-forms in four dimensions. A mass term for U(1)Y can only be avoided if the gauge flux
FY is switched on exclusively along 2-cycles in S which are homologically trivial as two-cycles
in the ambient geometry [51, 72]; in this case c1(LY ) is orthogonal to ι∗H2(B, Z). Cycles of
this type are said to lie in the relative cohomology of S with respect to B. Note that to ensure
this topological constraint one needs full control of the global compactification geometry. This
is because the question of triviality of a 2-cycle on S can only be answered by studying an
implicit embedding of S into a compact geometry.

Absence of massless exotics

The decomposition of the SU(5) GUT matter displayed in (109) contains the fields (3, 2)5Y
+

(3, 2)−5Y
. From the point of view of the MSSM these are exotic matter states which must be

absent at the massless level for phenomenological viability of the model. Since they descend
from the adjoint of SU(5) they correspond to modes propagating along the entire GUT divisor
S and are therefore ”bulk” states. From the discussion of bulk matter states in section 3.3
we recall that these states are counted by the cohomology groups of the hypercharge flux Lq

Y

along S, where q is the U(1)Y charge. Absence of exotic states (3, 2)5Y
+ (3, 2)−5Y

therefore
requires that H i(S, LY

±5) = 0.
Vanishing cohomology for such a high power of line bundles is difficult to engineer. A way

out is to admit a suitably fractional line bundle LY instead of the integer quantised bundle
LY [8]. A clean way to define this is by a twisting procedure that works both in perturbative
Type IIB [52] and in the E8 based F-theory models [33] discussed in these lectures. For such
embeddings, the potential exotics are eventually counted by H i(S,L±1

Y ), which therefore has
to vanish. Here LY denotes the hypercharge bundle in the twisted embedding. This constraint
poses certain restrictions on the type of hypercharge flux switched on along the GUT brane.
e.g. for a del Pezzo surface it can be achieved if and only if c1(LY ) = Ei − Ej for i �= j [8].

As a final remark we note that it is this absence of bulk exotics that cannot be achieved
for an analogous breaking of the GUT group SO(10) by internal fluxes [8]. This is the tech-
nical reason why SO(10) GUT models have received less attention in the F-theory literature.
Alternatively, SO(10) can be broken to flipped SU(5) × U(1)X via suitable fluxes, and sub-
sequently the standard field theoretic GUT Higgs mechanism [69] can be invoked to break
SU(5)×U(1)X to the MSSM gauge group. For recent realisations of this secenario see [45,73].

Gauge coupling unification

The most subtle and controversial challenge of the hypercharge GUT breaking scenario arises
in the context of gauge coupling unification [9,74]. The problem is that hypercharge flux along
the GUT divisor seems to spoil the tree-level equality of the MSSM gauge couplings at the
GUT scale. To see this one must obtain the gauge kinetic function f of the four-dimensional
GUT gauge theory, defined as

S
(4D)
Y M =

1

2
Re(f)

∫

R1,3

tr F ∧ �F +
1

2
Im(f)

∫

R1,3

tr F ∧ F, (112)
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from the 7-brane effective action by dimensional reduction. This task is most straightforwardly
accomplished again in Type IIB 7-brane language. The kinetic Yang-Mills and the topological
Chern-Simons term follow from reduction of SDBI and SCS in equ. (8), respectively. The flux
induced corrections to the leading order gauge kinetic function

fS =
1

gs

VolS
�4
s

+ i

∫

S

C4 (113)

can be deduced from the contribution to Im(f) encoded in the Cherns-Simons term propor-
tional to

∫
C0 ∧ trF 4. To this end one takes into account holomorphicity of f together with

the fact that C0 and gs combine into the holomorphic field τ = C0 + i
gs

. What is important
is that the contribution from hypercharge flux differs for the three gauge couplings αs, αw,
αY of the MSSM gauge groups and distorts the gauge coupling relations at the Kaluza-Klein
scale. The exact relation depends on the precise group theoretic embedding, see [74] and [9]
for two different types of embedding. In addition, threshold corrections from Kaluza-Klein
states have to be taken into account [9]. Final agreement on the interpretation of the physical
consequences for unification has not yet been achieved in the literature; preliminary results
suggest that indeed new physics such as extra thresholds below the GUT scale is required to
reconcile this splitting of the gauge couplings with one-loop GUT unification. The concrete
nature of these effects is model dependent. The minimal such threshold could be played by
the unavoidable massive Higgs triplets [74], while more radical approaches consider incomplete
multiplets of massive exotic matter [75, 76] (see also [77]).

4.4 Proton decay

A classic topic in GUT model building is proton stability. In particular, avoiding dimension 4
and 5 proton decay operators is key to the phenomenological viability of SU(5) models [78,79].
We therefore face the question if string compactifications - here those of F-theory - add new
ingredients to achieve these requirements. On the one hand, we can seek for stringy realisations
of known field theoretic mechanisms such as favourable symmetries. In a more ambitious vein,
new types of selection rules might become available in string theory that have no obvious four-
dimensional counterpart.

Let us begin with dimension 4 proton decay. Dangerous MSSM operators of the type
uc

R dc
R dc

R , L L ec
R, Q L dc

R descend from the coupling 10 5m 5m, which must therefore be pre-
vented. The same holds for its unwanted cousin 10 5H 5H. It was noted already in [7] that a
necessary condition for absence of 10 5m 5m while allowing at the same time for the Yukawa
couplings 10 5m 5H and 10 105H is that the 5 matter curve splits into (at least) two curves
Pm for 5m and PH for 5H + 5H. From the perspective of the Weierstrass model, the splitting
of matter curves corresponds to a non-generic situation that requires the restriction of some
of the complext structure moduli, more on that in a second. If this splitting were sufficient to
prevent dimension 4 proton decay, it would furnish an example of a geometric selection rule.

As found in [61], however, typically Pm and PH intersect at points without further singu-
larity enhancements. If this happens, the wavefunction of 5m and 5H + 5H obey the same
boundary conditions and dangerous couplings of the type 10 5m 5m are unavoidable. To be
on the safe side, explicit field theoretic selection rules have to be implemented. The minimal
such selection rule - R-parity - could descend from a geometric discrete Z2 symmetry that acts
appropriately on the massless modes [61], but no concrete realisations of this idea have been
constructed as of this writing. More radically, a (massive) U(1) selection symmetry can forbid
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unwanted Yukawa couplings [61]. The maybe simplest example of such a U(1) symmetry is
U(1)X with charge assignments [75]

101, (5m)−3, (5H)−2 + (5H)2, (114)

but other examples such as a Peccei-Quinn type U(1)PQ [76] with different charge assignments
for Hu and Hd or models with several U(1)s [80] have also been considered.

At the level of model building the implementation of such abelian symmetries requires a
further specification of the complex structure moduli of the Weierstrass model. For global Tate
models this leads to so-called U(1) restricted Tate models [37]. In particular the engineering
of, say, a U(1)X symmetry automatically leads to a split of the 5m and the Higgs curve. Note
that as remarked before all questions associated with U(1) symmetries defy a local treatment
and require knowledge of the full compactification data of the 4-fold. This is intuitively clear
because a VEV of a U(1) charged GUT singlet localised away from the GUT brane S can
higgs the abelian symmetry. Previously, the implementation of U(1) symmetries had been
studied via so-called split spectral covers [75]. Split spectral covers can be regarded as the
restriction of U(1) restricted Tate models to the neighbourhood of the GUT brane. As such
they are not sufficient to guarantee the presence of U(1) symmetries [37, 81].

Dimension 5 proton can in principle be prevented via a missing partner mechanism [7] if
also 5H and 5H localise on separate curves. One possibility to achieve this is in the context
of U(1)PQ extended models [76]. Depending on details of the model, exotics in incomplete
GUT multiplets can result as a side-effect, which in turn affects gauge coupling unification as
outlined in the previous section.

4.5 Further developments

Our presentation of the phenomenological properties of F-theory GUTs has only covered the
crudest aspects, and many more advanced phenomenological topics have been studied. For
a review devoted specifically to the phenomenology of F-theory constructions and a more
complete list of references we recommend [13]. Topics worth highlighting include these:

• The local nature of brane models offers the possibility of studying the structure of Yukawa
couplings without referring to the details of the global geometry. Investigations of the
Yukawa and flavour structure of SU(5) GUT models in this context include [61,82–91].

• Possible connections with neutrino physics are the subject of [92, 93].

• On a more formal level, instanton effects in F-theory have been reconsidered in the recent
literature [94–97] with special attention to the generation of phenomenologically viable
matter couplings known from the weakly coupled Type II limit (see e.g. [98] for a review
and references).

Another focus in the recent literature is the realisation of these and other model building
ideas in concrete compact examples. The motivation behind this is, as was stressed already,
that certain questions of phenomenological relevance cannot be disentangled from the global
geometric structure. F-theory GUT vacua have been constructed in [43–45, 75, 76, 99]. In
particular, methods of toric geometry, as applied in [43–45], allow one to explicitly construct
fully-fledged singular Calabi-Yau 4-folds and their explicit resolution in a way that keeps full
control of the singularities of the Tate model. As far as the construction of gauge flux is
concerned, the models [43–45,75,76,99] rely on the spectral cover approach outlined in section
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3.5. Modulo the caveats alluded to there, 3-generation GUT models that satisfy the known
global consistency conditions such as 3-brane tadpole cancellation and D-term supersymmetry
have been achieved.

We hope we could convince the reader that F-theory is a fascinating subject that has a
lot to offer both to phenomenologically-minded string theorists and to those with more formal
interests. Many open questions in both directions are awaiting a satisfactory solution in the
F-uture, maybe by some participants of this winter school.
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