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nonrelativistic particles, and particularly atoms. We extend a recent result establishing
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1. Introduction

Over the last decade there has been growing interest in the possibility to investigate

experimentally some candidate effects of quantum gravity. The development of this

“quantum-gravity phenomenology” [1] of course focuses on rare contexts in which the

minute effects induced by the ultra-high “Planck scale” MP (≡
√

~c/G ' 1.2 · 1028 eV)

are not completely negligible. Several contexts of this sort have been found particularly

in the study of quantum-gravity/quantum-spacetime effects for the propagation of

ultrarelativistic particles (see, e.g., Refs. [2, 3, 4, 5, 6, 7, 8, 9, 10]), and often specifically

for cases in which the ultrarelativistic on-shell condition§, E ' p+m2/(2p), is modified

by Planck-scale effects.

In the recent Ref. [11] some of us observed that experiments involving cold (slow,

nonrelativistic) atoms, and particularly measurements of the atom-recoil frequency, can

provide valuable insight on certain types of modifications of the dispersion relation

which had been previously considered in quantum-gravity literature. We here extend the

scopes of the analysis briefly reported in Ref. [11], also adopting a style of presentation

that allows to comment in more detail the derivation of the result. Concerning the

conceptual perspective that guides this recent research proposal, we here expose some

previously unnoticed aspects of complementarity between the nonrelativistic and the

ultrarelativistic regimes in the study of Planck-scale modifications of the dispersion

relation. And we offer several observations on how the insight gained from studies of

slow atoms might translate into limits of different strength depending on some details

of the overall framework within which the modifications of the dispersion relation are

introduced. We also report a preliminary exploration of the relativistic issues involved

in these studies, which have been already well appreciated in the ultrarelativistic regime

but appear to provide novel challenges when the focus is instead on the nonrelativistic

regime.

2. Complementarity of nonrelativistic and ultrarelativistic regimes

Results in support of the possibility of modifications of the energy/momentum

(“dispersion”) relation have been reported in studies of several approaches to the

quantum-gravity problem, and perhaps most notably in analyses inspired by Loop

Quantum Gravity [6, 12], and in studies that assumed a “noncommutativity” of

spacetime coordinates [13, 14, 15]. The analyses of these quantum-gravity approaches

that provide encouragement for the presence of corrections to the dispersion relation

have become increasingly robust over the last decade [12, 16, 13, 14, 15], but in the

majority of cases they are still unable to establish robustly the functional dependence

of the correction on momentum. This has led to the proposal that perhaps on this

occasion experiments might take the lead by establishing some experimental facts (at

§ We adopt units in which the speed-of-light scale c is set to 1 (whereas we shall explicitate the role of
the Planck constant h).
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least amounting to constraints on the form of the dispersion relation) that may provide

guidance for the ongoing investigations on the theory side. From this perspective the fact

that presently-available results on the theory side are insufficient to provide narrowly

defined phenomenological models is not viewed as sufficient reason for being discouraged:

the alternative is giving up on any experimental guidance in the search for quantum

gravity, and instead even the constraints produced by a phenomenology of rather broad

scopes can be of some value on the theory side, hopefully in turn allowing theorists to

provide sharper indications to the phenomenologists.

In light of these considerations the majority of phenomenological studies of Planck-

scale corrections to the dispersion relation have assumed a rather general ansatz,

E2 = p2 + m2 + ∆QG(p, m, MP ) , (1)

denoting with E the energy of the particle and with ∆QG a model-dependent function of

the Planck mass MP and of the spatial momentum p and of the mass m of the particle.

Different models do give (more or less detailed) guidance on the form of ∆QG, and

we shall consider this below, but even at a model-independent level a few characteristics

can be assumed with reasonable robustness‖. As most authors in the field, we shall

here focus our analysis on cases in which the mass m still is the rest-energy and the

dispersion relation regains its ordinary special-relativistic form in the limit where the

Planck scale is removed (MP → ∞):

∆QG(p, m, MP ) −−→
p→0

0 , ∆QG(p, m, MP ) −−−−→
MP→∞

0 . (2)

And, since the relevant phenomenology clearly can at best hope to gain insight on

the leading terms of a small-M−1
P expansion, it is natural to focus on a power-series

expansion,

E2 = p2 + m2 +
1

MP

∆
(1)
QG(p, m) +

1

M2
P

∆
(2)
QG(p, m) + . . . , (3)

where the terms in the power series are subject to the condition ∆
(1)
QG(p, m)

∣∣∣
p=0

= 0 =

∆
(2)
QG(p, m)

∣∣∣
p=0

.

This past decade of vigorous investigations of these modifications of the dispersion

relation focused primarily (but not exclusively) on terms linear in M−1
P and reached its

most noteworthy results in analyses of observational astrophysics data, which of course

concern the ultrarelativistic (p � m) regime of particle kinematics [2, 3, 4, 17, 18, 7].

For these applications the function ∆
(1)
QG(p, m) can of course be usefully parametrized in

such a way that the relation between energy and spatial momentum takes the following

form:

E ' p +
m2

2p
+

1

2MP

(
η1 p2 + η2 m p + η3 m2

)
, (4)

‖ We should stress however that, while the perspective schematized in our Eqs. (2)-(3) is by far the
most studied in the relevant quantum-gravity-inspired literature, in principle more general possibilities
may well deserve investigation. For example, one might contemplate non-integer powers of MP to
appear, and this would not be too surprising, especially in light of the rather common expectation that
the correct description of quantum gravity might require sizable nonlocality.
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where, considering the large value of MP , we only included correction terms that are

linear in 1/MP , and, considering that this formula concerns the ultrarelativistic regime

of p � m, the labels on the parameters η1, η2, η3 reflect the fact that in that regime

p2/MP is the leading correction, mp/MP is next-to-leading, and so on.

Evidence that at least some of these η1, η2, η3 parameters have nonzero values

is indeed found in studies inspired by the Loop-Quantum-Gravity approach and by

the approach based on spacetime noncommutativity, and most importantly some of

these studies [6, 12, 13, 14, 15] provide encouragement for the presence of the strongest

imaginable ultrarelativistic correction, the leading-order term η1 p2/(2MP ).

Unfortunately, as usual in quantum-gravity research, even the most optimistic

estimates represent a gigantic challenge from the perspective of phenomenology. This

is because, if the Planck scale is indeed roughly the characteristic scale of quantum-

gravity effects then correspondingly parameters such as η1, η2, η3 should take (positive

or negative) values that are within no more than 1 or 2 orders of magnitude of 1. And

this in turn implies that, for example, all effects induced by Eq. (4) could only affect

the running of our present particle-physics colliders at the level [1] of at best 1 part in

1014. In recent years certain semi-heuristic renormalization-group arguments (see, e.g.,

Refs. [1, 19] and references therein), have encouraged the intuition that the quantum-

gravity scale might be plausibly even 3 orders of magnitude smaller than the Planck

scale (so that it could coincide [19] with the “grand unification scale” which appears

to play a role in particle physics). But even assuming for η1, η2, η3 values plausibly as

“high” as 103 is not enough help at traditional high-energy particle-collider experiments.

It was therefore rather exciting for many quantum-gravity researchers when

it started to emerge that some observations in astrophysics could be sensitive to

manifestations of the parameter η1 all the way down to |η1| ∼ 1 and even below [2,

3, 4, 17, 18, 7], thereby providing for that parameter the ability to explore the full range

of values that could be motivated from a quantum-gravity perspective. These studies

are presently being conducted at the Fermi Space Telescope [20, 21, 22, 23, 24], and

other astrophysics observatories.

In the recent Ref. [11] some of us observed that it would be very valuable to combine

to these astrophysics studies of the ultrarelativistic regime of the dispersion relation also

a complementary phenomenology program of investigation of the nonrelativistic regime

of p � m (which of course is not accessible to massless particles). When p � m the 3

largest contributions to ∆
(1)
QG(p, m) have behavior¶ m2p, mp2 and p3, allowing to cast

the relation between energy and spatial momentum in the following form:

E ' m +
p2

2m
+

1

2MP

(
ξ1mp + ξ2p

2 + ξ3
p3

m

)
, (5)

¶ Note that a contribution of form m3 (i.e. momentum-independent) to ∆(1)
QG(p, m) cannot be included

in the nonrelativistic regime because of the requirement ∆(1)
QG(p = 0, m) = 0. A contribution to

∆(1)
QG(p, m) of form m3 is instead admissible in the ultrarelativistic regime (since in that regime the

requirement ∆(1)
QG(p = 0, m) = 0 of course is not relevant), but we ignored it since m3 is too small with

respect to p3, mp2 and m2p in the nonrelativistic regime.
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where, again, ξ1, ξ2, ξ3 are dimensionless parameters.

Evidence that at least some of these dimensionless parameters ξ1, ξ2, ξ3 should

be non-zero has been found for example in the much-studied framework introduced in

Refs. [6, 25], which was inspired by Loop Quantum Gravity, and produces a term linear in

p in the nonrelativistic limit (the effect here parametrized by ξ1). And for the purposes

of this Section, which we are devoting to the complementarity of the nonrelativistic

and ultrarelativistic regimes of the dispersion relation, it is particularly insightful to

consider two of the most studied scenarios that have emerged in the literature on

noncommutative-geometry-inspired deformations of Poincaré symmetries. These are

the scenarios proposed in Refs. [26, 27] and in Ref. [28], which respectively produce the

following proposals for the exact form of the dispersion relation:

(
2MP

η

)2

sinh2

(
ηE

2MP

)
=

(
2MP

η

)2

sinh2

(
ηm

2MP

)
+ e

−η E
MP p2 , (6)

and
m2

(1 − η m
MP

)2
=

E2 − p2

(1 − η E
MP

)2
, (7)

Both of these proposals have the same description in the nonrelativistic regime

E ' m +
p2

2m
− η

p2

2MP
, (8)

i.e. the type of correction term in the nonrelativistic regime that we are here

parameterizing with ξ2. But these proposals have significantly different behavior in

the ultrarelativistic regime. From Eq. (6) in the ultrarelativistic regime one finds

E ' p +
m2

2p
− η

p2

2MP
, (9)

whereas from Eq. (7) in the ultrarelativistic regime one finds

E ' p +
m2

2p
− η

m2

MP
. (10)

Therefore the example of these two much studied deformed-symmetry proposals is such

that by focusing exclusively on the nonrelativistic regime one could not (not at the

leading order at least) distinguish between them, but one could discriminate between

the two proposals using data on the ultrarelativistic regime. The opposite is of course

also possible: different candidate dispersion relations with the same ultrarelativistic

limit, but with different leading-order form in the nonrelativistic regime. And in general

it would be clearly very valuable to constrain the form of the dispersion relation both

using experimental information on the leading nonrelativistic behavior and experimental

information on the leading ultrarelativistic behavior.
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3. Probing the nonrelativistic regime with cold atoms

Our main objective here is to show that cold-atom experiments can be valuable for

the study of Planck-scale effects. We illustrate this point mainly by considering the

possibility, already preliminarily characterized in Ref. [11], to use cold-atom studies for

the derivation of meaningful bounds on the parameters ξ1 and ξ2, i.e. the leading and

next-to-leading terms in (5) for the nonrelativistic limit:

E ' m +
p2

2m
+

1

2MP

(
ξ1mp + ξ2p

2
)

. (11)

In this Section we work exclusively from a laboratory-frame perspective, as done in

Ref. [11], but, as for most relativistic studies, it is valuable to also perform the analysis

in one or more frames that are boosted with respect to the laboratory frame, and we

shall discuss this in Sec. 5.

The measurement strategy proposed in Ref. [11] is applicable to measurements of

the “recoil frequency” of atoms with experimental setups involving one or more “two-

photon Raman transitions” [29, 30, 31]. Let us initially set aside the possibility of

Planck-scale effects, and discuss the recoil of an atom in a two-photon Raman transition

from the perspective adopted in Ref. [31], which provides a convenient starting point

for the Planck-scale generalization we shall discuss later. One can impart momentum

to an atom through a process involving absorption of a photon of frequency ν and

(stimulated [29, 30, 31]) emission, in the opposite direction, of a photon of frequency

ν ′. The frequency ν is computed taking into account a resonance frequency ν∗ of

the atom and the momentum the atom acquires, recoiling upon absorption of the

photon: ν ' ν∗ + (hν∗ + p)2/(2m) − p2/(2m), where m is the mass of the atom (e.g.

mCs ' 124 GeV for Caesium), and p its initial momentum. The emission of the photon of

frequency ν ′ must be such to de-excite+ the atom and impart to it additional momentum:

ν ′+(2hν∗+p)2/(2m) ' ν∗+(hν∗+p)2/(2m). Through this analysis one establishes that

by measuring ∆ν ≡ ν − ν ′, in cases (not uncommon) where ν∗ and p can be accurately

determined, one actually measures h/m for the atoms:

∆ν

2ν∗(ν∗ + p/h)
=

h

m
. (12)

This result has been confirmed experimentally with remarkable accuracy. A powerful

way to illustrate this success is provided by comparing the results for atom-recoil

measurements of ∆ν/[ν∗(ν∗ + p/h)] and for measurements [32] of α2, the square of

the fine structure constant. α2 can be expressed in terms of the mass m of any given

particle [31] through the Rydberg constant, R∞, and the mass of the electron, me, in

+ We only give a schematic and simplified account of the process, which suffices for the scopes of our
analysis. A more careful description requires taking into account that, rather than a single ground
state, the relevant two-photon Raman transition involve hyperfine-splitted ground states [29, 30, 31].
And that, rather than tuning the two lasers exactly on some energy differences between levels, some
detuning is needed [29, 30, 31].
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the following way [31]: α2 = 2R∞
m
me

h
m

. Therefore according to Eq. (12) one should have

∆ν

2ν∗(ν∗ + p/h)
=

α2

2R∞

me

mu

mu

m
, (13)

where mu is the atomic mass unit and m is the mass of the atoms used in measuring

∆ν/[ν∗(ν∗ + p/h)]. The outcomes of atom-recoil measurements, such as the ones with

Caesium reported in Ref. [31], are consistent with Eq. (13) with the accuracy of a few

parts in 109.

The fact that Eq. (12) has been verified to such a high degree of accuracy proves

to be very valuable for our purposes as we find that modifications of the dispersion

relation require a modification of Eq. (12). Our derivation can be summarized briefly

by observing that the logical steps described above for the derivation of Eq. (12) establish

the following relationship

h∆ν ' E(p + hν + hν ′) − E(p) ' E(2hν∗ + p) − E(p) , (14)

and therefore Planck-scale modifications of the dispersion relation, parametrized in

Eq. (5), would affect ∆ν through the modification of E(2hν∗+p)−E(p), which compares

the energy of the atom when it carries momentum p and when it carries momentum

p + 2hν∗.

Since our main objective here is to expose sensitivity to a meaningful range of values

of the parameter ξ1, let us focus on the Planck-scale corrections with coefficient ξ1. In

this case the relation (12) is replaced by

∆ν' 2ν∗(hν∗ + p)

m
+ ξ1

m

MP
ν∗ , (15)

and in turn in place of Eq. (13) one has

∆ν

2ν∗(ν∗+p/h)

[
1− ξ1

(
m

2MP

)(
m

hν∗ + p

)]
=

α2

2R∞

me

mu

mu

m
. (16)

We have arranged the left-hand side of this equation placing emphasis on the fact that

our quantum-gravity correction is as usual penalized by the inevitable Planck-scale

suppression (the ultrasmall factor m/MP ), but in this specific context it also receives

a sizable boost by the large hierarchy of energy scales m/(hν∗ + p), which in typical

experiments of the type here of interest can be [29, 30, 31] of order ∼ 109.

Our result (16) for the case of modification of the dispersion relation by the

term with coefficient ξ1 can be straightforwardly generalized to the case of a modified

dispersion relation of the form

E ' m +
p2

2m
+

ξβ

2

m2−β

MP

pβ (17)

which reproduces our terms with parameters ξ1 and ξ2 respectively when β = 1 and

β = 2 (but in principle could be examined even for non-integer values of β).
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One then finds

∆ν

2ν∗(ν∗ + p/h)

[
1 − ξβ

(
m2−β

[
(p + 2hν∗)

β − pβ
]

4MP hν∗

)(
m

hν∗ + p

)]
=

α2

2R∞

me

mu

mu

m
, (18)

which indeed reproduces (16) for β = 1 and gives [11]

∆ν

2ν∗(ν∗+p/h)

[
1− ξ2

m

MP

]
=

α2

2R∞

me

mu

mu

m
(19)

for β = 2.

We have so far assumed that the only Planck-scale corrections to the analysis

come from parameters such as ξ1 and ξ2, characteristic of the nonrelativistic regime, for

particles of nonzero mass. In the experimental setups we are considering all particles

are indeed nonrelativistic with the exception of course of the photons involved. Clearly

massless particles are inevitably ultrarelativistic and actually (at leading order in 1/MP )

there is a single possible modification of the dispersion relation for massless particles,

the one with coefficient η1 and quadratic dependence on momentum (see Eq. (4)). Of

course, in a given quantum-gravity scenario one might have, say, ξ1 6= 0 and η1 = 0,

in which case the derivations we gave above would immediately apply. It is natural to

also contemplate the possibility of cases in which both ξ1 and η1 are roughly of order

1. We find however that for the analysis of atom-recoil studies the effects produced by

an η1 of order 1 are completely negligible with respect to the effects produced by a ξ1

of order 1. This is essentially due to the fact that photons enter the derivation of the

recoil frequency through momentum transfers that never have a chance to pick up the

“amplification” coming from the only large energy scale in the problem which is the

atom mass. The amplification of the effects of ξ1 which was underlined in the comments

we offered just after Eq. (16) is not found for the effects of η1. Indeed by redoing all the

steps of our derivation allowing for a nonzero η1 one ends up replacing Eq. (14) with

h∆ν ' E(2hν∗ + p − η1h
2ν2

∗/MP ) − E(p) . (20)

And from this one arrives at a rather intelligible characterization of the different roles

of ξ1 and η1 in atom-recoil analysis:

∆ν

2ν∗(ν∗+p/h)
=

h

m
+ ξ1

hm

2MP (p + hν∗)
− η1

hm

2MP (p + hν∗)

(
hν∗p + 2h2ν2

∗
m2

)
, (21)

which shows that the effects of η1 are suppressed with respect to the ones of ξ1 by a factor

of order (hν∗/m)2 or hν∗p/m
2 (notice the two powers of the mass in the denominator,

and that the mass of the atoms in the setup here of interest is much larger than both p

and ν∗).

The balance of strengths changes a bit, but not enough, in the case of scenarios

with ξ1 = 0 but both ξ2 and η1 of order 1. In such cases one should compare the effects
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of ξ2 (which we established to be smaller than the ones of ξ1) to the effects of η1. What

one finds is summarized by the formula

∆ν

2ν∗(ν∗+p/h)
=

h

m
+ ξ2

h

MP
− η1

h

MP

hν∗
2m

(
1 +

hν∗
p + hν∗

)
, (22)

which shows that the effects of η1 are significantly suppressed with respect to the ones

of ξ2 (here it is only one power of the mass in the denominator, but that is plenty

of suppression, considering the large hierarchy between mass of the atoms and spatial

momenta available in atom-recoil studies).

4. Limits on different models

From a phenomenological perspective the most noteworthy observation one can ground

on the results reported in the previous Section is that the accuracies achievable in cold-

atom studies allow us to probe values of ξ1 that are not distant from |ξ1| ∼ 1. This

is rather meaningful since, as stressed in the previous Section, the quantum-gravity

intuition for parameters such as ξ1 is that they should be (in models where a nonzero

value for them is allowed) within a few orders of magnitude of 1. Besides discussing

this point, in this Section we also consider the case of the term with ξ2 parameter

and we comment on the relevance of these analyses from the perspective of a class of

phenomenological proposals which is broader than the one here discussed in Section II.

The closing remarks of this Section are devoted to observations that may be relevant

for attempts to further improve the relevant experimental limits.

4.1. Limits on ξ1 and ξ2

The fact that our analysis provides sensitivity to values of ξ1 of order 1 is easily verified

by examining our result for the case of the ξ1 parameter, which we rewrite here for

convenience
∆ν

2ν∗(ν∗+p/h)

[
1− ξ1

(
m

2MP

)(
m

hν∗ + p

)]
=

α2

2R∞

me

mu

mu

m
, (23)

and taking into account some known experimental accuracies. Let us focus in particular

on the Caesium-atom recoil measurements reported in Ref. [31], which were ideally

structured for our purposes. Let us first notice that R∞, me/mu and mu/mCs

are all known experimentally with accuracies of better than 1 part in 109. When

this is exploited in combination with the value of α−1 recently determined from

electron-anomaly measurements [32], which is α−1 = 137.035999084(51), the results

of Ref. [31, 33] then allow us to use (23) to determine that ξ1 = −1.8 ± 2.1. This

amounts to the bound −6.0 < ξ1 < 2.4, established at the 95% confidence level, and

shows that indeed the cold-atom experiments we here considered can probe the form of

the dispersion relation (at least in one of the directions of interest) with sensitivity that

is meaningful from a Planck-scale perspective.
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As mentioned in Section 2 among the models that could be here of interest there

are some where, by construction, ξ1 = 0 but ξ2 6= 0. In such cases it is then of interest

to establish bounds on ξ2 derived assuming ξ1 = 0, for which one can easily adapt the

derivation discussed above. These are therefore cases in which our result (19) is relevant,

and one easily then finds that the atom-recoil results for Caesium atoms reported in

Refs. [31, 33] can be used to establish that −3.8 ·109 < ξ2 < 1.5 ·109. This bound is still

some 6 orders of magnitude above even the most optimistic quantum-gravity estimates.

But it is a bound that still carries some significance from the broader perspective of

tests of Lorentz symmetry [11].

We should stress that, since we relied on the results of Ref. [32], our noteworthy

bounds on ξ1 and ξ2 could in principle be affected by the hypothesis of Planck-scale

effects that happened to be relevant for the determination of α from electron-anomaly

measurements. One could consider the possibility of a conspiracy between the “Planck-

scale-kinematics effects” that appear on the left-hand side of (23) and the “Planck-

scale gravity-interaction effects” that could be relevant for the determination of α from

electron-anomaly measurements. At the present stage of understanding of the quantum-

gravity problem such a conspiracy appears implausible, since in the relevant models (see,

e.g., Refs. [6, 12]) anomalous behavior of gravitational interactions are only expected to

start at order M−2
P . And we should also stress that electron-anomaly measurements are

not the only way to determine accurately α (although they presently provide the most

precise determination): one could for example use our strategy of analysis to obtain a

bound weakened by not more than one order of magnitude without relying on electron-

anomaly measurements, but rather comparing the results of atom-recoil experiments

with different types of atoms (e.g. Caesium and Rubidium).

4.2. Relevance for other quantum-gravity-inspired scenarios

Up to this point we have assumed “universal” effects, i.e. modifications of the

dispersion relation that have the same form for all particles, independently of spin and

compositeness, and with dependence on the mass of the particles rigidly inspired by

the quantum-gravity arguments suggesting correction terms of the form mjpk/MP
l (i.e.

with a characteristic dependence on momentum and with a momentum-independent

coefficient written as a ratio of some power of the mass of the particle versus some

power of the Planck-scale).

While this universality is indeed assumed in the majority of studies of the fate of

Poincaré symmetry at the Planck scale, alternatives have been considered by some

authors [34] and there are good reasons to at least be open to the possibility of

nonuniversality. One reason of concern toward universality originates from the fact

that clearly modifications of the dispersion relation at the Planck scale are a small

effect for microscopic particles (always with energies much below the Planck scale in

our experiments), but would be a huge (and unobserved) effect for macroscopic bodies,

such as planets and, say, soccer balls. Even the literature that assumes universality
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is well aware of this issue, and in fact the opening remarks of papers on this subject

always specify a restriction to microscopic particles. With our present (so limited)

understanding of the quantum-gravity realm we can indeed contemplate for example

the possibility that such effects be confined to motions which admit description in terms

of coherent quantum systems (by which we simply mean that the focus is on the type

of particles whose quantum properties could also be studied in the relevant class of

phenomena, unlike the motions of planets and soccer balls). This is clearly (at least

at present) a plausible scenario that many authors are studying and for which atoms

provide an extraordinary opportunity of investigation of the nonrelativistic regime. Let

us compare for example our study to the popular studies of the ultrarelativistic regime

with photons. The best limits on the ultrarelativistic side are obtained [23] through

observations of photons with energies of a few tens of GeV’s. The limit we here obtained

in the nonrelativistic regime involves very small speeds (� c) but for particles, the

atoms, with (rest) energies in the ∼ 100 GeV range.

While it is therefore rather clear that atoms are excellent probes of scenarios with

universality for “quantum-mechanically microscopic particles”, their effectiveness can be

sharply reduced in models with some forms of nonuniversality. In particular, one could

consider the compositeness of particles as a possible source of nonuniversality [35]. And

this would imply that in the study of processes involving, say, protons and pions one

should adopt a “parton picture” with the number of partons acting in the direction

of averaging out the effects: if quantum-spacetime effects affect primarily the partons

then a particle composed of 3 partons could feel the net result of 3 such fundamental

features, with a possible suppression (e.g. by a factor of
√

3) of the effect for the particle

with respect to the fundamental effect for partons. These ideas have not gained much

attention, probably also because things might change only at the level of factors of

order 1 if one was for example to devise ways to keep track of the different number of

partons for nucleons and for pions. But in the case of atoms, that we are now bringing

to the forefront of quantum-gravity phenomenology, clearly these concerns cannot be

taken lightly: for the description of an atom one might have to consider hundreds of

partons (or at least ∼ 100 nucleons). We therefore expect that our strategy to place

limits on ξ1 and ξ2 will be less effective (limits more distant from the Planck scale)

in scenarios based on one or another form of “parton model” for the implications of

spacetime quantization on quantum-mechanical particles. We do not dwell much on

this here at the quantitative level since the literature does not offer us definite models

of this sort that we could compare to data.

Even assuming that the effect is essentially universal one could consider alternatives

to the most common assumption that quantum-gravity corrections have the form

mjpk/M l
P . In particular, some authors (see, e.g., Refs. [36, 37, 38]) have argued that the

density of energy (or mass) of a given particle (be it elementary or composite) should

govern the magnitude of the effect, rather than simply the mass of the particle. This

is another possibility which is also under investigation [36, 37, 38] as a mechanism for

effectively confining the new effects to elementary particles. In the simplest scenarios
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this proposal might amount to replacing terms such as our ξ1mp/(2MP ) with terms of

the general form ξ̃1ρ
1/4p/(2MP ), but of course the implications of such pictures depend

crucially on exactly which density ρ one adopts. For different choices of ρ the limits

derived from atom-recoil experiments can be more or less stringent than those derived

in studies of lighter particles, such as electrons.

Another framework which can be used to illustrate the different weight that cold-

atom studies can carry in different scenarios for the deformation of the dispersion

relation is the one already studied in Refs. [39, 40], parameterized by a single scale

λ such that E2 = m2 + p2 + 2λp. Limits on this form of the dispersion relation have

been obtained for neutrinos in Ref. [39], and for electrons, in Ref. [40]. Taking into

account that from E2 = m2 + p2 + 2λp it follows that in the nonrelativistic limit

E = m + p2/(2m) + λp/m, one easily finds that the parametrization we introduced

in Eq. (5) and the parametrization of Refs. [39, 40] are related by ξ1m/MP ≡ 2λ/m.

And in light of this one can quickly estimate that the study of atom-recoil measurements

can provide access to |λ| ∼ 10−6 eV. This shows that the cold-atom-based strategy is

suitable also for studies of the λ-parameter picture of Refs. [39, 40]. But, while, as some

of us already stressed in Ref. [11], these atom-based studies on λ are more powerful (by

roughly 6 orders of magnitude) than bounds previously obtained on λ using neutrino

data [39], we should here notice that the best present bound on λ is the electron-based

bound derived in Ref. [40], which is at the level |λ| ≤ 10−7 eV. We stress that there is no

contradiction between the remarks we offered above on the unique opportunities that

cold-atom studies provide for setting bounds on the parameter ξ1, and the fact that

instead for the λ parameter electron studies are competitive with (and actually still

slightly more powerful than) atom-based studies: this difference between the strategies

for bounding the ξ1 parameter and the λ parameter is easily understood in light of the

relation ξ1m/MP ↔ 2λ/m and of the large difference of masses between electrons and

(Caesium or Rubidium) atoms.

Finally, in closing this Subsection on alternative models, let us mention the

possibility of intrinsically non-universal modifications of the dispersion relation, i.e.

phenomenological scenarios in which the modifications of the dispersion relation

are assumed to be different for different particles without introducing any specific

prescription linking these differences to the mass, the spin or other specific properties of

the particles. For example, in Ref. [34], and references therein, the authors introduce a

free parameter for each different type of particle. In such cases studies of Caesium and,

say, Rubidium atoms could be used to set constraints on parameters that are specialized

to those types of atoms. In essence, according to this (certainly legitimate) perspective,

we might learn that for Caesium and Rubidium ξ1 is small but without assuming any

implications for the values of ξ1 for other particles. And another noteworthy example is

the one of Ref. [41], and references therein, where it is argued, within a specific scenario

for quantum gravity, that the effects of modification of the dispersion relation should be

confined to a single type of particle, the photon (in which case of course atoms cannot

possibly be of any help).
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4.3. Strategies for improving the limits

As a contribution toward the development of experimental setups which in some cases

may be optimized for our proposal it is important for us to stress that, while essentially

here we structured our analysis in a way that might appear to invite interpretation

as “quantum-gravity corrections to h/m measurements”, not all improvements in

the sensitivity of measurements of h/m will translate into improved bounds on the

parameters we here considered.

First we should notice that our result for the ξ1-dependent correction to

∆ν/[2ν∗(ν∗+p/h)] would not appear as a constant shift of h/m, identically applicable to

all experimental setups. This is primarily due to the fact that, as shown in Eq. (23), our

quantum-gravity correction factor has the form 1− ξ1m
2/[2MP (hν∗ + p)], and therefore

at the very least should be viewed as a momentum-dependent shift of h/m. Different

h/m measurements, even when relying on the same atoms (same m), are predicted to

find different levels of inconsistency with the uncorrected relationship between h/m

and α2. This is particularly important because the remarkable accuracy of some

measurements of h/m relies crucially [31, 42] on imparting to the atoms high values

of momentum, but from our perspective one should notice that the magnitude of the

ξ1-governed effect decreases with the magnitude of momentum. This is after all one of

the reasons why the bound on ξ1 which we discussed here relied on the determinations

of h/m reported in Ref. [31, 33]: a more accurate determination of h/m was actually

obtained in the cold-atom (Rubidium) studies reported in Refs. [43, 44], but those more

accurate determinations of h/m relied on much higher values of momentum, thereby

producing a bound on ξ1 which is not competitive [11] with the one obtainable using

the h/m determination of Ref. [31, 33]. The challenge we propose is therefore the one of

reaching higher accuracies in the measurement of h/m without increasing significantly

the momentum imparted to the atoms.

Interestingly these concerns do not apply to our result for the ξ2 parameter. In

fact, our result for the ξ2-dependent correction to ∆ν/[2ν∗(ν∗ +p/h)] would actually

appear as a constant shift of h/m, a mismatch between h/m results and α2 results of

identical magnitude in all experimental setups using the same atoms (same m). This is

due to the fact that, as shown in Eq. (19), our quantum-gravity correction factor has

the form [1− ξ2m/MP ], and therefore can indeed be viewed as a (mass-dependent but)

momentum-independent shift of h/m.

Besides these issues connected with the role played by the momentum of the atoms

in our analysis, there are clearly other issues that should be taken into consideration

by colleagues possibly contemplating measurements of h/m that could improve the

limits on our parameters. One of these clearly deserves mention here, and concerns the

setup of h/m measurements as differential measurements. In this respect it is rather

significant that our derivation of dependence of the measured ∆ν on the Planck-scale

effects shows that the sign of the correction term depends on the “histories” (beam-

splitting/beam-recombination histories) of the atoms whose interference is eventually
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measured. Even from this perspective our result is therefore not to be viewed simply

as “a shift in h/m”: often in the relevant cold-atom experiments one achieves a very

accurate determination of h/m by comparing (in the sense of a differential measurement)

two different values of ∆ν obtained by interference of different pairs of beams produced

in the beam-splitting/beam-recombination sequence of a given experimental setup. We

should therefore warn our readers that for some differential measurements the effect

measured would be twice as large as the one we here computed (same effect but with

opposite sign on the two sides of the differential measurement), but on the other hand it

is not hard to arrange∗ for a differential measurement that is insensitive to the quantum-

gravity effects (if the “histories” are such that the correction carries the same sign on

the two sides of the differential measurement).

5. Atom velocity, energy-momentum conservation and other relativistic

issues

We have so far focused on schemes which assume that the only new relevant quantum-

gravity-induced law amounts to a modification of the energy-momentum dispersion

relation. The main results here derived in Section 3 relied on a strategy of analysis

that only requires a specification in the “laboratory frame” of the form of the dispersion

relation (which is used to establish, for example, the energy gained by an atom when

its spatial momentum is increased) and the law of energy-momentum conservation

(which is used to establish, for example, the spatial momentum imparted to an

atom upon absorption of a photon of known wavelength). Even within that scheme

of analysis one clearly should consider also the possibility of modifications of the

law of energy-momentum conservation, especially in light of the fact that certain

quantum-gravity scenarios establish (see below) a direct link between modifications

of the dispersion relation and some corresponding modifications of the law of energy-

momentum conservation.

Moreover, the laboratory-frame perspective is of course too narrow for the

investigation of the relativistic issues that clearly must be involved in scenarios that

introduce modifications of the dispersion relation. Also from this perspective the

quantum-gravity literature offers significant motivation for a careful investigation, since

modifications of the laws of transformation between reference frames have been very

actively studied (see below). And, as we shall here stress, connected to this issue of

boost transformations between reference frames one also finds intriguing challenges for

what concerns the description of the velocity of particles.

In this Section we offer an exploratory discussion of these issues. Even in the

quantum-gravity literature on ultrarelativistic modifications of the dispersion relation

the study of these issues has proven very challenging, and many unsolved puzzles remain.

So we shall not even attempt here to address fully these issues in the novel domain of the

∗ The careful reader will for example notice that Ref. [45] provides an example of setup in which our
Planck-scale effects would cancel out.
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nonrelativistic limit, which we are here advocating. But we hope that the observations

we report here may provide a valuable starting point for more detailed future studies.

Among the “exploratory aspects” of our discussion we should in particular stress

that we assume here, as done in most of the related quantum-gravity-inspired literature,

that concepts such as energy, spatial momentum and velocity can still be discussed in

standard way, so that the novelty of the pictures resides in new laws linking symbols

that admit a conventional/traditional physical interpretation. Of course, alternative

possibilities also deserve investigation: a given quantum-gravity/quantum-spacetime

picture might well (when fully understood) provide motivation not only for novel forms

of, say, the dispersion relation but also impose upon us a novel description of the

entities, such as the energy E, that appear in the dispersion relation. But we shall

already highlight several challenges for the more conservative scenario (with traditional

“interpretation of symbols”), and therefore we postpone to future works the investigation

of alternative interpretations.

5.1. Velocity and boosted-frame analysis

As a partial remedy to the laboratory-frame limitation of the strategy of analysis

discussed in Section 3, we take as our next task the one of obtaining the same result

using a scheme of derivation involving boosting and the Doppler effect. The role played

by transformation laws between different observer-frames motivates part of our interest

for this calculation, since investigations of the fate of Poincaré symmetry in models

with Planck-scale modifications of the dispersion relation must in general address the

issue of whether the symmetries are “deformed”, in the sense of the “Doubly Special

Relativity” scenario [26, 27], or simply “broken”. When the symmetry transformations

are correspondingly “deformed” the dispersion relation will be exactly the same for

all observers [26, 27]. In the symmetry-breaking alternative scenario the laws of

boosting are unmodified and as a result one typically finds that the chosen form of

the dispersion relation only holds for one class of observers (at the very least one must

expect [46] observer dependence of the parameters that characterize the modification of

the dispersion relation). And another aspect of interest for such analyses originates from

the fact that the description of the Doppler effect requires a corresponding description of

the velocity of the atoms, and therefore requires a specification of the law that fixes the

dependence of speeds on momentum/energy at the Planck scale: this too is a debated

issue, with many authors favoring v(p) = ∂E/∂p, but some support in the literature

also for some alternatives, the most popular of which is v = p/E.

As stressed in the opening remarks of this Section, we are just aiming for a

first exploratory characterization of these issues and their possible relevance for our

atom-recoil studies. Consistently with these scopes we assume that the Doppler effect

(boosting) is undeformed and that the dispersion relation is an invariant law. This of

course is only one (and a particularly peculiar) example of combination of the possible

formulations of the main issues here at stake, but it suffices for exposing the potentially
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strong implications that the choice of these formulations can have for the analysis.

Let us start by reanalyzing the recoil of atoms in terms of a Doppler effect,

neglecting initially the possible Planck-scale effects (which we shall reintroduce later in

this Section). When an atom absorbs a photon whose frequency is ν in the laboratory

frame, in the rest frame of the atom the photon has frequency ν̃ = ν(1 − v), where v

is the speed of the atom in the lab frame (and for definiteness we are considering the

case of photon velocity parallel to the atom velocity). Then in the rest frame, if the

absorption of the photon takes the atom to an energy level hν∗, energy conservation

takes the form

ν̃ ' ν∗ +
hν2

∗
2m

, (24)

which of course can also be equivalently rewritten in terms of the lab-frame frequency

of the photon

ν ' ν∗(1 + v) +
hν2

∗
2m

, (25)

also neglecting a contribution of order v hν2
∗/m which is indeed negligible in the

nonrelativistic (v � 1) regime.

This photon absorption also takes the atom from velocity v to velocity v′,

v′ ' v + hν∗/m , (26)

in the laboratory frame (where we also observed that the gain of momentum of the atom

is approximately hν∗).

For the stage of (stimulated) emission of a second photon, whose frequency in the

lab frame we denote with ν ′, the atom would then be moving at this speed v′, and in

the rest frame of the atom the frequency of this emitted photon is ν̃ ′ = ν ′(1 + v′) (also

taking into account that if, in the lab frame, the absorbed photon moved in parallel

with the atom, the emitted photon must then move in anti-parallel direction). In the

case of photon emission, conservation of energy in the rest frame has a different sign

with respect to Eq. (24), i.e.

ν̃ ′ ' ν∗ −
hν2

∗
2m

, (27)

which again one may prefer to re-express in terms of the lab-frame frequency of the

photon

ν ′ ' ν∗(1 − v′) − hν2
∗

2m
. (28)

So the lab-frame frequency difference between the two photons is

∆ν = ν∗(v + v′) +
hν2

∗
m

' 2vν∗ +
2hν2

∗
m

, (29)

and this (as easily seen upon noticing that in the nonrelativistic limit v = p/m) of

course perfectly agrees with the corresponding result (12), which we had obtained relying

exclusively on lab-frame kinematics.
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It is easy to verify that redoing this Doppler-effect-based derivation in presence of

our Planck-scale corrections to the dispersion relation (but setting aside, at least for

now, possible Planck-scale dependence of the Doppler effect) one ends up replacing (29)

with

∆ν = ν∗ [v(p) + v(p + hν∗)] +
hν2

∗
m

+ ξ1
m

MP
ν∗ . (30)

This is the formula that should reproduce our main result (15). Indeed this is the

point where one might encounter the necessity of Planck-scale modifications of the

boost/Doppler-effect laws and/or of Planck-scale modifications of the law that fixes the

dependence of speeds on momentum/energy. Concerning speeds, if one assumes (as

done by most authors [2, 4, 6, 9, 12]) v = ∂E/∂p then in our context (nonrelativistic

regime, with ξ1 parameter) one finds v(p) = p/m + ξ1m/MP . If instead, as argued by

other authors [47, 48, 49], consistency of the Planck-scale laws requires that v = p/E

should be enforced then in our nonrelativistic context one of course has v(p) = p/m.

We find that the desirable agreement between (30) and (15) is found upon assuming

v(p) = p/m, which indeed allows one to rewrite (30) as

∆ν =
2ν∗(p + hν∗)

m
+ ξ1

m

MP

ν∗ . (31)

If instead one insists on the alternative v(p) = ∂E/∂p = p/m + ξ1m/MP , then (30)

takes the form

∆ν =
2ν∗(p + hν∗)

m
+ 2ξ1

m

MP
ν∗ , (32)

which is sizably different from (15).

Our observation that the law v = p/m is automatically consistent with a plausible

symmetry-deformation perspective is intriguing, but might well be just a quantitative

accident. We thought it might still be worth reporting just as a way to illustrate

the complexity of the issues that come into play if our cold-atom studies are examined

within a symmetry-deformation scenario, issues that we postpone to future studies. The

Doppler effect in models with deformed Poincaré symmetries had not been previously

studied, and there are several alternative “schools” on how to derive from the energy-

momentum dispersion relation a law giving the speed as a function of energy. In the

specific case of the correction term we here parametrized with ξ1 it would seem that

v = p/m is a natural choice, at least in as much as the choice v(p) = ∂E/∂p appears to

be rather pathological/paradoxical since it leads to v(p) = p/m + ξ1m, i.e. a law that

assigns nonzero speed to the particle even when the spatial momentum vanishes.

5.2. Testing energy-momentum conservation

Up to this point our analysis has focused on tests of the Lorentz sector of Poincaré

symmetry. But of course there is also interest in testing the translation sector, and

indeed there has been a corresponding effort, particularly over the last decade. The

aspect of the translation sector on which these studies have primarily focused is the
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law of energy-momentum conservation in particle-physics processes, and particularly

noteworthy are some results [50, 51] which exposed “Planck-scale sensitivity” for

the analysis of certain classes of “ultraviolet” (high-energy) modifications of the

law of energy-momentum conservation. Even for these studies one can contemplate

the alternative between breaking and deforming Poincaré symmetry, and from this

perspective it is rather noteworthy that the scenarios in which one deforms Poincaré

symmetry require [26, 35] a consistency] between the scheme of modification of the

dispersion relation and the scheme of modification of the law of energy-momentum

conservation. Instead of course if one is willing to break Poincaré symmetry one can

consider independently (or in combination) both modifications of the dispersion relation

and modifications of the law of energy-momentum conservation.

In this Section we want to point out that our cold-atom-based strategy also provides

opportunities for studies of the form of the law of energy-momentum conservation in

the nonrelativistic regime. The observations on cold-atom experiments that some of us

reported in Ref. [11] already inspired the recent analysis of Ref. [52], which provides

preliminary encouragement for the idea of using cold-atom experiments for the study of

the form of the law of energy-momentum conservation in the nonrelativistic regime. The

scopes of the analysis reported in Ref. [52] were rather limited, since it focused on one

specific model, which in particular codifies no modifications of the dispersion relation:

the only modification allowed in Ref. [52] appeared in the law of energy-momentum

conservation and appeared only at subleading order (in the sense here introduced in

Sections 2-3) in the nonrelativistic limit.

While maintaining the perspective of a first exploratory investigation of these

issues, we shall here contemplate a more general scenario, with modifications of both

energy-momentum conservation and dispersion relation, and with correction terms

strong enough to appear even at the leading order in the nonrelativistic regime.

Besides aiming for greater generality, our interest in this direction is also motivated

by the desire of setting up future analysis which might consider in detail the interplay

between modifications of the dispersion relation and modifications of energy-momentum

conservation, particularly from the perspective of identifying scenarios with deformation

(rather than breakdown) of Poincaré symmetries, for which, as mentioned, this interplay

is in many instances required [26, 35]. While we shall not here attempt to formulate a

suitable deformed-symmetry scenario, the observations we here report are likely to be

relevant for the possible future search of such a formulation.

In light of the exploratory nature of our investigation of this point we shall be

satisfied illustrating the possible relevance of the interplay between dispersion relation

and energy-momentum conservation for the specific case of modified laws of conservation

] These consistency requirements for a deformation of Poincaré symmetry are very restrictive but
may not suffice to fully specify the form of the law of energy-momentum conservation by insisting on
compatibility with a chosen form of the dispersion relation [26, 35].
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of spatial momentum (ordinary conservation of energy):

~p1 + ~p2 −
ρ1

4MP

(
E2

1

E2

~p1 +
E2

2

E1

~p2

)
− ρ2

2MP

(E1~p2 + E2~p1) =

= ~p3 + ~p4 −
ρ1

4MP

(
E2

3

E4

~p3 +
E2

4

E3

~p4

)
− ρ2

2MP

(E3~p4 + E4~p3) . (33)

We are focusing on the case of two incoming and two outgoing particles (relevant for

processes in which a photon is absorbed and one is emitted by an atom), and we

characterized the modification in terms of parameters ρ1 and ρ2. As announced, we

shall keep track of these parameters ρ1 and ρ2 together with the parameters ξ1 and

ξ2 that parametrized the modifications of the dispersion relation in the nonrelativsitic

limit††.
For a two-photon Raman transition our modified law of conservation of spatial

momentum has significant implications along the common direction of the laser beams

used to excite/de-excite the atoms:

h|~k| + |~p| − ρ1

4MP

(
h2ν2

m
h|~k| + m2

hν
|~p|
)
− ρ2

2MP
(hν|~p| + Eh|~k|) = (34)

− h|~k′| + |~p′| − ρ1

4MP

(
−h2ν ′2

m
h|~k′| + m2

hν ′ |~p
′|
)
− ρ2

2MP
(hν ′|~p′| − E ′h|~k′|) ,

In Section 3 we used ordinary momentum conservation, h|~k| + |~p| = −h|~k′| + |~p′|,
but if instead one adopts (34) the following result is then straightforwardly obtained:

∆ν

2ν∗(ν∗ + p/h)
' h

m
+

1

MP
[m(ξ1 − ρ1) + (2ξ2 − ρ2)p + 2(ξ2 − ρ2)hν∗]

hν∗
2ν∗(hν∗ + p)

.

(35)

While this is, as stressed, only an exploratory investigation of the role that could be

played by modifications of energy-momentum conservation (in particular there is clearly

a strong influence of the specific ansatz we adopted for the modified law of conservation

of energy-momentum) it is still noteworthy that the parameter ρ1 enters the final result

at the same order as the parameter ξ1 and similarly the parameter ρ2 enters the final

result at the same order as the parameter ξ2. In particular, this implies that even at

the type of leading order we here mainly focused on (the order where ξ1 appears) the

possibility of modifications of the law of energy-momentum conservation may well be

relevant, with nonnegligible effects even in cases where ξ1 = 0 but ρ1 6= 0.

6. Closing remarks

We have here used the noteworthy example of atom-recoil measurements to explore

whether it is possible to setup a phenomenology for the nonrelativistic limit of the

††For simplicity we here simply assume that the photon dispersion relation (bound to be in the
ultrarelativistic regime) is undeformed. As stressed at the end of Sec. 3, one could introduce for
photons the parameter η1, characteristic of the ultrarelativistic regime, but in the analysis of atom-
recoil studies η1 turns out to have effects much smaller than the ones of ξ1 and ξ2 (as already discussed
at the end of Sec. 3) and also of ρ1 and ρ2.
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energy-momentum dispersion relation that adopts the same spirit of a popular research

program focusing instead on the corresponding ultrarelativistic regime. It appears that

this is indeed possible and that on the one hand there is a strong complementarity

of insight to be gained by combining studies of the nonrelativistic regime and of the

ultrarelativistic regime, and on the other hand the nature of the conceptual issues that

must be handled (particularly the relativistic issues associated with the possibility of

breaking or deforming Poincaré symmetry) are closely analogous. We therefore argue

that by adding the nonrelativistic limit to the relevant phenomenology agenda we could

improve our ability to constrain certain scenarios, and we could also gain a powerful

tool from the conceptual side, exploiting the possibility to view the same conceptual

challenges within regimes that are otherwise very different.

For what concerns the phenomenology we here proposed it is noteworthy that,

particularly considering the values of ξ1 being probed, any improvement in sensitivity

that will be achieved could also be viewed as a (slim but valuable) chance for a striking

discovery. We therefore feel that our analysis should motivate experimentalists to tailor

some of their plans in this direction (also using the remarks we offered in Subsection 4.3)

and should motivate theorists toward a vigorous effort aimed at overcoming the technical

difficulties on the quantum-gravity-theory side that presently obstruct the derivation of

more detailed quantitative predictions.
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