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Two-Scale Macro-Micro decomposition of the Vlasov equation

with a strong magnetic field

Nicolas CROUSEILLES∗ Emmanuel FRÉNOD† Sever HIRSTOAGA‡

Alexandre MOUTON§

Abstract

In this paper, we build a Two-Scale Macro-Micro decomposition of the Vlasov equation with a

strong magnetic field. This consists in writing the solution of this equation as a sum of two oscillating

functions with circonscribed oscillations. The first of these functions has a shape which is close to

the shape of the Two-Scale limit of the solution and the second one is a correction built to offset this

imposed shape. The aim of such a decomposition is to be the starting point for the construction of

Two-Scale Asymptotic-Preserving Schemes.

1 Introduction

The goal of this paper is to make the first step towards the setting out of a new class of numerical
methods: the Two-Scale Asymptotic-Preserving Schemes or TSAPS. We intend to use these methods
in order to treat problems involving the following two numerical difficulties: first, dealing efficiently on
long time scales with solutions having high frequency oscillations (the Two-Scale approach) and second,
an accurate and stable managing of the transition between different regimes, using a unified model (the
Asymptotic-Preserving approach). These problems naturally occur in solving a Vlasov equation implying
some small parameter, for the modelling of the dynamics of charged particles in the presence of a strong
magnetic field. More precisely, we are interested to develop a model whose discretization will be able to
simulate both, the regime when the parameter is not small (i.e. the magnetic field is not large), and the
limit regime obtained when the parameter is small. The discrete scheme will automatically shift from one
regime to the other. In addition, in the limit of the small parameter, the particles mean behaviour will be
efficiently described by the two-scale limit while the micro behaviour will be expressed by some correctors.

To make the purpose more precise, we first refer to [4, 8, 13, 14, 15, 16] and the references therein
as previous works about different regimes, by taking limits of Vlasov or Vlasov-Poisson equations cor-
responding to small parameters, having in common the framework of a large magnetic field. Then, we
refer to [1, 2, 9, 11, 21, 22, 23] for a detailed description of Two-Scale Numerical Methods. As for the
Asymptotic-Preserving schemes, although there is an abundant literature about, we first cite the classical
paper [17] and then [3, 6, 7, 19, 20] which treat problems close to our, without considering the two-scale
aspect.

Next we start to detail the method, by setting a generic and formal problem

Eǫ uǫ = 0 , (1.1)
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in which Eǫ is a partial differential operator depending on a parameter ǫ which induces oscillations of
typical size ǫ in the solution uǫ = uǫ(z). In the case where ǫ is uniformly small over the domain on which
(1.1) is posed, a Two-Scale approach may give good results. To summarize, this approach consists in
noticing that, in some sense,

uǫ(z) ≈ U(z,
z

ǫ
) , (1.2)

where U = U(z, ζ) is the Two-Scale limit of uǫ (Two-Scale convergence goes back to [23]), and that U is
the solution of a well-posed problem of the form

E U = 0 , (1.3)

where E does not induce high frequency oscillations. Building a Two-Scale Numerical Method consists
then in solving, via an usual numerical method, model (1.3) and rebuilding uǫ using an algorithm based
on (1.2).

In the case where ǫ is not a uniform parameter over the domain, in the sense that it may be small
in some sub-region and of order 1 in other ones, Asymptotic-Preserving schemes are intended to be
used, since they allow to simulate both sub-regions with the same method. The methodology for these
numerical schemes is based on the fact that uǫ may converge, in a strong or a weak topology, towards a
limit u which is solution of

E u = 0 . (1.4)

Then, an Asymptotic-Preserving scheme consists in solving

Eǫ
∆z u

ǫ
∆z = 0 , (1.5)

such that
uǫ∆z −→ uǫ , as ∆z → 0, (1.6)

and
uǫ∆z −→ u∆z , as ǫ→ 0, (1.7)

where u∆z is a numerical approximation of u, meaning that

u∆z −→ u , as ∆z → 0, (1.8)

and is the solution of
E∆z u∆z = 0 , (1.9)

where E∆z is a numerical operator. Notice that the property (1.6)-(1.7)-(1.8) is called the Asymptotic-
Preserving Property.

All what was just said may be summarized in the following diagram:

uǫ solution of
Eǫ uǫ = 0

ǫ→ 0
//
u solution of
E u = 0

uǫ∆z solution of
Eǫ

∆z u
ǫ
∆z = 0

ǫ→ 0
//

∆z→ 0

OO

u∆z solution of
E∆z u∆z = 0

∆z→ 0

OO

(1.10)

In the case when uǫ contains high frequency oscillations with high amplitude when ǫ is small, solving
(1.5) can be time consuming to capture the oscillations. In this case, the convergence

uǫ → u , (1.11)
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occurs in a weak sense only. Besides this, the Two-Scale limit U = U(z, ζ) may describe very well the
oscillations of uǫ in the sense that the convergence

U(z,
z

ǫ
)− uǫ(z) → 0 , (1.12)

occurs in a stronger sense than (1.11). This is particularly the case when Eǫ generates pseudo-periodic
oscillations, essentially at a sole period, of size ǫ in the solution uǫ when ǫ becomes small. Moreover, u
and U are linked by a relation of the kind

u(z) =
1

|Z|

∫

Z

U(z, ζ) dζ , (1.13)

where Z is the cell such that ζ 7→ U(z, ζ) is Z-periodic for any z, and |Z| is its measure.

In this case, we propose to add a layer in the diagram (1.10) which summarizes the ideas on which
Two-Scale Asymptotic-Preserving Scheme is based:

uǫ solution of
Eǫ uǫ = 0

ǫ→ 0 , weak-∗
//

ǫ→ 0 , Two-Scale

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

u solution of
E u = 0

U solution of
E U = 0

1

|Z|

∫

Z

dζ

66nnnnnnnnnnnn

U ǫ solution of
Eǫ U ǫ = 0

ζ =
z

ǫ

``A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A ǫ→ 0

66nnnnnnnnnnnn

uǫ∆z solution of
Eǫ

∆z u
ǫ
∆z = 0

∆z→ 0

OO

ǫ→ 0
//
u∆z solution of
E∆z u∆z = 0

∆z→ 0

OO

U∆z solution of
E∆z U∆z = 0

∆z→ 0

OO

1

|Z|

∫
NUM

Z

dζ

66nnnnnnnnnnnn

U ǫ
∆z solution of
Eǫ
∆z U

ǫ
∆z = 0

ζ =
z

ǫ

``A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

∆z→ 0

OO

ǫ→ 0

66nnnnnnnnnnnn

(1.14)
Diagram (1.14) may be looked at as a prism. At the bottom of the front edge stands the TSAPS and

the back rectangle is made of the Asymptotic-Preserving scheme diagram of (1.10). The intermediate
layer gathers the Two-Scale limit problem, at the top, and the Two-Scale Numerical Method, at the
bottom.

The solution U ǫ
∆z computed with the TSAPS must be close to uǫ when it is computed in ζ = z

ǫ
and

when ∆z converges to 0. This is the first part of the Two-Scale Asymptotic-Preserving Property and it
is symbolized by the arrow going from U ǫ

∆z to uǫ∆z and by the one linking uǫ∆z and uǫ.
The second part of the Two-Scale Asymptotic-Preserving Property is symbolized by the right part of
the diagram (1.14) : U ǫ

∆z must be close to the numerical approximation U∆z of the Two-Scale limit of

uǫ when ǫ → 0 and a numerical integration (symbolized by
1

|Z|

∫
NUM

Z

dζ) of U∆z needs to recover an

3



approximation u∆z of the weak-∗ limit u of uǫ.
We will deduce the Two-Scale Asymptotic-Preserving model on the base of a Two-Scale Macro-Micro

decomposition that yields an equation which stands at the top of the front edge. Arrows linking U ǫ and
uǫ, U ǫ and U and u may be seen as the continuous Two-Scale Asymptotic-Preserving Property. They
are constraints for the Macro-Micro decomposition. We refer to [3, 6, 18, 20] for the use of micro-macro
decomposition in order to design an asymptotic-preserving scheme.

The present paper implements the Two-Scale Macro-Micro decomposition in the case of the linear
Vlasov equation with a strong magnetic field. This equation is the following:





∂f ǫ

∂t
+ v · ∇xf

ǫ +
(
Eǫ + v ×

(
Bǫ +

M

ǫ

))
· ∇vf

ǫ = 0 ,

f ǫ(t = 0,x,v) = f0(x,v) ,

(1.15)

where f ǫ = f ǫ(t,x,v) is the distribution function of an ion gaz submitted to external electric and mag-
netic field Eǫ = Eǫ(t,x) and Bǫ = Bǫ(t,x), where t ∈ R

+, x ∈ R
3, v ∈ R

3, and where M = 2π e1, i.e.
the first vector of the canonical base (e1, e2, e3) of R

3.

The paper is organized as follows: in section 2, we recall the results of Frénod & Sonnendrücker [12]
giving the Two-Scale convergence of f ǫ. Roughly speaking they claim that, when ǫ is small,

f ǫ(t,x,v) is close to G
(
t,x, ⊔⊔⊔(

t

ǫ
,v)
)
in a strong sense, (1.16)

f ǫ(t,x,v) is close to f(t,x,v) in a weak sense, (1.17)

and the equations for G and f are known (⊔⊔⊔(τ,v) is defined by (2.9)). In particular the v-dependence
of f is only through v|| = v · e1, v⊥ =

√
(v · e2)2 + (v · e3)2 and not through the angle α, which is such

that v · e2 = v⊥ cosα. Based on this fact, in section 3, we build a classical Macro-Micro decomposition
of (1.15) by following the same ideas of Lemou & Mieussens [20]. It consists in decomposing f ǫ in the
following way

f ǫ(t,x,v) = mǫ(t,x, v||, v⊥) + nǫ(t,x, v||, v⊥, α) (1.18)

with mǫ ∈ Ker
(
(v × M) · ∇v

)
and nǫ ∈ Im

(
(v × M) · ∇v

)
. Indeed, we will see in details that this

decomposition is unique so that it is valid for every ǫ, small or not. Note that mǫ does not depend on
α, as f , while nǫ does. Equations for mǫ and nǫ are set out, making up the Macro-Micro model. The
drawback of this model is that, because of (1.17), the exact equality (1.18) implies that function nǫ is
still highly oscillating, as f ǫ. To avoid this drawback, we develop the Two-Scale Macro-Micro framework.
This is done in sections 4, 5, and 6, where we build the Two-Scale Macro-Micro approximation of f ǫ.
First, based on results of Frénod, Raviart & Sonnendrücker [10] we improve (1.16) by using a first order
approximation, claiming that when ǫ is small

f ǫ(t,x,v) is close to G
(
t,x, ⊔⊔⊔(

t

ǫ
,v)
)
+ ǫG1

(
t,x, ⊔⊔⊔(

t

ǫ
,v)
)
+ ǫ l

(
t,
t

ǫ
,x,v)

)
in a strong sense, (1.19)

where G1 is the solution of a partial differential equation and l is given by a formula (see [10]). Inspired
by (1.19), we construct our Two-Scale Macro-Micro decomposition in the following way

f ǫ(t,x,v) = G
(
t,x, ⊔⊔⊔(

t

ǫ
,v)
)
+ ǫGǫ

1

(
t,x, ⊔⊔⊔(

t

ǫ
,v)
)
+ ǫ l(t,

t

ǫ
,x,v) + ǫ hǫ(t,

t

ǫ
,x,v), (1.20)

where Gǫ
1 is intended to be close to G1 when ǫ is small and hǫ is the corrector to be taken into account

when the order of magnitude of ǫ is 1. In other words, we use the Macro-Micro decomposition in order
to make precise for every ǫ the approximation in (1.19) which is valid only for small ǫ. Then, we need to
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show that the decomposition in (1.20) is unique. This is done by paying attention to the properties of
the operator

∂

∂τ
+ (v ×M) · ∇v, (1.21)

since the expression (1.20) may also be set in the following form:

f ǫ(t,x,v) = Aǫ(t,
t

ǫ
,x,v) + Bǫ(t,

t

ǫ
,x,v) , (1.22)

with

Aǫ = Aǫ(t, τ,x,v) ∈ Ker
( ∂
∂τ

+(v×M)·∇v

)
and Bǫ = Bǫ(t, τ,x,v) ∈

(
Ker

( ∂
∂τ

+(v×M)·∇v

))⊥
. (1.23)

Then, we obtain the equations for the Macro part Gǫ
1 and the Micro one hǫ. In section 7, we underline

the continuous asymptotic-preserving property of the Two-Scale Macro-Micro decomposition. We close
the paper with two appendices about some properties of the operator in (1.21) leading mainly to the
uniqueness of the decomposition in (1.22).

2 Two-Scale convergence of f ǫ

In this section, we briefly recall the results of Frénod & Sonnendrücker [12] where the asymptotic be-
haviour of (1.15) is studied. What is known and taken for granted concerning (1.15) is that, considering
the following hypothesis

f0 ≥ 0 , f0 ∈ L2(R6) , (2.1)

and

Eǫ → E strong in L∞
(
0, T ;L2

loc(R
3)
)
,

Bǫ → B strong in L∞
(
0, T ;L2

loc(R
3)
)
,

(2.2)

we claim that, for any T > 0, (f ǫ)ǫ> 0 is bounded in L∞
(
0, T ;L2(R6)

)
. Moreover, as ǫ → 0, up to a

subsequence, (f ǫ)ǫ> 0 Two-Scale converges towards the Two-Scale limit (see [2, 23])

F = F (t, τ,x,v) ∈ L∞
(
0, T ;L∞

#1
(R+;L2(R6))

)
, (2.3)

where the subscript #1 indicates that τ 7→ F (t, τ,x,v) is 1-periodic for any (t,x,v). Introduced in [23]
and further analyzed and used in several homogenization problems in [2], the Two-Scale convergence
means that for any regular function ψ = ψ(t, τ,x,v) such that (t,x,v) 7→ ψ(t, τ,x,v) is compactly
supported in Ω = [0, T )× R

6 for any τ , and τ 7→ ψ(t, τ,x,v) is 1-periodic for any (t,x,v), we have

lim
ǫ→ 0

∫

Ω

f ǫ (ψ)ǫ dt dx dv =

∫

Ω

∫ 1

0

F ψ dτ dt dx dv , (2.4)

where

(ψ)ǫ = (ψ)ǫ(t,x,v) = ψ(t,
t

ǫ
,x,v) . (2.5)

It was shown in [12] that the Two-Scale limit F has the following property:

F ∈ Ker
( ∂
∂τ

+ (v ×M) · ∇v

)
, (2.6)
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where ∂
∂τ

+(v×M) ·∇v is seen as anti-symmetric, non-bounded, with open range from L∞
(
0, T ;L∞

#1
(R+;

L2(R6))
)
on itself. The direct consequence of (2.6) is that, introducing the rotation matrix r as

r(τ) =




1 0 0
0 cos (2πτ) − sin (2πτ)
0 sin (2πτ) cos (2πτ)



 , (2.7)

the Two-Scale limit F expresses itself in terms of a function G = G(t,x,u) ∈ L∞
(
0, T ;L2(R3)

)
by

F (t, τ,x,v) = G
(
t,x, ⊔⊔⊔(τ,v)

)
, (2.8)

where
⊔⊔⊔(τ,v) = r(τ)v . (2.9)

Using oscillating test functions defined by (2.5) for regular functions ψ which are moreover in Ker
(

∂
∂τ

+

(v ×M) · ∇v

)
, it may be brought out that G is the solution of





∂G

∂t
+ u|| · ∇xG+ (E|| + u×B||) · ∇uG = 0 ,

G(t = 0,x,u) = f0(x,u) ,
(2.10)

where the notation u|| = (u · e1) e1 is considered.

Having in mind the diagram (1.14), we can say at this point that equation (1.15) plays the role
of Eǫ uǫ = 0, and (2.8)-(2.10) plays the role of E U = 0. So, if we build a numerical method to approxi-
mate (2.10), this numerical method, coupled with (2.8) would play the role of E∆z U∆z = 0.

In [12], it was also proved that the weak-∗ limit f of f ǫ is the solution to






∂f

∂t
+ v|| · ∇xf + (E|| + v ×B||) · ∇vf = 0 ,

f(t = 0,x,v) =

∫ 1

0

f0
(
x, ⊔⊔⊔(τ,v)

)
dτ .

(2.11)

This equation is gotten from (2.8)-(2.10) by performing an integration in τ and by using the link between
the weak-∗ limit f and the Two-Scale limit F given by

f(t,x,v) =

∫ 1

0

F (t, τ,x,v) dτ . (2.12)

Then, equation (2.11) plays the role of E u = 0 in the diagram (1.14) and a numerical approximation of
it would play the role of E∆z u∆z = 0.

3 Classical Macro-Micro decomposition

3.1 Rewriting the weak-∗ limit model

Before going further, we will rewrite model (2.11) in a form involving cylindrical variables in velocity.
In this coordinate system, the weak-∗ limit is independent of the angle variable, and consequently it is
easily gotten that the v ×B|| piece in the force term in (2.11) is removed.

Because of the average over τ and of the definition of ⊔⊔⊔(τ,v), it is obvious to see that the initial data
in (2.11) only depends on x, v|| and v⊥ =

√
v22 + v23 . In other words, writing the velocity in the following

6



cylindrical variables





v|| ∈ R such that v|| = v · e1 ,

v⊥ ∈ R
+ such that v⊥ =

√
v22 + v23 ,

α ∈ [0, 2π] such that v2 = v⊥ cosα and v3 = v⊥ sinα,
(3.1)

there exists a function m0 = m0(x, v||, v⊥) such that

m0(x, v||, v⊥) =
1

2π

∫ 2π

0

f0
(
x, ⊔⊔⊔(τ, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)

)
dα . (3.2)

The quickest way to get this is to notice that

⊔⊔⊔(τ, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3) =




v||
v⊥ cos(α+ 2πτ)
v⊥ sin(α + 2πτ)


 , (3.3)

and that, consequently, integrating in τ suppresses the α-dependency. Hence, (3.2) writes also

m0(x, v||, v⊥) =
1

2π

∫ 2π

0

f0(x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3) dα . (3.4)

Concerning the function f itself, we introduce the function m = m(t,x, v||, v⊥, α) linked with f by

m(t,x, v||, v⊥, α) = f(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3) . (3.5)

Because of (2.12) and (2.8), and using the same argument as just above, it is easily seen that m does not
depend on α and that

m(t,x, v||, v⊥) =

∫ 1

0

G(t,x, v|| e1 + v⊥ cos(α+ 2πτ) e2 + v⊥ sin(α + 2πτ) e3) dτ

=
1

2π

∫ 2π

0

G(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3) dα .

(3.6)

Noticing that

∂m

∂v⊥
(t,x, v||, v⊥) = cosα

∂f

∂v2
(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)

+ sinα
∂f

∂v3
(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3) ,

∂m

∂α
(t,x, v||, v⊥) = −v⊥ sinα

∂f

∂v2
(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)

+ v⊥ cosα
∂f

∂v3
(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3) ,

(3.7)

the equation for m can be deduced from (2.11). For this purpose, we develop v×B|| in the new variables:

v⊥(cosα e2 + sinα e3)×B|| = |B||| v⊥ (sinα e2 − cosα e3) . (3.8)

As a consequence, we have
(
v⊥(cosα e2 + sinα e3)×B||

)
· ∇vf(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)

= −|B|||
∂m

∂α
(t,x, v||, v⊥) = 0 ,

(3.9)

meaning that the force term in (2.11) may be reduced to E||. Then, m is the solution of




∂m

∂t
+ v||

∂m

∂x||
+ E||

∂m

∂v||
= 0 ,

m(t = 0,x, v||, v⊥) = m0(x, v||, v⊥) .

(3.10)
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3.2 Macro-Micro decomposition

Inspired by (2.11) or more precisely by (3.10), we now write a classical Macro-Micro decomposition of
the solution f ǫ of (1.15). The aim of this decomposition is (see [3, 20]) to lead to a new model which
will be equivalent to (1.15) when ǫ ∼ 1 and will formally give the weak-∗ limit model (3.10) when ǫ→ 0.
It is evident that this last property is not satisfied by the model (1.15). The new model will be the base
for the build of an Asymptotic-Preserving scheme which will have to satisfy diagram (1.10).

The main idea of the Macro-Micro decomposition is to write f ǫ as a sum of a function being in

Ker
(
(v×M) · ∇v

)
and a function being in

(
Ker

(
(v×M) · ∇v

))⊥
. Adapting this idea to our context and

having in mind (3.10), we seek mǫ
1 = mǫ

1(t,x, v||, v⊥) ∈ L∞
(
0, T ;L2(R3 × R × R

+; v⊥ dx dv|| dv⊥)
)
and

pǫ = pǫ(t,x, v||, v⊥, α) ∈ L∞
(
0, T ;L2

#2π
(R;L2(R3 × R× R

+; v⊥ dx dv|| dv⊥))
)
such that

nǫ(t,x, v||, v⊥, α) =
∂pǫ

∂α
(t,x, v||, v⊥, α) , (3.11)

and

f ǫ(t,x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3) = m(t,x, v||, v⊥) +mǫ
1(t,x, v||, v⊥) + nǫ(t,x, v||, v⊥, α). (3.12)

The subscript #2π indicates that α 7→ pǫ(t,x, v||, v⊥, α) is 2π-periodic for any (t,x, v||, v⊥).
Considering the anti-symmetric, non-bounded operator with closed range1

∂

∂α
: L∞

(
0, T ;L2

#2π
(R;L2(R3 × R× R

+; v⊥ dx dv|| dv⊥))
)

−→ L∞
(
0, T ;L2

#2π
(R;L2(R3 × R× R

+; v⊥ dx dv|| dv⊥))
)
,

(3.13)

we clearly have that

m ∈ Ker
( ∂
∂α

)
,

mǫ
1 ∈ Ker

( ∂
∂α

)
,

nǫ ∈
(
Ker

( ∂
∂α

))⊥
= Im

( ∂
∂α

)
.

(3.14)

Then, if we inject the decomposition (3.12) in Vlasov equation (1.15), we obtain

∂m

∂t
+
∂mǫ

1

∂t
+
∂nǫ

∂t
+




v||
v⊥ cosα
v⊥ sinα


 · ∇x(m+mǫ

1 + nǫ)

+




Eǫ
|| + v⊥ (cosαBǫ

3 − sinαBǫ
2)

cosαEǫ
2 + sinαEǫ

3 − v|| (cosαB
ǫ
3 − sinαBǫ

2)
1

v⊥

(
− sinαEǫ

2 + cosαEǫ
3 + v|| (sinαB

ǫ
3 + cosαBǫ

2)
)
−Bǫ

|| −
1

ǫ




·




∂m

∂v||
+
∂mǫ

1

∂v||
+
∂nǫ

∂v||
∂m

∂v⊥
+
∂mǫ

1

∂v⊥
+
∂nǫ

∂v⊥
∂nǫ

∂α




= 0 .

(3.15)

1See Appendix A
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Combining this equation with (3.10), we finally obtain

∂mǫ
1

∂t
+
∂nǫ

∂t
+




0

v⊥ cosα
v⊥ sinα



 · ∇xm+




v||

v⊥ cosα
v⊥ sinα



 · ∇x(m
ǫ
1 + nǫ)

+




Eǫ
|| − E|| + v⊥ (cosαBǫ

3 − sinαBǫ
2)

cosαEǫ
2 + sinαEǫ

3 − v|| (cosαB
ǫ
3 − sinαBǫ

2)
1

v⊥

(
− sinαEǫ

2 + cosαEǫ
3 + v|| (sinαB

ǫ
3 + cosαBǫ

2)
)
−Bǫ

|| −
1

ǫ


 ·




∂m

∂v||
∂m

∂v⊥
0




+




Eǫ
|| + v⊥ (cosαBǫ

3 − sinαBǫ
2)

cosαEǫ
2 + sinαEǫ

3 − v|| (cosαB
ǫ
3 − sinαBǫ

2)
1

v⊥

(
− sinαEǫ

2 + cosαEǫ
3 + v|| (sinαB

ǫ
3 + cosαBǫ

2)
)
−Bǫ

|| −
1

ǫ


 ·




∂mǫ
1

∂v||
+
∂nǫ

∂v||
∂mǫ

1

∂v⊥
+
∂nǫ

∂v⊥
∂nǫ

∂α




= 0 .

(3.16)

By projecting (3.15) onto Ker( ∂
∂α

) and
(
Ker( ∂

∂α
)
)⊥

= Im( ∂
∂α

), we will obtain the Macro-Micro de-

composition of f ǫ. We refer to Appendix A and [5] to get that projecting a function onto Ker( ∂
∂α

) consists

in computing its average in α and projecting it onto Im( ∂
∂α

) consists in substracting from it its average
value. This is what we do in the next lines.

Since m, mǫ
1, E, Eǫ, B and Bǫ do not depend on α, and recalling the definition of nǫ given in (3.11),

the projection of (3.15) onto Ker( ∂
∂α

) gives

∂mǫ
1

∂t
+ v||

∂mǫ
1

∂x||
+ Eǫ

||

∂mǫ
1

∂v||

= −(Eǫ
|| − E||)

∂m

∂v||
−
v⊥

2π




0
1
1



 ·




0∫ 2π

0

sinα
∂pǫ

∂x2
dα

−

∫ 2π

0

cosα
∂pǫ

∂x3
dα




−
1

2π
Eǫ ·




0∫ 2π

0

sinα
( ∂pǫ

∂v⊥
+
pǫ

v⊥

)
dα

−

∫ 2π

0

cosα
( ∂pǫ
∂v⊥

+
pǫ

v⊥

)
dα




+
1

2π




−v⊥
v1B

ǫ
3

v1B
ǫ
2



 ·




∫ 2π

0

(cosαBǫ
2 + sinαBǫ

3)
∂pǫ

∂v||
dα

∫ 2π

0

sinα
( ∂pǫ

∂v⊥
+
pǫ

v⊥

)
dα

∫ 2π

0

cosα
( ∂pǫ
∂v⊥

+
pǫ

v⊥

)
dα



.

(3.17)

In the second, third and last terms of the right hand side of (3.17), we use integrations by parts to tackle
α-integrations. Finally, we perform the projection onto Im( ∂

∂α
) by substracting (3.17) from (3.15), we
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obtain a second order equation for pǫ in which m and mǫ
1 appear as right hand side members:

∂2pǫ

∂t ∂α
+




v||
v⊥
v⊥


 ·




∂2pǫ

∂x|| ∂α

cosα
∂2pǫ

∂x2 ∂α
−

1

2π

∫ 2π

0

cosα
∂2pǫ

∂x2 ∂α
dα

sinα
∂2pǫ

∂x3 ∂α
−

1

2π

∫ 2π

0

sinα
∂2pǫ

∂x3 ∂α
dα




+Eǫ ·




∂2pǫ

∂v|| ∂α

cosα
∂2pǫ

∂v⊥ ∂α
−

1

2π

∫ 2π

0

cosα
∂2pǫ

∂v⊥ ∂α
dα−

1

v⊥
sinα

∂2pǫ

∂α2
+

1

2π v⊥

∫ 2π

0

sinα
∂2pǫ

∂α2
dα

sinα
∂2pǫ

∂v⊥ ∂α
−

1

2π

∫ 2π

0

sinα
∂2pǫ

∂v⊥ ∂α
dα+

1

v⊥
cosα

∂2pǫ

∂α2
−

1

2π v⊥

∫ 2π

0

cosα
∂2pǫ

∂α2
dα




+




v⊥

−v||B
ǫ
3

v||B
ǫ
2



 ·




(cosαBǫ
3 − sinαBǫ

2)
∂2pǫ

∂v|| ∂α
−

1

2π

∫ 2π

0

(cosαBǫ
3 − sinαBǫ

2)
∂2pǫ

∂v|| ∂α
dα

cosα
∂2pǫ

∂v⊥ ∂α
−

1

v⊥
sinα

∂2pǫ

∂α2
−

1

2π

∫ 2π

0

(
cosα

∂2pǫ

∂v⊥ ∂α
−

1

v⊥
sinα

∂2pǫ

∂α2

)
dα

sinα
∂2pǫ

∂v⊥ ∂α
+

1

v⊥
cosα

∂2pǫ

∂α2
−

1

2π

∫ 2π

0

(
sinα

∂2pǫ

∂v⊥ ∂α
+

1

v⊥
cosα

∂2pǫ

∂α2

)
dα




− (Bǫ
|| +

1

ǫ
)
∂2pǫ

∂α2

= −




0
v⊥ cosα
v⊥ sinα


 · ∇xm−Eǫ ·




0

cosα
∂m

∂v⊥

sinα
∂m

∂v⊥




−




v⊥ (cosαBǫ
3 − sinαBǫ

2)
−v||B

ǫ
3

v||B
ǫ
2


 ·




∂m

∂v||

cosα
∂m

∂v⊥

sinα
∂m

∂v⊥




−




0

v⊥ cosα
v⊥ sinα



 · ∇xm
ǫ
1 −Eǫ ·




0

cosα
∂mǫ

1

∂v⊥

sinα
∂mǫ

1

∂v⊥




−




v⊥ (cosαBǫ

3 − sinαBǫ
2)

−v||B
ǫ
3

v||B
ǫ
2



 ·




∂mǫ
1

∂v||

cosα
∂mǫ

1

∂v⊥

sinα
∂mǫ

1

∂v⊥



.

(3.18)
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Concerning the initial conditions for mǫ
1 and pǫ, we invoke the initial distribution f0 as follows:

f0(x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)

=
1

2π

∫ 2π

0

f0(x, v|| e1 + v⊥ cos θ e2 + v⊥ sin θ e3) dθ

+

[
f0(x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)

−
1

2π

∫ 2π

0

f0(x, v|| e1 + v⊥ cos θ e2 + v⊥ sin θ e3) dθ

]

= m0(x, v||, v⊥)

+
[
f0(x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)−m0(x, v||, v⊥)

]
.

(3.19)

Since m|t=0
= m0, we have

mǫ
1(t = 0,x, v||,v⊥) +

∂pǫ

∂α
(t = 0,x, v||, v⊥, α)

= f0(x, v|| e1 + v⊥ cosα e2 + v⊥ sinα e3)−m0(x, v||, v⊥) .

(3.20)

By integrating this equation in α, we find

mǫ
1(t = 0,x, v||, v⊥) = 0 , (3.21)

so we also have

pǫ(t = 0,x, v||, v⊥, α) =

∫ α

0

f0(x, v|| e1 + v⊥ cos θ e2 + v⊥ sin θ e3) dθ − αm0(x, v||, v⊥) . (3.22)

Remark 3.1 (Conceiving Asymptotic-Preserving schemes). Building a somehow discretization of
the coupled problem (3.10), (3.17), (3.21), (3.18), and (3.22) would give a scheme which will be consistent
with (1.15) when ǫ > 0 and consistent with its weak-∗ limit (2.11) when ǫ is small. This scheme would
play the role of the problem Eǫ

∆z u
ǫ
∆z = 0 in the diagrams shown in (1.10) and (1.14).

4 Two-Scale Macro-Micro decomposition: preliminaries

The aim exposed in the first paragraph of subsection 3.2 will now be changed in order to obtain the
Two-Scale limit model (2.10) when ǫ → 0. Eventually, we will see in section 7.2, that the Two-Scale
Macro-Micro decomposition described in the following sections, will lead by integration in τ to the classical
Macro-Micro decomposition.

We assume from now that the input electric field and the input magnetic field do not depend on ǫ,
i.e. we take

Eǫ = E , Bǫ = B . (4.1)

4.1 Complements on convergence results

Before entering in the core of the Two-Scale Macro-Micro decomposition, we integrate some knowledge
which can be deduced from Frénod, Raviart & Sonnendrücker [10] where the asymptotic expansion of f ǫ

is presented. From the hypotheses (2.1) and (2.2) and adding some regularity assumptions for E and B,
we can claim that

1

ǫ

(
f ǫ(t,x,v) − F (t,

t

ǫ
,x,v)

)
Two-Scale converges to F̃ (t, τ,x,v) as ǫ→ 0, (4.2)
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and that F̃ expresses in terms of other functions G̃ and l in the following way:

F̃ (t, τ,x,v) = G̃
(
t,x, ⊔⊔⊔(τ,v)

)
+ l(t, τ,x,v) , (4.3)

where

l(t, τ,x,v) =
(
r(τ +

1

4
)− r(

1

4
)
)
v · ∇x⊥

G
(
t,x, ⊔⊔⊔(τ,v)

)

+
[(
r(τ +

1

4
)− r(

1

4
)
)
E(t,x) + ⊔⊔⊔(τ,v) ×

((
r(τ +

1

4
)− r(

1

4
)
)
B(t,x)

)]

· ∇u⊥
G
(
t,x, ⊔⊔⊔(τ,v)

)
,

(4.4)

and where G̃ satisfies an equation of the form

∂G̃

∂t
+ u||

∂G̃

∂x||
+
(
E|| + u ·B||

)
· ∇vG̃ = RHS(t,x,v,E,B, G) , (4.5)

which right hand side can be explicitly computed like that in Theorem 4.2 of [10].
In these equations, G is the solution of (2.10), r is defined in (2.7), and the gradients ∇x⊥

and ∇u⊥
are

defined as

∇x⊥
=




0
∂

∂x2
∂

∂x3



, ∇u⊥

=




0
∂

∂v2
∂

∂v3



. (4.6)

4.2 Sought shape of f ǫ

As announced in the introduction, we want to use a shape given by (1.22)-(1.23) to f ǫ.
We clearly have that operator

∂

∂τ
+ (v ×M) · ∇v : L∞

(
0, T ;L∞

#1
(R+;L2(R6))

)
→ L∞

(
0, T ;L∞

#1
(R+;L2(R6))

)
, (4.7)

is anti-symmetric, non bounded and with closed range (see Appendix B) and satisfies

Ker
( ∂
∂τ

+ (v ×M) · ∇v

)
⊕ Im

( ∂
∂τ

+ (v ×M) · ∇v

)
= L∞

(
0, T ;L∞

#1
(R+;L2(R6))

)
. (4.8)

On another hand, we have

F ∈ Ker
( ∂
∂τ

+ (v ×M) · ∇v

)
. (4.9)

Furthermore, we can easily prove that the function l defined in (4.4) is such that

l ∈ Im
( ∂
∂τ

+ (v ×M) · ∇v

)
. (4.10)

Indeed, any regular function in Ker
( ∂
∂τ

+(v×M)·∇v

)
reads γ(t,x, ⊔⊔⊔(τ,v)) for some γ ∈ L∞

(
0, T ;L2(R6)

)
.

Multiplying l(t, τ,x,v) by γ(t,x, ⊔⊔⊔(τ,v)), integrating over R6 × [0, 1] and performing the change of vari-
ables

v 7→ u = ⊔⊔⊔(τ,v) , (4.11)
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we obtain

∫

R6

γ(t,x,u)

{[(∫ 1

0

r(τ −
1

4
)− r(

1

4
) dτ

)
u
]
· ∇x⊥

G(t,x,u)

−

[(∫ 1

0

r(τ −
1

4
)− r(

1

4
) dτ

)
E(t,x)

+ u×
[(∫ 1

0

r(τ −
1

4
)− r(

1

4
) dτ

)
B(t,x)

]]
· ∇u⊥

G(t,x,u)

}
dx du = 0 ,

(4.12)

because the integrals over [0, 1] all vanish.

Now, we integrate every remark we just did. We also notice that a decomposition of the type (1.22)
cannot be unique because of choices concerning the place where oscillations are put: in the superscript ǫ

or in variable
t

ǫ
. This will also prescribe what we set now: we look for

Gǫ
1 = Gǫ

1(t,x,u) ∈ L∞
(
0, T ;L2(R6)

)
,

kǫ = kǫ(t, τ,x,v) ∈ L∞
(
0, T ;L∞

#1
(R+;L2(R6))

)
,

(4.13)

such that, for any τ ,

f ǫ(t,x,v) = G
(
t,x, ⊔⊔⊔(τ,v)

)
+ ǫGǫ

1

(
t,x, ⊔⊔⊔(τ,v)

)

+ ǫ l(t, τ,x,v) + ǫ

(
∂kǫ

∂τ
(t, τ,x,v) + (v ×M) · ∇vk

ǫ(t, τ,x,v)

)
.

(4.14)

From now, we shall denote

(G ◦ ⊔⊔⊔)(t, τ,x,v) = G
(
t,x, ⊔⊔⊔(τ,v)

)
, (4.15)

leading, for instance, to the writing of F = G ◦ ⊔⊔⊔. With this notation, we can claim that

(G ◦ ⊔⊔⊔) + ǫ (Gǫ
1 ◦ ⊔⊔⊔) ∈ Ker

( ∂
∂τ

+ (v ×M) · ∇v

)
,

ǫ l + ǫ
(∂kǫ
∂τ

+ (v ×M) · ∇vk
ǫ
)

∈ Im
( ∂
∂τ

+ (v ×M) · ∇v

)
,

(4.16)

and, as a consequence of (4.8), decomposition (4.14) exists and is unique since G and l are already iden-
tified as the unique couple satisfying (2.10) and (4.4).

In the previous section, when building the usual Macro-Micro decomposition, we projected the equa-
tion satisfied by f ǫ onto the kernel and the range of the involved operator. Here, this cannot be done.

Indeed, here, the involved operator is
∂

∂τ
+(v×M) ·∇v and the function which has to be used in equation

(1.15) in order to extract some informations on Gǫ
1 and kǫ is

f ǫ(t,x,v) = (G ◦ ⊔⊔⊔)(t,
t

ǫ
,x,v) + ǫ (Gǫ

1 ◦ ⊔⊔⊔)(t,
t

ǫ
,x,v)

+ ǫ l(t,
t

ǫ
,x,v) + ǫ

(
∂kǫ

∂τ
(t,

t

ǫ
,x,v) + (v ×M) · ∇vk

ǫ(t,
t

ǫ
,x,v)

)
,

(4.17)

where τ was replaced by
t

ǫ
in (4.14). Once this replacement done, we face with functional spaces where

operator (4.7) makes no sense. In order to bypass this difficulty, we use a weak formulation of (1.15) with
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oscillating test functions

(ψ)ǫ = (ψ)ǫ(t,x,v) = ψ(t,
t

ǫ
,x,v) , (4.18)

where ψ = ψ(t, τ,x,v) is regular, 1-periodic in τ and with compact support on [0, T )× R
3 × R

3 for any
fixed τ ∈ [0, 1]. Writing

(F ǫ
1 )

ǫ = (F ǫ
1 )

ǫ(t,x,v) = F ǫ
1 (t,

t

ǫ
,x,v) = (Gǫ

1 ◦ ⊔⊔⊔)(t,
t

ǫ
,x,v) , (4.19)

and using the same convention for other functions, the weak formulation with oscillating test functions
reads

∫ T

0

∫

R6

[
(F )ǫ + ǫ (F ǫ

1 )
ǫ + ǫ (l)ǫ + ǫ(hǫ)ǫ

] [(∂ψ
∂t

)ǫ
+

1

ǫ

(∂ψ
∂τ

)ǫ
+ v · (∇xψ)

ǫ

+
(
E+ v × (B+

M

ǫ
)
)
· (∇vψ)

ǫ
]
dx dv dt = −

∫

R6

f0(x,v)ψ(0, 0,x,v) dx dv ,

(4.20)

where F is linked with G by (2.8), F ǫ
1 with Gǫ

1 by (4.19), l is defined in (4.4) and hǫ is linked with kǫ by

hǫ =
∂kǫ

∂τ
+ (v ×M) · ∇vk

ǫ . (4.21)

The way to deduce the equation for Gǫ
1 and for kǫ consists in using, in a first computation, test functions

ψ ∈ Ker
( ∂
∂τ

+ (v ×M) · ∇v

)
, i.e. of the form

ψ = (γ ◦ ⊔⊔⊔) , (4.22)

for regular functions γ = γ(t,x,u) compactly supported in [0, T )× R
3 × R

3. Then, in a second compu-

tation, test functions belonging to Im
( ∂
∂τ

+ (v ×M) · ∇v

)
, or writing

ψ =
∂κ

∂τ
+ (v ×M) · ∇vκ , (4.23)

for some regular functions κ = κ(t, τ,x,v) with compact support in [0, T )×R
3 × R

3 for every τ ∈ [0, 1],
will be chosen.

5 The Two-Scale Macro equation

We begin by going further in the writing of weak formulation (4.20) by using the link between G and l.
We recall this weak formula:
∫ T

0

∫

R6

(F )ǫ
[∂(ψ)ǫ

∂t
+ v · ∇x(ψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· ∇v(ψ)

ǫ
]
dx dv dt

+ ǫ

∫ T

0

∫

R6

(F ǫ
1 )

ǫ
[
(
∂ψ

∂t
)ǫ +

1

ǫ
(
∂ψ

∂τ
)ǫ + v · (∇xψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· (∇vψ)

ǫ
]
dx dv dt

+ ǫ

∫ T

0

∫

R6

(l)ǫ
[∂(ψ)ǫ

∂t
+ (v ×

M

ǫ
) · ∇v(ψ)

ǫ
]
dx dv dt

+ ǫ

∫ T

0

∫

R6

(l)ǫ
[
v · (∇xψ)

ǫ + (E+ v ×B) · (∇vψ)
ǫ
]
dt dx dv

+ ǫ

∫ T

0

∫

R6

(hǫ)ǫ
[
(
∂ψ

∂t
)ǫ +

1

ǫ
(
∂ψ

∂τ
)ǫ + v · (∇xψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· (∇vψ)

ǫ
]
dx dv dt

= −

∫

R6

f0(x,v)ψ(0, 0,x,v) dx dv .

(5.1)
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Performing an integration by parts on the first term of (5.1) gives

∫ T

0

∫

R6

(F )ǫ
[∂(ψ)ǫ

∂t
+ v · ∇x(ψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· ∇v(ψ)

ǫ
]
dx dv dt

= −

∫ T

0

∫

R6

[
(
∂F

∂t
)ǫ +

1

ǫ
(
∂F

∂τ
)ǫ + v · (∇xF )

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· (∇vF )

ǫ
]
(ψ)ǫ dx dv dt

−

∫

R6

F (0, 0,x,v)ψ(0, 0,x,v) dx dv

= −

∫ T

0

∫

R6

[
(
∂F

∂t
)ǫ + v · (∇xF )

ǫ + (E+ v ×B) · (∇vF )
ǫ
]
(ψ)ǫ dx dv dt

−

∫

R6

f0(x,v)ψ(0, 0,x,v) dx dv ,

(5.2)

since F ∈ Ker(
∂

∂τ
+ (v×M) · ∇v). We invoke the link between F and G, and we consider the change of

variables

v 7→ u = ⊔⊔⊔(
t

ǫ
,v) which is equivalent to v = ⊔⊔⊔(−

t

ǫ
,u) = ⊔⊔⊔

−1(
t

ǫ
,u). (5.3)

We also use the following notation

(ψ ◦ ⊔⊔⊔
−1)(t, τ,x,u) = ψ

(
t, τ,x, ⊔⊔⊔−1(τ,u)

)
= ψ

(
t, τ,x, ⊔⊔⊔(−τ,u)

)
. (5.4)

Since a direct computation yields

(∇vF )
ǫ = ∇v(F )

ǫ = ∇v(G ◦ ⊔⊔⊔)ǫ = r(−
t

ǫ
)
(
(∇uG) ◦ ⊔⊔⊔

)
, (5.5)

(5.2) reads

∫ T

0

∫

R6

(F )ǫ
[∂(ψ)ǫ

∂t
+ v · ∇x(ψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· ∇v(ψ)

ǫ
]
dx dv dt

= −

∫ T

0

∫

R6

[∂G
∂t

+
(
r(−

t

ǫ
)u
)
· ∇xG+

(
r(
t

ǫ
)
[
E+

(
r(−

t

ǫ
)u
)
×B

]
· ∇uG

]

(ψ ◦ ⊔⊔⊔
−1)ǫ dt dx du

−

∫

R6

f0(x,v)ψ(0, 0,x,v) dx dv

= −

∫ T

0

∫

R6

[∂G
∂t

+
(
r(−

t

ǫ
)u
)
· ∇xG+

[
r(
t

ǫ
)E+ u×

(
r(
t

ǫ
)B
)]

· ∇uG
]
(ψ ◦ ⊔⊔⊔

−1)ǫ dt dx du

−

∫

R6

f0(x,v)ψ(0, 0,x,v) dx dv .

(5.6)

Using now equation (2.10) satisfied by G, we finally obtain

∫ T

0

∫

R6

(F )ǫ
[∂(ψ)ǫ

∂t
+ v · ∇x(ψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· ∇v(ψ)

ǫ
]
dx dv dt

= −

∫ T

0

∫

R6

(
(
r(−

t

ǫ
)u
)
· ∇x⊥

G+
[(
r(
t

ǫ
)E
)
⊥
+
[
u×

(
r(
t

ǫ
)B
)]

⊥

]
· ∇u⊥

G

)

(ψ ◦ ⊔⊔⊔
−1)ǫ dt dx du

−

∫

R6

f0(x,v)ψ(0, 0,x,v) dx dv .

(5.7)
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Notice that the last term containing f0 will vanish with the right hand side member of (5.1).

Now, we study the third term of (5.1). For this purpose, we first notice that

∂(l ◦ ⊔⊔⊔
−1)

∂τ
=
(
(
∂l

∂τ
) ◦ ⊔⊔⊔

−1
)
+
(
(r(−τ)u) ×M

)
·
(
(∇vl) ◦ ⊔⊔⊔

−1
)

= −
(
r(−τ)u

)
· ∇x⊥

G−
[
r(τ)E + u×

(
r(τ)B

)]
· ∇u⊥

G ,

(5.8)

hence, integrating by parts the third term of (5.1) and making the change of variables defined by (5.3),
we get

ǫ

∫ T

0

∫

R6

(l)ǫ
[∂(ψ)ǫ

∂t
+ (v ×

M

ǫ
) · ∇v(ψ)

ǫ
]
dx dv dt

= −

∫ T

0

∫

R6

[
ǫ (
∂l

∂t
)ǫ + (

∂l

∂τ
)ǫ + (v ×M) · (∇vl)

ǫ
]
(ψ)ǫ dx dv dt−

∫

R6

(l)ǫ(0,x,v) (ψ)ǫ(0,x,v) dx dv ,

= −

∫ T

0

∫

R6

[
ǫ
(∂(l ◦ ⊔⊔⊔

−1)

∂t

)ǫ
+
(∂(l ◦ ⊔⊔⊔

−1)

∂τ

)ǫ]
(ψ ◦ ⊔⊔⊔

−1)ǫ dx du dt

= −

∫ T

0

∫

R6

ǫ
(∂(l ◦ ⊔⊔⊔

−1)

∂t

)ǫ
(ψ ◦ ⊔⊔⊔

−1)ǫ dx du dt

+

∫ T

0

∫

R6

[(
r(−

t

ǫ
)u
)
· ∇x⊥

G+
[
r(
t

ǫ
)E+ u×

(
r(
t

ǫ
)B
)]

· ∇u⊥
G
]
(ψ ◦ ⊔⊔⊔

−1)ǫ dx du dt ,

(5.9)

since l(0, 0,x,v) = 0 (see (4.4)). The last term of (5.9) will vanish with the first term of the right hand
side member of (5.7).

Hence (5.1) has to be replaced by

−

∫ T

0

∫

R6

ǫ
(∂(l ◦ ⊔⊔⊔

−1)

∂t

)ǫ
(ψ ◦ ⊔⊔⊔

−1)ǫ dx du dt

+ ǫ

∫ T

0

∫

R6

(F ǫ
1 )

ǫ
[
(
∂ψ

∂t
)ǫ +

1

ǫ
(
∂ψ

∂τ
)ǫ + v · (∇xψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· (∇vψ)

ǫ
]
dx dv dt

+ ǫ

∫ T

0

∫

R6

(l)ǫ
[
v · (∇xψ)

ǫ + (E+ v ×B) · (∇vψ)
ǫ
]
dx dv dt

+ ǫ

∫ T

0

∫

R6

(hǫ)ǫ
[
(
∂ψ

∂t
)ǫ +

1

ǫ
(
∂ψ

∂τ
)ǫ + v · (∇xψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· (∇vψ)

ǫ
]
dx dv dt = 0 .

(5.10)

Now, choosing ψ as in (4.22) yields

ǫ

∫ T

0

∫

R6

(Gǫ
1 ◦ ⊔⊔⊔)ǫ

[(
(
∂γ

∂t
) ◦ ⊔⊔⊔

)ǫ
+ v ·

(
(∇xγ) ◦ ⊔⊔⊔

)ǫ
+ (E+ v ×B) · ∇v(γ ◦ ⊔⊔⊔)ǫ

]
dx dv dt

−

∫ T

0

∫

R6

ǫ
(∂(l ◦ ⊔⊔⊔

−1)

∂t

)ǫ
γ dx du dt+

∫ T

0

∫

R6

ǫ (hǫ)ǫ
(∂(γ ◦ ⊔⊔⊔)

∂t

)ǫ
dx dv dt

+

∫ T

0

∫

R6

(
ǫ (l)ǫ + ǫ (hǫ)ǫ

) [
v ·
(
∇x(γ ◦ ⊔⊔⊔)

)ǫ
+ (E+ v ×B) ·

(
∇v(γ ◦ ⊔⊔⊔)

)ǫ]
dx dv dt = 0 .

(5.11)

Making in the first, third and fourth terms the change of variables v 7→ ⊔⊔⊔(
t

ǫ
, v), replacing hǫ by its
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expression in terms of kǫ and dividing (5.11) by ǫ finally gives

∫ T

0

∫

R6

Gǫ
1

[∂γ
∂t

+
(
r(−

t

ǫ
)u
)
· ∇xγ +

[
r(
t

ǫ
)E+ u×

(
r(
t

ǫ
)B
)]

· ∇uγ
]
dx du dt

−

∫ T

0

∫

R6

(∂(l ◦ ⊔⊔⊔
−1)

∂t

)ǫ
γ dx du dt

+

∫ T

0

∫

R6

[(
(
∂kǫ

∂τ
) ◦ ⊔⊔⊔

−1
)ǫ

+
(
r(−

t

ǫ
)M

)
·
(
(∇vk

ǫ) ◦ ⊔⊔⊔
−1
)ǫ] ∂γ

∂t
dx du dt

+

∫ T

0

∫

R6

[
(l ◦ ⊔⊔⊔

−1)ǫ +
(
(
∂kǫ

∂τ
) ◦ ⊔⊔⊔

−1
)ǫ

+
(
r(−

t

ǫ
)M

)
·
(
(∇vk

ǫ) ◦ ⊔⊔⊔
−1
)ǫ]

×
[(
r(−

t

ǫ
)u
)
· ∇xγ +

[
r(
t

ǫ
)E+ u×

(
r(
t

ǫ
)B
)]

· ∇uγ
]
dx du dt = 0 ,

(5.12)

which is the Two-Scale Macro equation of the model.

6 The Two-Scale Micro equation

In this section, we use in the weak formulation (4.20) oscillating test functions defined by (4.23). The
computation leading the formula (5.10) is valid for any oscillating function ψ so we use it as a starting
point for finding the Micro equation.

Recalling that F ǫ
1 ∈ Ker(

∂

∂τ
+ (v ×M) · ∇v), the second term in (5.10) yields

ǫ

∫ T

0

∫

R6

(F ǫ
1 )

ǫ
[
(
∂ψ

∂t
)ǫ +

1

ǫ
(
∂ψ

∂τ
)ǫ + v · (∇xψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· (∇vψ)

ǫ
]
dx dv dt

= ǫ

∫ T

0

∫

R6

(F ǫ
1 )

ǫ
[∂(ψ)ǫ

∂t
+ (v ×

M

ǫ
) · ∇v(ψ)

ǫ
]
dx dv dt

+ ǫ

∫ T

0

∫

R6

(F ǫ
1 )

ǫ
[
v · (∇xψ)

ǫ + (E+ v ×B) · (∇vψ)
ǫ
]
dx dv dt

= −ǫ

∫ T

0

∫

R6

(
∂F ǫ

1

∂t
)ǫ (ψ)ǫ dx dv dt+ ǫ

∫

R6

F ǫ
1 (0, 0,x,v)ψ(0, 0,x,v) dx dv

+ ǫ

∫ T

0

∫

R6

(F ǫ
1 )

ǫ
[
v · (∇xψ)

ǫ + (E+ v ×B) · (∇vψ)
ǫ
]
dx dv dt

= −ǫ

∫ T

0

∫

R6

(
∂F ǫ

1

∂t
)ǫ
[
(
∂κ

∂τ
)ǫ + (v ×M) · (∇vκ)

ǫ
]
dx dv dt

+ ǫ

∫

R6

F ǫ
1 (0, 0,x,v)

[∂κ
∂τ

(0, 0,x,v) + (v ×M) · ∇vκ(0, 0,x,v)
]
dx dv

+ ǫ

∫ T

0

∫

R6

(F ǫ
1 )

ǫ

[
v · (

∂∇xκ

∂τ
)ǫ + (v ×M) ·

(
(∇x∇vκ)

ǫ v
)

+ (E+ v ×B) · (
∂∇vκ

∂τ
)ǫ + (E×M+ v ×B×M) · (∇vκ)

ǫ

+ (E+ v ×M) ·
(
(∇2

v
κ)ǫ(v ×M)

)
]
dx dv dt .

(6.1)

17



The first term of (5.10) reads

−

∫ T

0

∫

R6

ǫ
(∂(l ◦ ⊔⊔⊔

−1)

∂t

)ǫ
(ψ ◦ ⊔⊔⊔

−1)ǫ dx dv dt

= −ǫ

∫ T

0

∫

R6

(∂(l ◦ ⊔⊔⊔
−1)

∂t

)ǫ[
(
∂κ

∂τ
◦ ⊔⊔⊔

−1)ǫ +
[(
r(−

t

ǫ
)v
)
×M

]
·
(
(∇vκ) ◦ ⊔⊔⊔

−1
)ǫ]

dx dv dt

(6.2)

The third term gives

ǫ

∫ T

0

∫

R6

(l)ǫ
[
v · (∇xψ)

ǫ + (E+ v ×B) · (∇vψ)
ǫ
]
dx dv dt

= ǫ

∫ T

0

∫

R6

(l)ǫ
[
v · (

∂∇xκ

∂τ
)ǫ + (v ×M) ·

(
(∇x∇vκ)

ǫ v
)
+ (E+ v ×B) · (

∂∇vκ

∂τ
)ǫ

+ (E×M+ v ×B×M) · (∇vκ)
ǫ + (E+ v ×B) ·

(
(∇2

v
κ)ǫ (v ×M)

)]
dx dv dt .

(6.3)

Concerning the last term of (5.10), we have

∫ T

0

∫

R6

(hǫ)ǫ
(
(
∂ψ

∂t
)ǫ +

1

ǫ
(
∂ψ

∂τ
)ǫ
)
dx dv dt

=

∫ T

0

∫

R6

(hǫ)ǫ
∂(ψ)ǫ

∂t
dx dv dt

= −

∫ T

0

∫

R6

∂(hǫ)ǫ

∂t
(ψ)ǫ dx dv dt+

∫

R6

hǫ(0, 0,x,v)ψ(0, 0,x,v) dx dv

= −

∫ T

0

∫

R6

(
(
∂hǫ

∂t
)ǫ +

1

ǫ
(
∂hǫ

∂τ
)ǫ
) [

(
∂κ

∂τ
)ǫ + (v ×M) · (∇vκ)

ǫ
]
dx dv dt

+

∫

R6

hǫ(0, 0,x,v)
[∂κ
∂τ

(0, 0,x,v) + (v ×M) · ∇vκ(0, 0,x,v)
]
dx dv

= −

∫ T

0

∫

R6

(
(
∂2kǫ

∂t ∂τ
)ǫ + (v ×M) · (

∂∇vκ

∂t
)ǫ +

1

ǫ
(
∂2kǫ

∂τ2
)ǫ +

1

ǫ
(v ×M) · (

∂∇vκ

∂τ
)ǫ
)

×
[
(
∂κ

∂τ
)ǫ + (v ×M) · (∇vκ)

ǫ
]
dx dv dt

+

∫

R6

[∂kǫ

∂τ
(0, 0,x,v) + (v ×M) · ∇vk

ǫ(0, 0,x,v)
]

×
[∂κ
∂τ

(0, 0,x,v) + (v ×M) · ∇vκ(0, 0,x,v)
]
dx dv ,

(6.4)

on the one hand, and

∫ T

0

∫

R6

(hǫ)ǫ
[
v · (∇xψ)

ǫ +
(
E+ v × (B+

M

ǫ
)
)
· (∇vψ)

ǫ
]
dx dv dt

=

∫ T

0

∫

R6

(
(
∂kǫ

∂τ
)ǫ + (v ×M) · (∇vk

ǫ)ǫ
) [

v · (
∂∇xκ

∂τ
)ǫ + (v ×M) ·

(
(∇x∇vκ)

ǫ v
)

+ (E+ v ×B) · (
∂∇vκ

∂τ
)ǫ + (E×M+ (v ×B)×M) · (∇vκ)

ǫ

+ (E+ v ×B) ·
(
(∇2

v
κ)ǫ (v ×M)

)
+

1

ǫ
(v ×M) · (

∂∇xκ

∂τ
)ǫ

+
(
(v ×M)×M

)
· (∇vκ)

ǫ + (v ×M) ·
(
(∇2

v
κ)ǫ(v ×M)

)]
dx dv dt ,

(6.5)
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on the other hand. Remarking that

(
(v ×M)×M

)
· (∇vκ)

ǫ = −(v ×M) ·
(
(∇vκ)

ǫ ×M
)
= −v · (∇vκ)

ǫ (6.6)

and dividing by ǫ, we finally get the weak formulation of the Two-Scale Micro equation:

−

∫ T

0

∫

R6

(
(
∂2kǫ

∂t ∂τ
)ǫ + (v ×M) · (

∂∇vκ

∂t
)ǫ +

1

ǫ
(
∂2kǫ

∂τ2
)ǫ +

1

ǫ
(v ×M) · (

∂∇vκ

∂τ
)ǫ
)

[
(
∂κ

∂τ
)ǫ + (v ×M) · (∇vκ)

ǫ
]
dx dv dt

+

∫

R6

[∂kǫ

∂τ
(0, 0,x,v) + (v ×M) · ∇vk

ǫ(0, 0,x,v)
]

[∂κ
∂τ

(0, 0,x,v) + (v ×M) · ∇vκ(0, 0,x,v)
]
dx dv

+

∫ T

0

∫

R6

(
(
∂kǫ

∂τ
)ǫ + (v ×M) · (∇vk

ǫ)ǫ
) [

v · (
∂∇xκ

∂τ
)ǫ + (v ×M) ·

(
(∇x∇vκ)

ǫ v
)

+ (E+ v ×B) · (
∂∇vκ

∂τ
)ǫ + (E×M + (v ×B)×M) · (∇vκ)

ǫ

+ (E+ v ×B) ·
(
(∇2

v
κ)ǫ (v ×M)

)
+

1

ǫ
(v ×M) · (

∂∇xκ

∂τ
)ǫ

− v · (∇vκ)
ǫ + (v ×M) ·

(
(∇2

v
κ)ǫ(v ×M)

)]
dx dv dt

−

∫ T

0

∫

R6

(∂(l ◦ ⊔⊔⊔
−1)

∂t

)ǫ[
(
∂κ

∂τ
◦ ⊔⊔⊔

−1)ǫ +
[(
r(−

t

ǫ
)v
)
×M

]
·
(
(∇vκ) ◦ ⊔⊔⊔

−1
)ǫ]

dx dv dt

+

∫ T

0

∫

R6

(l)ǫ
[
v · (

∂∇xκ

∂τ
)ǫ + (v ×M) ·

(
(∇x∇vκ)

ǫ v
)
+ (E+ v ×B) · (

∂∇vκ

∂τ
)ǫ

+ (E×M+ (v ×B)×M) · (∇vκ)
ǫ + (E+ v ×B) ·

(
(∇2

v
κ)ǫ (v ×M)

)]
dx dv dt

−

∫ T

0

∫

R6

(
∂F ǫ

1

∂t
)ǫ
[
(
∂κ

∂τ
)ǫ + (v ×M) · (∇vκ)

ǫ
]
dx dv dt

+

∫

R6

F ǫ
1 (0, 0,x,v)

[∂κ
∂τ

(0, 0,x,v) + (v ×M) · ∇vκ(0, 0,x,v)
]
dx dv

+

∫ T

0

∫

R6

(F ǫ
1 )

ǫ

[
v · (

∂∇xκ

∂τ
)ǫ + (v ×M) ·

(
(∇x∇vκ)

ǫ v
)

+ (E+ v ×B) (
∂∇vκ

∂τ
)ǫ + (E×M + (v ×B)×M) · (∇vκ)

ǫ

+ (E+ v ×M) ·
(
(∇2

v
κ)ǫ(v ×M)

)
]
dx dv dt = 0 .

(6.7)

Remark 6.1. We are aware that the Two-Scale Macro-Micro system, (5.12)-(6.7), has not necessarily
a unique solution. In future work we will look for an additional condition for Gǫ

1 and kǫ leading to
the uniqueness of the whole solution (Gǫ

1, k
ǫ). Such a condition will be usefull for the conception of the

numerical scheme for the Two-Scale Macro-Micro model in order to be sure that when ǫ ∼ 1 we will
approximate the solution of the starting Vlasov equation (1.15).
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7 Asymptotic-Preserving Properties

7.1 The Two-Scale Macro-Micro problem

The Two-Scale Macro-Micro problem, i.e. the system of equations (2.10)-(4.4)-(5.12)-(6.7), is more
complicate to solve than the original problem (1.15), but has two advantages over the latter. First,
when ǫ → 0 the Two-Scale Macro-Micro model reduces to the limit model in (2.10) while equation
(1.15) becomes singular at the limit. Second, the Two-Scale Macro-Micro model decomposes the original
solution f ǫ into a macro part, G ◦ ⊔⊔⊔ + ǫGǫ

1 ◦ ⊔⊔⊔, and a micro part, ǫ l + ǫ hǫ. This question is relevant
when doing the transition from the very small ǫ regime to the one of ǫ ∼ 1, since our model describes
separately the evolution at the macroscopic time (of G◦⊔⊔⊔ and Gǫ

1 ◦⊔⊔⊔) which contains essential oscillation
through ⊔⊔⊔, and the evolution of oscillation corrections (l and hǫ) at the microscopic time.

Now it is easy to see that, under the hypothesis of uniqueness of the solution of equations (5.12) and
(6.7) (see Remark 6.1), the Two-Scale Macro-Micro problem (2.10)-(4.4)-(5.12)-(6.7) is equivalent to the
original problem (1.15). Indeed, let f ǫ be the solution of (1.15). We have seen, by using Lemma B.1, that
the decomposition (4.14) exists and is unique. Then, by the calculations we did in the previous sections,
we obtain that G is solution to (2.10), l is given by the formula (4.4), Gǫ

1 is solution to (5.12) and kǫ to
(6.7). In particular, we have proved that the equation system (5.12)-(6.7) has solution.

Conversely, assume that the solution of the system (5.12)-(6.7) is unique. Let (G, l,Gǫ
1, k

ǫ) be the
solution of (2.10)-(4.4)-(5.12)-(6.7). Then constructing f ǫ by (4.17), we will obtain the solution of (1.15),
since this problem has unique solution.

7.2 Macro-Micro Decomposition vs Two-Scale Macro-Micro Decomposition

Property 7.1. Integrating in τ the Two-Scale Macro-Micro decomposition leads to the classical Macro-
Micro model developed in Section 3.2.

Indeed, let us recall that the unique decomposition made in (4.14) is of the kind

f ǫ(t,x,v) = F (t, τ,x,v) + F ǫ
1 (t, τ,x,v) +Hǫ

1(t, τ,x,v), (7.1)

for some F ǫ
1 ∈ Ker

( ∂
∂τ

+ (v×M) · ∇v

)
and Hǫ

1 ∈ Im
( ∂
∂τ

+ (v×M) · ∇v

)
. Then, integrating (7.1) in τ ,

we obtain using (2.12)

f ǫ(t,x,v) = f(t, x,v) +

∫ 1

0

F ǫ
1 (t, τ,x,v) dτ +

∫ 1

0

Hǫ
1(t, τ,x,v) dτ. (7.2)

Now, changing the variable v in (v||, v⊥, α) defined in (3.1), and using Lemma B.2, we obtain that the

function (v⊥, α) 7→

∫ 1

0

F ǫ
1

(
t, τ,x, v|| e1 + v⊥(cosα e2 + sinα e3)

)
dτ is in Ker

( ∂

∂α

)
. Similarly, (v⊥, α) 7→

∫ 1

0

Hǫ
1

(
t, τ,x, v|| e1 + v⊥(cosα e2 + sinα e3)

)
dτ is in Im

( ∂

∂α

)
. Next, writing (7.2) in the new variables

and recalling the decomposition of f ǫ(t,x,v) in (3.12), we deduce from (3.5) and the uniqueness of such
a decomposition (stated in Lemma A.1(iii)) that

mǫ
1(t,x, v||, v⊥) =

∫ 1

0

F ǫ
1

(
t, τ,x, v|| e1 + v⊥(cosα e2 + sinα e3)

)
dτ,

nǫ(t,x, v||, v⊥, α) =

∫ 1

0

Hǫ
1

(
t, τ,x, v|| e1 + v⊥(cosα e2 + sinα e3)

)
dτ.

(7.3)
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7.3 Convergence of the Two-Scale Macro-Micro problem

Let us recall that our Two-Scale Macro-Micro decomposition (4.14) is based on the convergence result

in (4.2). More precisely, keeping in mind that G + ǫ G̃ + ǫ l is the first order approximation of f ǫ, then
(4.14) can be seen as a Macro-Micro decomposition at the first order level of approximation of f ǫ. Next,
we justify this approximation using the Two-Scale convergence.

Theorem 7.2. We assume that f0 ∈ L2(R6), E ∈ W 1,∞(R3), B ∈ W 1,∞(R3), and ∂l/∂t, ∇x,vl ∈
L∞
(
0, T ;L∞(0, 1;L2(R6))

)
. Then, when ǫ → 0, the solutions Gǫ

1 ◦ ⊔⊔⊔ of (5.12) Two-Scale converges to

G̃ ∈ L∞
(
0, T ;L2(R6)

)
, the solution of (4.5). When ǫ→ 0, the solutions kǫ of (6.7) Two-Scale converges

to 0.

Proof. Recall from Theorem 1.5 of [10] that when ǫ→ 0,
(

1
ǫ

(
f ǫ −G ◦ ⊔⊔⊔

)
− l
)

ǫ>0
Two-Scale converges to

G̃ ◦ ⊔⊔⊔ ∈ Ker
( ∂
∂τ

+ (v ×M) · ∇v

)
. Then, since (4.17) implies that

1

ǫ

(
f ǫ −G ◦ ⊔⊔⊔

)
− l = Gǫ

1 ◦ ⊔⊔⊔ + hǫ,

and since Gǫ
1 ◦ ⊔⊔⊔ ∈ Ker

( ∂
∂τ

+ (v×M) · ∇v

)
and hǫ ∈ Im

( ∂
∂τ

+ (v×M) · ∇v

)
, the theorem’s conclusion

is clearly true.

Appendices

In the first Appendix we characterize the projection onto Ker( ∂
∂α

). We establish that it consists in

computing its average in α and projecting it onto Im( ∂
∂α

) consists in substracting from it its average

value. Then, in the second one, we do the same with operator ∂
∂τ

+ (v ×M) · ∇v. We also establish the
link that exists between these two operators.

A About the operator
∂

∂α

Lemma A.1. Let the unbounded operator
∂

∂α
: L2

#2π
(R;L2(R+; v⊥ dv⊥)) → L2

#2π
(R;L2(R+; v⊥ dv⊥)).

Then, it has a closed image in L2
#2π

(R;L2(R+; v⊥ dv⊥)) and

(i) Ker
( ∂

∂α

)⊥
= Im

( ∂

∂α

)
.

(ii) For any function f ∈ L2
#2π

(R;L2(R+; v⊥ dv⊥)), the projection of f on Ker
( ∂

∂α

)
is the function

Pf : (v⊥, α) 7−→
1

2π

∫ 2π

0

f(v⊥, θ) dθ . (A.1)

(iii) L2
#2π

(R;L2(R+; v⊥ dv⊥)) = Ker
( ∂

∂α

)
⊕ Im

( ∂

∂α

)
.
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Proof. (i) Let q ∈
(
Ker

( ∂
∂α

))⊥
. Then, for any g ∈ Ker

( ∂

∂α

)
, i.e. g = g(v⊥), we have

∫ 2π

0

∫ +∞

0

q(v⊥, α) g(v⊥) v⊥ dv⊥ dα = 0 . (A.2)

Remarking that q can be written as

q(v⊥, α) =
∂

∂α

(∫ α

0

q(v⊥, θ) dθ

)
, (A.3)

we only have to prove that the function K defined by

K(v⊥, α) =

∫ α

0

q(v⊥, θ) dθ , (A.4)

is in L2
#2π

(R;L2(R+; v⊥ dv⊥)), i.e. K is 2π-periodic in α and

∫ 2π

0

∫ +∞

0

∣∣K(v⊥, α)
∣∣2 v⊥ dv⊥ dα < +∞.

First, we have

K(v⊥, α+ 2π)−K(v⊥, α) =

∫ 2π

0

q(v⊥, θ) dθ = 0 , (A.5)

by (A.2). Secondly, using the Jensen inequality, we remark that

∣∣K(v⊥, α)
∣∣2 ≤ |α|

∫ α

0

∣∣q(v⊥, θ)
∣∣2 dθ ≤ 2π

∫ 2π

0

∣∣q(v⊥, θ)
∣∣2 dθ . (A.6)

Then ∫ 2π

0

∫ +∞

0

∣∣K(v⊥, α)
∣∣2 v⊥ dv⊥ dα ≤ 4π2

∫ 2π

0

∫ +∞

0

∣∣q(v⊥, θ)
∣∣2 v⊥ dv⊥ dθ < +∞ , (A.7)

since q ∈ L2
#2π

(R;L2(R+; v⊥ dv⊥)). Thus q ∈ Im
( ∂

∂α

)
and so Ker

( ∂

∂α

)⊥
⊂ Im

( ∂

∂α

)
. Since the converse

inclusion is obvious, (i) is proved and the image of the operator is indeed closed.
(ii) It is clear that f ∈ L2

#2π
(R;L2(R+; v⊥ dv⊥)) implies that Pf ∈ L2

#2π
(R;L2(R+; v⊥ dv⊥)). Then,

using the projection characterization, we have for any function ψ ∈ L2
#2π

(R;L2(R+; v⊥ dv⊥)) such that

∂ψ

∂α
= 0,

∫ 2π

0

∫ +∞

0

(
f(v⊥, α)−

1

2π

∫ 2π

0

f(v⊥, θ) dθ

)
ψ(v⊥) v⊥ dv⊥ dα

=

∫ +∞

0

(∫ 2π

0

f(v⊥, α) dα

)
ψ(v⊥) v⊥ dv⊥ −

(
1

2π

∫ 2π

0

dα

) ∫ +∞

0

(∫ 2π

0

f(v⊥, θ) dθ

)
ψ(v⊥) v⊥ dv⊥

= 0 .

Hence Pf defined in (A.1) is the projection of f on Ker
( ∂

∂α

)
.

(iii) Using item (i) we have only to prove that any f ∈ L2
#2π

(R;L2(R+; v⊥ dv⊥)) writes as a sum

f = g + h with g ∈ Ker
( ∂

∂α

)
and h ∈ Im

( ∂

∂α

)
. Given f ∈ L2

#2π
(R;L2(R+; v⊥ dv⊥)), let g be the

projection of f on Ker
( ∂

∂α

)
and let h = f−g. Then, by item (ii) we only need to show that h ∈ Im

( ∂

∂α

)
.

This can be done using a similar way as in the proof of item (i). This concludes the proof of the
Lemma.
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B The operator
∂

∂τ
+ (v ×M) · ∇v

Lemma B.1. Let the unbounded operator
∂

∂τ
+ (v ×M) · ∇v : L∞

(
0, T ;L∞

#1
(R+;L2(R6))

)
→ L∞

(
0, T ;L∞

#1
(R+;L2(R6))

)
. Then we have

L∞
(
0, T ;L∞

#1
(R+;L2(R6))

)
= Ker

(
∂

∂τ
+ (v ×M) · ∇v

)
⊕ Im

(
∂

∂τ
+ (v ×M) · ∇v

)
. (B.1)

Proof. Let f ∈ L∞
(
0, T ;L∞

#1
(R+;L2(R6))

)
. Through the change of variables






v|| ∈ R such that v|| = v · e1 ,

v⊥ ∈ R
+ such that v⊥ =

√
v22 + v23 ,

α ∈ [0, 2π] such that v2 = v⊥ cosα and v3 = v⊥ sinα,
(B.2)

f̃
(
where f̃(t, τ,x, v||, v⊥, α) = f(t, τ,x, v|| e1+ v⊥(cosα e2 +sinα e3))

)
is in L∞

(
0, T ;L∞

#1
(R+;L2

#2π
(R;

L2(R3 × R × R
+; v⊥ dx dv|| dv⊥)))

)
while the operator

∂

∂τ
+ (v × M) · ∇v writes

∂

∂τ
− 2π

∂

∂α
. Next,

performing the second change of variables





σ = τ +
1

2π
α ,

β = τ −
1

2π
α ,

(B.3)

f̌
(
where f̌(t, σ,x, v||, v⊥, β) = f̃(t, (σ+β)/2,x, v||, v⊥, π(σ−β))

)
stays in L∞

(
0, T ;L∞

#1
(R+;L2

#2π
(R;

L2(R3 ×R× R
+; v⊥ dx dv|| dv⊥)))

)
and the operator

∂

∂τ
− 2π

∂

∂α

(
and consequently

∂

∂τ
+ (v ×M) · ∇v

)

becomes 2
∂

∂β
. From now on, let us fix (t,x) ∈ [0, T ]× R

3. Considering

∂

∂β
: L∞

#1
(R+;L2

#2π
(R;L2(R3 × R× R

+; v⊥ dx dv|| dv⊥)))

→ L∞
#1

(R+;L2
#2π

(R;L2(R3 × R× R
+; v⊥ dx dv|| dv⊥))),

(B.4)

we know, by Lemma A.1, that L2
#2π

(R;L2(R+; v⊥ dv⊥)) = Ker
( ∂

∂β

)
⊕Im

( ∂

∂β

)
. Hence, because L∞

#1
(R+;

L2
#2π

(R;L2(R × R
+; v⊥ dv|| dv⊥))) ⊂ L2

#1
(R+;L2

#2π
(R;L2(R × R

+; v⊥ dv|| dv⊥))), we can write f̌ =

P f̌ + (f̌ − P f̌), where P f̌ is defined as in (A.1). Since f̌ was chosen in L∞
#1

(R+;L2
#2π

(R;L2(R ×

R
+; v⊥ dv|| dv⊥))) then it is easy to see that P f̌ belongs to this same space. Obviously f̌ − P f̌ ∈

L∞
#1

(R+;L2
#2π

(R;L2(R× R
+; v⊥ dv|| dv⊥))) and thus (B.1) is proved.

Lemma B.2. Let f ∈ L∞
(
0, T ;L∞

#1
(R+;L2(R6))

)
and let f̃ be defined as in the proof of Lemma B.1.

Then

(i) if f ∈ Ker
( ∂
∂τ

+ (v ×M) · ∇v

)
then for any fixed (t,x, v||) ∈ [0, T ]× R

3 × R we have

F : (v⊥, α) 7→

∫ 1

0

f̃(t, τ,x, v||, v⊥, α) dτ ∈ Ker
( ∂

∂α

)
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(ii) if f ∈ Im
( ∂
∂τ

+ (v ×M) · ∇v

)
then for any fixed (t,x, v||) ∈ [0, T ]× R

3 × R we have

F : (v⊥, α) 7→

∫ 1

0

f̃(t, τ,x, v||, v⊥, α) dτ ∈ Im
( ∂

∂α

)
.

Proof. (i) Let f ∈ Ker
( ∂
∂τ

+ (v ×M) · ∇v

)
and fix (t,x, v||) ∈ [0, T ] × R

3 × R. Thus, by the proof of

Lemma B.1, f̃ ∈ Ker
( ∂
∂τ

− 2π
∂

∂α

)
. We then derive F :

∂F

∂α
(v⊥, α) =

∫ 1

0

∂f̃

∂α
(t, τ,x, v||, v⊥, α) dτ

=
1

2π

∫ 1

0

∂f̃

∂τ
(t, τ,x, v||, v⊥, α) dτ

= 0 , (B.5)

by the 1-periodicity in τ of f̃ . Thus, F ∈ Ker
( ∂

∂α

)
. (ii) Now let f ∈ Im

( ∂
∂τ

+(v×M) ·∇v

)
. Then there

exists a function h ∈ L∞
(
0, T ;L∞

#1
(R+;L2(R6))

)
such that f̃ =

∂h̃

∂τ
−2π

∂h̃

∂α
. Fix (t,x, v||) ∈ [0, T ]×R

3×R.

Integrating in τ from 0 to 1, we obtain, using that h is 1-periodic in τ ,

F(v⊥, v||) = −2π
∂

∂α

∫ 1

0

h̃(t, τ,x, v||, v⊥, α) dτ,

leading to F ∈ Im
( ∂

∂α

)
and thus concluding the Lemma.
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[10] Frénod, E., Raviart, P.-A., Sonnendrücker, E., Two-scale expansion of a singularly perturbed
convection equation, J. Math. Pures Appl. 80-8 (2001), 815-843.
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[13] Frénod, E. Sonnendrücker, E., The Finite Larmor Radius approximation, SIAM J. Math. Anal.
32-6 (2001), 1227-1247.

[14] Golse, F., Saint-Raymond, L., The Vlasov-Poisson system with strong magnetic field, J. Math.
Pures Appl. 78 (1999), 791-817.

[15] Golse, F., Saint-Raymond, L., The Vlasov-Poisson system with strong magnetic field in
quasineutral regime, Math. Models Methods Appl. Sci. 13-5 (2003), 661-714.

[16] Han-Kwan, D., The three-dimensional finite Larmor radius approximation, Asymptot. Anal. 66-1
(2010), 9-33.

[17] Jin S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM
J. Sci. Comput. 21-2 (1999), 441-454.

[18] Jin, S., Shi Y., A Micro-Macro Decomposition-Based Asymptotic-Preserving Scheme for the Mul-
tispecies Boltzmann Equation, SIAM J. Sci. Comp. 31-6 (2010), 4580-4606.

[19] Klar, A., A Numerical Method for Kinetic Semiconductor Equations in the Drift Diffusion Limit,
SIAM J. Sci. Comp. 20-5 (1999), 1696-1712.

[20] Lemou, M., Mieussens, L., A New Asymptotic Preserving Scheme Based on Micro-Macro Formu-
lation for Linear Kinetic Equations in the Diffusion Limit, SIAM J. Sci. Comp. 31-1 (2008), 334-368.

[21] Mouton, A., Two-scale semi-lagrangian simulation of a charged particles beam in a periodic focusing
channel, Kinet. Relat. Models 2-2 (2009), 251-274.
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