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ABSTRACT

This paper proposes a method of quantification of the components underlying the human skin that are supposed
to be responsible for the effective reflectance spectrum of the skin over the visible wavelength. The method is
based on independent component analysis assuming that the epidermal melanin and the dermal haemoglobin
absorbance spectra are independent of each other. The method extracts the source spectra that correspond to the
ideal absorbance spectra of melanin and haemoglobin. The noisy melanin spectrum is fixed using a polynomial
fit and the quantifications associated with it are reestimated. The results produce feasible quantifications of each
source component in the examined skin patch.

Keywords: Source separation, Spectral reflectance, Non-Gaussianity, Kurtosis, Independent Component Anal-
ysis.

1. INTRODUCTION

Human skin has a complex structure with variable geometry. In most cases skin diseases are diagnosed by
dermatologists with naked eye. However, in certain cases, for example differentiating melanoma (skin cancer)
with nevus (benign dark patch) becomes difficult under normal lighting conditions. In the field of medicine, there
have been significant researches using invasive and non-invasive techniques to diagnose skin diseases. Optical
reflectance properties of skin play important roles in diagnosis of skin diseases using non-invasive techniques.

Optical reflectance of skin is primarily contributed by the upper (epidermis) and the lower (dermis) layers. The
epidermis contains melanin as its primary component, while the dermis contains the blood vessels carrying the
oxygenated blood (oxy-haemoglobin, HbO2) and the deoxygenated blood (deoxy-haemoglobin, Hb) respectively.
In normal lighting conditions it is not possible to characterise the components such as melanin, Hb and HbO2.
However, it might be possible to know them by acquiring images at different wavelengths and generating an
overall reflectance spectrum of the skin.

The ASCLEPIOS system developed by the M2D+ team of Le2i, exploits the spatial resolution of the skin
image along with the reflectance spectrum over different wavelengths. The device captures seven gray-level
images of the skin patch with seven different interference filters at different wavelengths. These images constitute
a multispectral image.1 Thus the vector at each pixel comprises of seven values. The multispectral image is then
reconstructed to produce reflectance values for each pixel over thirty-six wavelengths. These reflectance values
constitute the hyperspectral cube.2

The focus of this work has been to estimate the characteristic reflectance spectrum of the skin components
and also to quantify the amount of a component spectrum in the total reflectance. Our algorithm accepts
reconstructed reflectance images to estimate the reflectance spectrum of the source components and generates
images with effective quantification of the source components.

The rest of the paper has been organised in the following manner. Section 2 discusses the common methods
to decompose mixed multivariate data into its source components and the method applied in our work. Section
3 discusses the results with real skin images followed by conclusion and bibliography in the subsequent sections.
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2. METHODS OF SOURCE SEPARATION

Source separation of mixed signals has been a challenging problem since eighties. The classical problem in this
domain is the cocktail-party problem where a number of people are talking simultaneously. It is possible for a
human being to follow one particular discussion, because a human brain can perform real-time processing of the
mixed signal to separate into its respective components. A lot of work has been done in this direction based on
Principal Component Analysis (PCA) and Independent Component Analysis (ICA).

PCA is a classical statistical technique that aims to reduce redundancy from a multivariate measurement by
reducing the number of variables while maximally representing the original signal. PCA takes into account the
correlation of the data elements and performs a linear projection of the data from the higher dimension to a lower
dimension by considering the eigen vectors and the eigen values obtained from the single-valued-decomposition
of the covariance matrix of the data elements. However, this approach was extended to ICA to formulate a
statistically stable model that provides sources that are more relevant along with a quantification of the sources
in the mixed signal.

ICA assumes a model where the mixed signal is considered to be a linear mixture of sources with some noise
that have been caused by the sensors used for the measurement. The method basically tries to find components
that are statistically independent and non-Gaussian except if only one component is Gaussian.

ICA can be performed by maximising non-Gaussianity. The classical method in maximisation of such measure
is the maximization of the kurtosis of the source components. The fourth-order cumulant or the kurtosis of a
Gaussian component is zero. However, if the distribution of the source components is super-Gaussian or sub-
Gaussian, kurtosis is either positive or negative respectively.3

Another measure of non-Gaussianity is the negentropy. Entropy is an important concept in information the-
ory. A Gaussian distribution has the maximum entropy among any random distribution. Whereas, a distribution
that is spiky has the smaller entropy. Differential entropy or negentropy can be defined as the difference of a
random distribution from Gaussian distribution entropy. Therefore, maximizing negentropy would yield source
components that are non-Gaussian. However, this method is computationally complicated due to the choice of
the non-linear function for approximation of negentropy.4

If the source components are considered to be independent as is normally the case with ICA, then minimizing
the mutual information of the components would be a criterion for estimating the same. Mutual information is
the dependence of the components on one another and can be represented as the difference of negentropy of one
component from the sum of the negentropies of other source components.

Since the source components are independent, estimating maximum likelihood can be another approach to
estimate the components.5 If the density distribution of the components is simple with very few parameters
to estimate, then the maximum likelihood approach is a good choice. However, it is often difficult to make an
assumption about the components’ density distribution. Therefore, a rough estimation about the form of the
distribution does not always yield good solution. Also the complexity increases in parameter estimation if the
density is not a simple one.

An algebraic method for source separation is non-negative matrix factorization proposed by Lee and Seung.6

In this approach, the coefficients of the source component spectrum as well as the quantifications or mixing
values of the sources in the mixed signal are constrained to be strictly positive. The method was applied by
Sajda et al.7 for recovering constituent spectra from data of 3D chemical shift imaging of brain. This method
however, does not assume that the source signals are independent which can be a fair consideration in certain
cases.

For estimation of skin components, Tsumura et al.8,9 adopted an approach based on PCA and ICA. The
authors used a single colour image or the reflectance spectra of skin over three wavelengths (red, green and
blue). They estimated only two components as melanin and haemoglobin from the skin reflectance by reducing
the dimensionality of the data.

In our work, we chose a method where, we assume that few source components like melanin and haemoglobin
are independent and employ the kurtosis maximization of the source components as a measure of non-Gaussianity
and a fixed-point algorithm rather than the gradient algorithm since the convergence of the former is cubic and



faster. The melanin spectrum obtained using ICA method is normally noisy and there have been researches trying
to validate the obtained melanin spectrum.10 However, we adopt a new method to fix the melanin spectrum
from the noisy spectrum. In the following sub-section the method employed for source separation related to our
problem has been discussed in detail.

Independent Component Analysis with Principal Component Analysis

Hyvärinen et al.3 proposed several techniques for Independent Component Analysis (ICA) for decomposing
multivariate data into its independent source components. A very important contribution of their works on
ICA is the Fast ICA algorithm. We have applied the Fast ICA for our problem of skin component separation to
estimate the independent components using a measure of non-Gaussianity. In our work melanin and haemoglobin
might be assumed as independent source components.

In ICA, an important criterion is, if there are m observed random variables, [v1, v2, . . . , vm]T forming V,
then, there are l source components [s1, s2, . . . , sl]

T forming S where, l ≤ m.3,11 The linear relationship between
the mixture and the independent sources can be given by

V = AS. (1)

Here, A is the m × l mixing matrix of full-rank.

The choice of ICA for this problem is due to its ability to find non-Gaussian components. The problem of
finding the mixing matrix A and the non-Gaussian components si, i = 1, 2, . . . , l, is solved by defining that si

has unit variance and somehow reducing the task of estimating the full-rank matrix A in to a square matrix.

In our experiment, it is required to estimate two independent components out of m mixtures (reflectance
data of pixels). Therefore, it is required to find out the two best representations out of m representations. This
is achieved by Principal Component Analysis (PCA). PCA not only reduces the dimensionality but also does
a sphering or prewhitening of the data so that the task of finding the mixing matrix reduces to the task of
estimating a square orthogonal matrix.

The observed data V is linearly transformed using PCA such that

X = MV = MAS = BS (2)

where, B = MA is the orthogonal mixing matrix with the assumptions that the components have unit
variance.

Therefore,

E
{

XXT
}

= BE
{

SST
}

BT = BBT = I. (3)

The problem is now reduced to the estimation of the orthogonal mixing matrix B. The columns of the matrix
B are denoted by bi and the ith source component can be computed using X by equation 4.

si = (bi)
TX = wTX. (4)

Whitening of the observed data V into X by PCA reduces the dimensionality of V from m to l and also
ensures that the transformed data X lie within a unit sphere, i.e. the covariance of X is equal to identity. The
mean of the observed data is removed to center the data about zero and then the covariance of the transpose
of the observed data is computed. The significance of the transpose is that the required covariance matrix C is
of dimension m × m that results in the sample size of the obtained source components’ spectra to be the same
as the sample size of the observed reflectance data of each mixed pixel. Eigen decomposition of the covariance
matrix yields a diagonal matrix D of eigen-values in ascending order and a matrix E whose columns form the
corresponding eigen-vectors associated with the eigen-values such that the relation in Eq. (5) holds.



C = EDET . (5)

The matrices E and D both are m×m. To reduce the dimensions of E to m× l and D to l × l respectively,
where, l is the number of source components to be extracted, the highest l eigen-values and their corresponding
columns of E are retained. The new whitened and reduced dimensioned data is represented in the reduced
subspace of Ẽ and D̃.

In our experiment, l = 2 as there are two source components to be extracted. The whitening matrix M can
be represented as in Eq. (6).

M = D̃
−1/2

Ẽ
T

. (6)

Therefore, the whitened data in the reduced subspace is

X = MV = D̃
−1/2

Ẽ
T

V (7)

From Eq. (2) we have the following transformation.

A = M−1B. (8)

Where, M−1 is the dewhitening matrix and is represented as

M−1 = (D̃
−1/2

Ẽ
T

)−1 = ẼD̃
1/2

. (9)

Kurtosis maximization as a measure of non-Gaussianity has been a classical technique to estimate the in-
dependent components. Due to the non-Gaussianity of the source components, kurtosis maximisation of the
source components has been employed in this work. However, it is to be noted at this point that maximisation
of kurtosis is basically maximising the absolute value of the kurtosis. This enables to extract both sub-Gaussian
and super-Gaussian components with negative and positive kurtosis respectively. Kurtosis of a random variable
y with zero mean can be defined as

kurt(y) = E
{

y4
}

− 3(E
{

y2
}

)2. (10)

Aiming to maximise the non-Gaussianity i.e. the kurtosis of the independent components another constraint
holds i.e. E

{

y2
}

= 1. Which implies that, since the components are independent, they have unit variance. There-
fore, using Eq. (4) the independent components can be estimated by maximisation of the kurtosis kurt(wTX)

under the constraint E
{

(wTX)2
}

= ‖w‖
2

= 1, that follows from Eq. (11) as X is already whitened.

E
{

y2
}

= E
{

w2
}

E
{

X2
}

= E
{

w2
}

= 1. (11)

Therefore, in the optimization problem we seek for a vector w such that the linear combination wTX has the
maximum non-Gaussianity.

The cost function for the optimization is defined as

J(w) = E
{

(wTX)4
}

− 3(E
{

(wTX)2
}

)2. (12)

The gradient of the cost function with respect to w is shown in Eq. (13).

δJ(w)

δw
= E

{

X(wTX)3
}

− 3 ‖w‖
2
w. (13)



At stable point, this gradient becomes equal to zero and no change occurs with w if the gradient is added to
it. Therefore, using fixed-point iteration scheme, the update for the new value of w(t) can be made using the
function of w(t − 1). Here, t is the iteration number.

w(t) = E
{

X(w(t − 1)TX)3
}

− 3w(t − 1). (14)

The iteration continues until the direction of the old and new values of w are the same; i.e. the absolute
value of the dot product of the two vectors is almost equal to one. After each update, w is normalised to keep
the vector within a unit sphere as in Eq. (15).

w = w/ ‖w‖ . (15)

w, is a vector representing a column of the mixing matrix B, therefore, only one source component is obtained
using this method. The other components are obtained using the Gram Schmidt deflation approach12 where a
matrix B̄ is formed with the already found w vectors and the current estimate of w(t) is projected back into the
orthogonal space of B̄ before the normalisation step as in Eq. (16).

w(t) = w(t) − B̄B̄
T
w(t). (16)

This step of decorrelation ensures that we do not obtain the same independent component. The dewhitened
matrix A is obtained using Eq. (8).

The noisy melanin spectrum is fixed using a straight line fit that closely corresponds to the ideal spectrum and
the associated mixing vector of melanin is reestimated. The obtained source spectra and their mixing quantities
ideally form a linear model to produce the observed mixed signals. Therefore, the proportion of haemoglobin
formed by the haemoglobin spectrum and its associated quantifications is subtracted from the mixture to leave
the melanin part as residue. The fixed melanin spectrum is used to reestimate the quantifications of melanin
from the residual mixture. The quantifications of melanin is estimated using least squares optimization. Fig. 1
shows the obtained melanin and haemoglobin spectra before and after polynomial fit of melanin.

3. RESULTS AND DISCUSSIONS

The skin reflectance values obtained from the reconstruction process for each pixel is in terms of percentage
values over 36 wavelengths sampled equally over 430 nm to 780 nm. Therefore, we have 36 sets of reflectance
planes reconstructed from a multispectral image with seven filters acquired by the device ASCLEPIOS within a
visible range. Each pixel is an observation in the form of a vector of 36 dimensions. We have the prior knowledge
about the absorbance spectrum of the underlying skin components from the data by Jacques and Prahl.13,14

The absorbance spectrum of oxy-haemoglobin has a characteristic ‘W’ shape between 430 − 560 nm. The
deoxy-haemoglobin absorbance spectrum almost has the same shape as the former, except for a less prominent
‘W’. The melanin spectrum is a flat decaying curve. The reflectance spectra are assumed to be inverse loga-
rithm of absorbance spectra of the components. Therefore, the characteristic reflectance spectra of human skin
components are shown in fig. 2.

The method of ICA was applied on the skin reflectance data of a specific pathology known as ‘café-au-lait’
meaning “coffee with milk”. These are hyperpigmented lesions found in skin or iris due to increased content
of melanin. This method considers the two independent component spectra as haemoglobin and melanin and
extracts the same along with the mixing matrix whose columns are normalised and represent quantifications of
each independent component.

The quantifications are converted into gray scale images by normalisation of the obtained values within a
range of [0 − 255]. The order of extraction of the source components as haemoglobin or melanin determines
whether the first column of the mixing matrix represents the respective quantification of haemoglobin and the
second column for melanin or vice versa. The advantage of this ICA method is that the convergence is often
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Figure 1. (a) Melanin and haemoglobin spectra obtained before fitting, (b) Haemoglobin and melanin spectra after
polynomial fit.

in 5 − 6 steps; therefore, it is computationally less expensive than the gradient-descent algorithms. Also, it was
shown by Hyvärinen4 that the algorithm always converges and the convergence is cubic. However, a significant
amount of computation might be needed to compute the covariance matrix if the size of skin patch is too large.

The sample patch that was processed comprised of portions of lightly pigmented ‘café au lait’ spot and normal
skin on the left and right parts of the original image respectively fig. 3(a). Histogram analysis was done with
the obtained quantification images. Therefore, from fig. 3(c) and fig. 3(d) it is evident that the melanin is more
quantified on the left part of the image with black spots embedded that characterise the milky spots in the region
having less melanin. Fig. 3(e) shows an almost uniform quantification of haemoglobin over the same patch and
therefore fig. 3(f) has an almost centered peak.

Additionally, almost homogeneous patches from only normal part and only ‘café au lait’ spot were processed
separately. The spectra obtained for haemoglobin and corrected melanin for all the patches closely resemble the
ideal spectra. The patch in fig. 4(a) was taken from the normal part of the skin. Fig. 4(f) shows a little right
skewed peak than fig. 4(d) which suggests that the haemoglobin quantification in normal parts of skin is more
than the melanin quantification for Caucasian skins.
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Figure 2. Ideal Reflectance Spectra for Oxy-haemoglobin, Deoxy-haemoglobin and Melanin

The histograms in fig. 5(f) and fig. 5(d) show single mode peaks that suggest that both have almost uniform
quantifications. The peak in fig. 5(f) is almost center skewed, while that in fig. 5(d) is right skewed. This
suggests that the patch has more quantification of melanin and less of haemoglobin as the patch is taken only
from the café-au-lait part of the skin.

4. CONCLUSIONS AND FUTURE WORKS

A technique to separate various components underlying the skin and that are responsible for the effective skin
reflectance spectra have been proposed and implemented. An effective technique that is based on ICA and
PCA have been implemented to separate the possible independent components like melanin and haemoglobin
and estimate the quantifications associated with each of these components. The results obtained using this
technique show feasible quantifications of melanin and haemoglobin when tested on a ‘café-au-lait’ patch that
causes pigmentation only due to the excess of melanin. The test has been performed using the ‘café-au-lait’ spot
of only one patient where the result is consistent on every execution. However, it is assumed that the algorithm
will provide consistent and feasible results for all such melanin pigmentations. This method can also be used for
quantification of haemoglobin that is very important in diagnosing erythema that is a ‘reddish’ inflammation of
skin due to the dilation of blood vessels in the skin dermis.

The ICA estimation method can be extended in future for pixel-wise extraction of melanin and haemoglobin
based on the reduction of reflectance spectrum of each pixel which might provide better pixel-wise quantifications.
Non-linearities other than the fourth order cumulant can be used for better estimation of the components. The
components oxy- and deoxy-haemoglobin are assumed to be dependent components; however, this assumption
might not be correct as not much research have been done in this direction. Therefore, ICA method applied on
the residual mixture after subtraction of the extracted melanin portion could yield components that could be
assumed to be oxy- and deoxy-haemoglobin respectively. For further validation this method could be tested on
a skin pathology called ‘vitiligo’ that is whitening of the skin due to absence of melanin.

Therefore, we may conclude that the system ASCLEPIOS along with this technique of source separation can
make significant contribution to the research of non-invasive techniques for the diagnosis of skin diseases.
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Figure 3. (a)Skin patch comprising both café-au-lait (left) and normal part (right), (b)Obtained source spectra, (c) Melanin
quantification, (d) Histogram of melanin quantification, (e) Haemoglobin quantification, (f) Histogram of haemoglobin
quantification
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Figure 4. (a) Skin patch from normal part, (b) Obtained source spectra, (c) Melanin quantification, (d) Histogram of
melanin quantification, (e) Haemoglobin quantification, (f) Histogram of haemoglobin quantification
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Figure 5. (a) Skin patch from café-au-lait spot, (b) Obtained source spectra, (c) Melanin quantification, (d) Histogram of
melanin quantification, (e) Haemoglobin quantification, (f) Histogram of haemoglobin quantification


