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In this paper we study solutions of the quasi-linear parabolic equations ∂u/∂t -∆ p u = a(x)|u| q-1 u in (0, T ) × Ω with Robin boundary condition ∂u/∂ν|∇u| p-2 = b(x)|u| r-1 u in (0, T ) × ∂Ω where Ω is a regular bounded domain in IR N , N ≥ 3, q > 1, r > 1 and p ≥ 2. Some sufficient conditions on a and b are obtained for those solutions to be bounded or blowing up at a finite time. Next we give the asymptotic behavior of the solution in special cases.

Introduction

Let Ω be a regular bounded domain in IR N , N ≥ 3, q > 1, r > 1 and p ≥ 2. We consider a continuous function a on Ω and a continuous function b on ∂Ω, the boundary of Ω. We study the solutions of the following equation :

∂u ∂t -∆ p u = a(x)|u| q-1 u (1) 
in (0, T ) × Ω where ∆ p u = div(|∇u| p-2 ∇u) denotes the p-laplacian of u, subject to the Robin boundary condition :

∂u ∂ν |∇u| p-2 = b(x)|u| r-1 u (2) 
in (0, T ) × ∂Ω where ∂u/∂ν denotes the normal derivative of u on ∂Ω, ν is the unit outward normal to ∂Ω.

In this paper, we give sufficient conditions in order solutions of ( 1)-( 2) be bounded or have a finite time blow-up. Those conditions depend on a, b, p, q and r. In special cases we can study the asymptotic behavior of classical solutions. A function u of (t, x) is said to be a classical function in (0, T ) × Ω if u is uniformly continuous in the closure of (0, T ) × Ω and the functions ∂u/∂t, ∂u/∂x i and ∂ 2 u/∂x 2 i are continuous in (0, T ) × Ω. The problem of global existence of the solutions of (1)- [START_REF] Chen | Anisotropic singularities of solutions of nonlinear elliptic equations in IR 2[END_REF] arises from many branches of mathematics and applied mathematics and has been discussed by many authors in particular contexts: see for example [START_REF] Chipot | Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions[END_REF], [START_REF] Escher | Global existence and non-existence in the large of solutions of semilinear parabolic equations with nonlinear boundary conditions[END_REF], [START_REF] Gòmez | Blow-up results and localization of blow-up points for the heat equation with a nonlinear boundary condition[END_REF] and [START_REF] Walter | On existence and nonexistence in the large solutions of parabolic differential equations with a nonlinear boundary condition[END_REF] for a = constant, b = 0 and p = 2; [START_REF] Egorov | On some global existence theorems for a semilinear parabolic problem[END_REF] for a ≤ -a 0 < 0, b ≥ 0, p = 2 and u(0, .) is small enough; [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] for b = 0 and p = 2 and other particular cases.

The problem of asymptotic behavior of the solutions of ( 1)-( 2) was also studied in specific cases: see [START_REF] Brada | Comportement asymptotique de solutions d'équations elliptiques semi-linéaires dans un cylindre[END_REF] and [START_REF] Véron | Equations d'évolution semi-linéaires du second ordre dans L 1[END_REF] for a = constant, b = 0 and p = 2 and [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] for a ≤ 0, b = 0 and p = 2.

Recently, it is the corresponding elliptic problem which was studied, see [START_REF] Duchateau | On some quasilinear equations involving the p-Laplacian with Robin boundary conditions, Applicable Analysis[END_REF].

The aim of the second section is to study the conditions which imply that any solution of (1)- [START_REF] Chen | Anisotropic singularities of solutions of nonlinear elliptic equations in IR 2[END_REF] blows up in finite time. Our first result is the following : Theorem 1 Assume one of the following conditions (H1) q = r and Ω a(x) dx + ∂Ω b(x)dσ > 0 or (H2) q = r, Ω a(x) dx > 0 and b ≥ 0 or (H3) q = r, ∂Ω b(x) dσ > 0 and a ≥ 0.

Then there exists no positive solution of (1)-( 2) on (0, ∞) × Ω.

If we add some assumptions on u, we can extend this result :

Theorem 2 Assume a and b not identically equal to zero and assume one of the following conditions (H1') q = r and Ω a(x) dx + ∂Ω b(x)dσ = 0 or (H2') q = r, Ω a(x) dx = 0 and b ≥ 0 or (H3') q = r, ∂Ω b(x) dσ = 0 and a ≥ 0.

Then there exists no positive bounded solution of (1)-( 2) on (0, ∞) × Ω.

The next natural condition to be envisaged is Ω a(x) dx + ∂Ω b(x)dσ < 0. But this condition does not insure the global existence of a solution of ( 1)-( 2). The third part of this paper proposes conditions on a and b such that Ω a(x) dx + ∂Ω b(x)dσ < 0 and for which the solution of (1)-( 2) blows up at a finite time. This result is based on a Keller-Osserman type estimation which is an extension of a result of [START_REF] Kamin | Classification of singular solutions of a nonlinear heat equation[END_REF]: Proposition 1 Assume p ≥ 2, q > p-1 (no condition on r) and that there exists a constant a 0 > 0 such that for all x ∈ Ω : a(x) ≤ -a 0 , then there exists a constant C = C(p, q, N ) > 0 such that for all solution u of (1)-( 2) on a set (0, T ) × Ω and all (t, x) ∈ (0, T ) × Ω :

|u(t, x)| ≤ C a -1 q-p+1 0 d(x) -p q-p+1 + a -1 q-1 0 t -1 q-1 . ( 3 
)
where d(x) denotes the distance from x to the boundary of Ω.

We deduce from this proposition the next result :

Corollary 1 Assume p ≥ 2, q > max(p -1, r) and q(p -1) < p(r -1) + 1, then there exists functions a and b such that Ω a(x) dx + ∂Ω b(x)dσ < 0 and for which there exists no positive solution of (1)-( 2) on (0, ∞) × Ω.

Then we consider in section 4 of the paper a stronger condition than Ω a(x) dx + ∂Ω b(x)dσ < 0, that is a ≤ 0 and b ≤ 0. In this case, comparing any solution of (1)-(2) with the corresponding solution of the quasi-linear heat equation, we notice that any solution of (1)-( 2) is global. Then we study the asymptotic behavior of those solutions. We start proving that u tends to 0 at infinity when p > 2. (see [START_REF] Véron | Effets régularisants de semi-groupes non-linéaires dans des espaces de Banach[END_REF] when p = 2).

Proposition 2 Assume that p ≥ 2, r > 1, (no condition on q), a ≤ 0 and b ≤ 0 hold and b is non identically equal to 0 (a can be identically equal to 0). Let u be a solution of (1)-( 2

) in (0, ∞) × Ω. Then lim t→+∞ u(t, x) = 0 (4)
uniformly on Ω.

Next we give an a priori estimate :

Proposition 3 Assume that p ≥ 2, r > p-1 ( no condition on q), a ≤ 0 and b ≤ 0 hold and b is non identically equal to 0 (a can be identically equal to 0). Let u be a solution of (1)-( 2) in (0, +∞) × Ω. Then there exists t 0 > 0 and C > 0 such that for all (t, x) ∈ (t 0 , ∞) × Ω :

|u(t, x)| ≤ Ct -1 r-1 .
Moreover if q ≥ r, we obtain :

|u(t, x)| ≤ Ct -1 r-1 ≤ Ct -1 q-1 .
The main results of this section are the followings :

Theorem 3 Assume p ≥ 2, q = r > p-1, a ≤ 0 and b ≤ 0 hold and b is non identically equal to 0 (a can be identically equal to 0). Let u be a positive solution of (1)-( 2) in (0, +∞) × Ω. Then

lim t→+∞ t 1 q-1 u(t, x) = L(r, a, b)
uniformly in Ω where

L(r, a, b) = r -1 |Ω| - Ω a(x)dx - ∂Ω b(x)dx -1 r-1 (5) 
and |Ω| = Ω dx.

Theorem 4 Assume that p ≥ 2, q > r > p -1, a ≤ 0 and b ≤ 0 hold and b is non identically equal to 0 (a can be identically equal to 0). Let u be a positive solution of (1)-( 2) in (0, ∞)×Ω. Then

lim t→+∞ t 1/(r-1) u(t, x) = L(r, b) (6) 
uniformly in Ω where

L(r, b) = 1 -r |Ω| ∂Ω b(x)dσ -1 r-1 . (7) 
The section 5 is devoted to the case p = 2 in which we deal with solutions which can change sign and we make precise the behavior of the solutions.

Theorem 5 Assume that p = 2, q = r, a ≤ 0 and b ≤ 0 hold and b is non identically equal to 0 (a can be identically equal to 0). Let u be a solution of (1)-( 2) in (0, ∞) × Ω. Then t 1/(r-1) u(t, x) converges uniformly in Ω to some limit l as t goes to infinity where l ∈ {0, L(r, a, b), -L(r, a, b)}.

Theorem 6 Assume that p = 2, q > r > 1, a ≤ 0 and b ≤ 0 and b is non identically equal to 0 (a can be identically equal to 0). Let u be a solution of (1)-( 2) in (0, ∞) × Ω. Then t 1/(r-1) u(t, x) converges uniformly in Ω to some limit l as t goes to infinity where l ∈ {0, L(r, b), -L(r, b)}.

Corollary 2 Assume the assumptions of Theorem 5 or 6 hold and

lim t→∞ t 1 r-1 u(t, x) = L ( 8 
)
where L is given by (5) if q = r and by [START_REF] Gmira | Asymptotic behaviour of the solution of a semilinear parabolic equation[END_REF] if q > r. Then

lim t→∞ t r r-1 ∂u ∂t = - L r -1 (9) 
uniformly in Ω.

Finally, we study the case where t 1/(r-1) u(t, x) tends to 0 as t goes to infinity.

Theorem 7 Assume the assumptions of Theorem 5 and that u is a solution of (1)-( 2) in (0, ∞) × Ω such that

lim t→∞ t 1 q-1 u(t, .) L ∞ (Ω) = 0. ( 10 
)
Then there exists ψ ∈ Ker(-∆ + λ 1 I) such that

lim t→∞ e λ 1 t u(t, x) = ψ(x) (11) 
uniformly in Ω, where λ 1 is the first nonzero eigenvalue of -∆ in W 1,2 (Ω) with the Neumann boundary condition : ∂ψ/∂ν = 0.

The proof of this theorem is not written here because it is sufficient to follow the similar proof of 1.11 in [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] which uses a technical lemma introduced by Chen-Matano-Véron [START_REF] Chen | Anisotropic singularities of solutions of nonlinear elliptic equations in IR 2[END_REF].

The cases where the solutions blow-up

We begin to proof Theorems 1 and 2. The classical idea of [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] is easily adapted.

Proof of Theorem 1 : Let u be a positive solution of ( 1)-( 2) in (0, T ) × Ω. Multiplying equation ( 1) by u -r , integrating on (0, s) × Ω with s < T and using Green inequality, we obtain

Ω u 1-r (s, x) dx = Ω u 1-r (0, x) dx + r(1 -r) s 0 Ω |∇u| p (t, x)u -1-r (t, x) dx dt + (1 -r)s ∂Ω b(x) dσ + (1 -r) s 0 Ω a(x)u q-r dx dt.
If we assume (H1), then

Ω u 1-q (s, x) dx = Ω u 1-q (0, x) dx + q(1 -q) s 0 Ω |∇u| p (t, x)u -1-q (t, x) dx dt + (1 -q)s ∂Ω b(x) dσ + Ω a(x) dx ≤ Ω u 1-q (0, x) dx + (1 -q)s ∂Ω b(x) dσ + Ω a(x) dx . (12) 
Letting s go to infinity in ( 12) implies a contradiction. Therefore the blow-up time for u is finite. The proofs under the assumption (H2) or (H3) are similar.

Remark : Moreover, we deduce from ( 12) that the blow-up time T of u satisfies

T < Ω u 1-q (0, x) dx (q -1) ∂Ω b(x) dσ + Ω a(x) dx -1
.

The other cases are similar.

Proof of Theorem 2 :

Step 1 Assume that there exists a nonzero nonnegative continuous solution v of

   -∆ p v = a(x)v q in Ω ∂v ∂ν |∇v| p-2 = b(x)v r sur ∂Ω. ( 13 
)
We deduce from the strong maximum principle that v is positive. Therefore, we multiply (13) by v -q and the Green inequality and the Robin boundary condition of [START_REF] Véron | Equations d'évolution semi-linéaires du second ordre dans L 1[END_REF] imply

Ω |∇v| p-2 ∇v(x) ∇(v -q )(x) = ∂Ω b(x)v r-q dσ + Ω a(x) dx
If we assume (H1'), then

-q Ω |∇v(x)| p v -1-q (x) dx = 0
From the equation of problem [START_REF] Véron | Equations d'évolution semi-linéaires du second ordre dans L 1[END_REF] the only constant which is a solution is zero. We conclude that there exists no nonzero nonnegative continuous solution of [START_REF] Véron | Equations d'évolution semi-linéaires du second ordre dans L 1[END_REF]. This is similar if we assume (H2') or (H3').

Step 2 Assume that u is a bounded positive solution of ( 1)-( 2) on (0, ∞) × Ω. Then we claim that there exists a sequence (t n ) tending to infinity such that u(t n , .) converges to 0 in C(Ω). Since 0 < u(t, x) ≤ M 1 . for all (x, t) ∈ (0, ∞) × Ω for a constant M 1 > 0, the standard quasi-linear regularity theory [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF] implies that u C α, α 2 ([T -1,T +1]×Ω) ≤ M 2 for any T ≥ 2 where M 2 > 0 and α ∈ (0, 1). Therefore, the ω-limit set of the trajectory of u in C(Ω), defined by

Γ + = t>0 τ >t {u(τ, .)} C(Ω)
, is nonempty. Multiplying (1) by v = ∂u/∂t, integrating on (ε, t) × Ω for 0 < ε < t and using Green inequality, we deduce

t ε Ω ∂u ∂t 2 (t, x) dxdt + 1 p t ε Ω ∂ ∂t |∇u| p (s, x) dxdt - t ε ∂Ω b(x)u r (s, x)v(s, x) dσdt = t ε Ω ∂ ∂t a(x) q + 1 u q+1 (s, x) dxdt therefore t ε Ω ∂u ∂t 2 (s, x) dxdt = Ω - 1 p |∇u| p (s, t) + a(x) q + 1 u q+1 (s, x) dx t ε + ∂Ω b(x) u r+1 (s, x) r + 1 dσ t ε . As u(t, .) is bounded in W 1,p (Ω) ∩ C(Ω) independently of t ≥ ε, we deduce that ∞ ε Ω ∂u ∂t 2
(s, x) dxdt is finite. Thus there exists a sequence (t n ) tending to infinity and a continuous nonnegative weak solution w of ( 13) such that lim tn→∞ ∂u ∂t (t n , .) = 0 in L 2 (Ω) and lim tn→∞ u(t n , .) = w(.) uniformly in Ω.

Step 1 allows us to conclude that w = 0.

Step 3 As in the proof of Theorem 1, we multiply equation ( 1) by u -q and integrate on (0, t n ) × Ω. Because of Green equality and the condition on the functions a and b, we get :

1 q -1 Ω u 1-q (0, x) dx ≥ 1 q -1 Ω u 1-q (t n , x) dx + tn 0 ∂Ω b(x)u r-q (t, x) dσ dt +t n Ω a(x) dx (14) 
If we assume (H1') or (H2'), then the second member of ( 14) tends to infinity because of step 2. This contradiction implies that there exists no global bounded positive solution. The case (H3') is similar.

3 The case where : ∂Ω b(x)dσ + Ω a(x)dx < 0 Proof of Proposition 1 : Let x 0 ∈ Ω and t 1 > 0 be fixed. Set k = d 2 (x 0 )/t 1 and r = |x-x 0 |. We introduce the function w defined in D := {(x, t) such that|x -x 0 | 2 < kt, 0 < t ≤ t 1 } by:

w(t, x) = C (kt -r 2 ) p q-p+1
with C > 0 a constant to be determined such that w becomes a super-solution of (1) in D. First w = ∞ on the parabolic boundary on D. On the other hand, using that a ≤ -a 0 < 0, a straightforward computation gives:

∂w ∂t -∆ p w -a(x)|w| q-1 w ≥ C(kt -r 2 ) -qp q-p+1 × a 0 C q-1 - pk q -p + 1 (kt -r 2 ) q(p-1)-1 q-p+1 - 2p q -p + 1 p-1 C p-2 r p-2 (p -1 + N )(kt -r 2 ) + 2qp q -p + 1 r 2 . Since kt -r 2 ≤ kt ≤ kt 1 = d 2 (x 0 ) and r = |x -x 0 | ≤ d(x 0 )
, we obtain :

∂w ∂t -∆ p w -a(x)|w| q-1 w ≥ C(kt -r 2 ) -qp q-p+1 ×   a 0 C q-1 3 - p q -p + 1 d(x 0 ) 2+2 q(p-1)-1 q-p+1 t 1 + a 0 C q-1 3 - 2p q -p + 1 p-1 (p -1 + N )C p-2 d(x 0 ) p + a 0 C q-1 3 - 2p q -p + 1 p-1 C p-2 2pq q -p + 1 d(x 0 ) p .
Therefore we are looking for a constant C such that

           C q-1 ≥ 3 a 0 p q-p+1 d(x 0 ) 2p(q-1) q-p+1 t 1 C q-p+1 ≥ 3 a 0 2p q-p+1 p-1 (N + p -1)d(x 0 ) p C q-p+1 ≥ 3 a 0 2p q-p+1 p qd(x 0 ) p (15)
Finally there exists a constant C > 0 under the form :

C = K(q, p, N ) a -1 (q-1) 0 d(x 0 ) 2p q-p+1 t -1 (q-1) 1 + a -1 q-p+1 0 d(x 0 ) p q-p+1
such that w is a super-solution of (1). The maximum principle implies for all (t, x) ∈ D :

u(t, x) ≤ w(t, x)
and in particular :

u(t 1 , x 0 ) ≤ K(q, p, N ) a -1 q-1 0 t -1 q-1 1 + a -1 q-p+1 0 d(x 0 ) -p q-p+1 .
The same holds for -u and we obtain (3).

Proof of Corollary 1 : Let u be a positive solution of (1)-( 2) in (0, T ) × Ω. Multiplying equation (1) by u -r and integrating on (η, s) × Ω with 0 < η < s < T , we obtain as in section 1 :

1 r -1 Ω u 1-r (s, x)dx = 1 r -1 Ω u 1-r (η, x)dx -r s η Ω |∇u| p (t, x)u -1-r (t, x)dxdt -(s -η) ∂Ω b(x)dσ - s η ∂Ω a(x)u q-r (t, x)dxdt. ( 16 
)
Since q > r, if the function a satisfies for all x ∈ Ω :

-a 1 = min Ω a ≤ a(x) ≤ -a 0 ( 17 
)
with a 0 > 1 then Proposition 1 implies :

-a(x)u(t, x) q-r ≤ Ca 1 a

-q-r q-1 0 d(x) -p q-p+1 + η -1 q-1 q-r (18) 
with

Ω d(x) - p(q-r)
q-p+1 dx < ∞ for p, q and r such that p(q-r) q-p+1 < 1 i.e p(q -r) < q -p + 1 or q(p -1) < p(r -1) + 1. We deduce from (16) that

1 r -1 Ω u 1-r (s, x)dx ≤ 1 r -1 Ω u 1-r (η, x)dx -(s -η) ∂Ω b(x)dσ -Ca 1 a -q-r q 1 0 . (19) 
It remains to prove that we can find functions a and b such that :

∂Ω b(x)dσ + Ω a(x)dx < 0 (20) ∀x ∈ Ω : -a 1 ≤ a(x) ≤ -a 0 with a 0 > 1 (21) ∂Ω b(x)dσ -Ωa 1 a -q-r q-1 0 > 0. ( 22 
)
If ( 22) holds, then we obtain a contradiction as s tends to infinity in (19) and the corollary is proved. The conditions (20)-( 22) are satisfied if (21) and the following condition hold :

Ca 1 a -q-r q-1 0 < ∂Ω b(x)dσ < a 0 |Ω| ≤ - Ω a(x)dx (23) 
then we can take a 1 = 2a 0 and a 0 sufficiently large such that 2Ca

-(q-r)/(q-1) 0

< |Ω|. After that we choose a and b satisfying (23) which end the proof of the corollary.

Asymptotic behavior of global solutions

The remaining of this paper is devoted to the study of the asymptotic behaviour of the global solutions of ( 1)-( 2). We begin with a lemma : Lemma 1 Let ψ ∈ C 0 (Ω) and A < 0. Then there exists B 0 > 0 and S 0 > 0 such that for all x ∈ Ω, B > B 0 and S > S 0 : B + S A ψ(x) > 0 .

Proof : Since ψ ∈ C 0 (Ω), there exists ζ > 0 such that B + S A ψ(x) > B -ζS A and B -ζS A > 0 ⇔ BS -A > ζ. Since -A > 0, we can choose S 0 = 1 and B 0 = 2ζ.

Proof of Proposition 2 : We treat only the case p > 2. ( see [START_REF] Véron | Effets régularisants de semi-groupes non-linéaires dans des espaces de Banach[END_REF] for p = 2 where we don't need the following parameters γ and γ) and b non identically zero ( we can adapt the proof of [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] for b = 0). We are looking for a supersolution w of (1)-(2) of the form w(t, x) = γt -λ + γψ(x)t -µ where γ, γ, λ, µ and ψ are to be determined. If we choose -λ -1 = -µ(p -1) that is µ = (λ + 1)/(p -1) and γp-1 = γ, a straightforward computation leads us to

∂w ∂t -∆ p w -a(x)w q = t -λ-1 γ(-λ -∆ p ψ(x)) - λ + 1 p -1 γ 1 p-1 t λ-λ+1 p-1 ψ(x) -a(x)t λ+1-λq γ + γ 1 p-1 ψ(x)t λ-λ+1 p-1 q .
Then we look for a solution ψ of

   -λ -∆ p ψ = α in Ω ∂ψ ∂ν |∇ψ| p-2 = βb on ∂Ω (24) 
where α ∈ (0, ∞) and β are to be determined so that w would be a supersolution of ( 1)-( 2). Remark if ψ is a solution of (24) then ψ + C is also a solution of (24). Thus we assume that ψ is positive. If we choose λ -(λ + 1)/(p -1) < 0 that is

λ < 1 p -2 (25)
so that t λ-(λ+1)/(p-1) → 0 when t tends to +∞, and

α ≥ λ + 1 p -1 , (26) 
we obtain since a ≤ 0 :

∂w ∂t -∆ p w -a(x)w q ≥ t -λ-1 λ + 1 p -1 γ 1 p-1 γ p-2 p-1 -ψ(x)t λ-λ+1 p-1 (27)
By Lemma 1, there exists t 0 > 0 and γ 0 > 0 such that for all t ≥ t 0 , x ∈ Ω and γ ≥ γ 0 , we have γ

p-2 p-1 -ψ(x)t λ-λ+1
p-1 > 0. Thus ∂w/∂t -∆ p w -a(x)w q ≥ 0 for all t ≥ t 0 , x ∈ Ω and γ ≥ γ 0 . On the other hand, the boundary condition leads us to have

-bt -λr   γ r p-1   γ p-2 p-1 2 + γ p-2 p-1 2 + ψ(x)t λ-λ+1 p-1   r -βγt -λ-1+λr   ≥ 0 (28) But γ p-2 p-1 2 + ψ(x)t λ-λ+1
p-1 > 0, and since b ≤ 0, we have

∂w ∂ν |∇w| p-2 -bw r ≥ -bt -λr γ γ r-1 2 r -βt -λ-1+λr (29) 
which is positive by Lemma 1 with t 0 and γ 0 depending on β, under the condition λr-λ-1 < 0 that is

λ < 1 r -1 . ( 30 
)
The compatibility condition for this nonlinear Neumann problem leads us to have

α = -λ + β -1 mes(Ω) ∂Ω b(x)dσ (31) 
Thus we first choose from ( 25) and (30) : 0 < λ < min 1 p-2 , 1 r-1 . Next from ( 26) and (31), we choose β large enough such that -λ + β -1 mes(Ω) ∂Ω b(x)dσ ≥ λ+1 p-1 . Then we define α by (31) and finally we obtain ψ solution of (24) and t 0 and γ 0 from Lemma 1 such that ∂w ∂t -∆ p w -a(x)w q ≥ 0 and ∂w ∂ν |∇w| p-2 -bw r ≥ 0 for all t ≥ t 0 , x ∈ Ω and γ ≥ γ 0 . It remains to treat the initial data. We take γ large enough such that u(t 0 , x) ≤ γt -λ 0 ≤ w(t 0 , x) on Ω and we conclude, from the comparison principle that

u(x, t) ≤ w(t, x) (32) 
for all (t, x) ∈ [t 0 , ∞) × Ω. In the same way, we prove that -u(t, x) ≤ w(t, x) for all (t, x) ∈ [t 0 , ∞) × Ω wich implies (4).

Proof of the Proposition 3 : the only difference with the proof of Proposition 2 is that we take λ = 1/(r -1) in (30) and also choose γ such that γ ≥ (e r β) 1) in (29).

1 (r-

Proof of Theorems 3 and 4 :

In this proof we denote by L the constant L(r, a, b) defined in [START_REF] Egorov | On some global existence theorems for a semilinear parabolic problem[END_REF] or L(r, b) defined in [START_REF] Gmira | Asymptotic behaviour of the solution of a semilinear parabolic equation[END_REF], we shall precise later. Let u be a positive solution of ( 1)-( 2) in (0, ∞) × Ω.

Step 1: Supersolution. Let ε > 0. We look for a supersolution of ( 1)-( 2) of the form :

w(t, x) = L + ε 2 t -1 r-1 + L + ε 2 r p-1 ψ(x)t - r (p-1)(r-1) .
where ψ is to be determined. A straightforward computation gives :

∂w ∂t -∆ p w -a(x)|w| q-1 w = t -1 r-1 -1 - 1 r -1 L + ε 2 - - r (p -1)(r -1) L + ε 2 r p-1 ψ(x)t -r-p+1 (p-1)(r-1) -L + ε 2 r ∆ p ψ -a(x)|w| q-1 w. (33) 
Then we consider the following Neumann boundary value problem

-1 r-1 L + ε 2 -L + ε 2 r ∆ p ψ -a(x)ζ L + ε 2 r = η in Ω ∂ψ ∂ν |∇ψ| p-2 = b on ∂Ω (34) 
where ζ = 1 if q = r and ζ = 0 if q > r. Remark if ψ is a solution of (34), then ψ + C is also a solution of (34). Thus we assume that ψ is choosen positive. Therefore (33) becomes :

∂w ∂t -∆ p w -a(x)|w| q-1 w = t -1 r-1 -1 η - r (p -1)(r -1) L + ε 2 r p-1 ψ(x)t -r-p+1 (p-1)(r-1) +a(x)ζ L + ε 2 r -a(x) L + ε 2 q t -q-r r-1 1 + L + ε 2 r-p+1 p-1 ψ(x)t -r-p+1 (p-1)(r-1) q   (35) 
Now there exists t 0 = t 0 (ε, ψ) and there exists a uniformly bounded positive function M on [t 0 , ∞) × Ω such that

1 + L + ε 2 r-p+1 p-1 ψ(x)t -r-p+1 (p-1)(r-1) q = 1 + M (t, x)t -r-p+1 (p-1)(r-1) (36) 
for all (t, x) ∈ [t 0 , ∞) × Ω. We distiguish two cases :

Case 1 : q = r. Thus ζ = 1, (35) and (36) imply ∂w ∂t -∆ p w -a(x)|w| r-1 w = t -1 r-1 -1 η - r (p -1)(r -1) L + ε 2 r p-1 ψ(x)t -r-p+1 (p-1)(r-1) -a(x) L + ε 2 r M (t, x)t -r-p+1 (p-1)(r-1) . (37) 
Next, the Neumann compatibility condition is:

- |Ω| r -1 L + ε 2 -L + ε 2 r ∂Ω b(x)dσ -L + ε 2 r Ω a(x)dx = η|Ω| which is equivalent with L = L(r, a, b) defined in (5) to : 1 r -1 L + ε 2 r L 1-r -L + ε 2 1-r = η. (38) 
Case 2 : q > r. Thus ζ = 0, (35) and (36) imply

∂w ∂t -∆ p w -a(x)|w| q-1 w = t -1 r-1 -1 η - r (p -1)(r -1) L + ε 2 r p-1 ψ(x)t -r-p+1 (p-1)(r-1) -a(x) L + ε 2 q t -q-r r-1 1 + M (t, x)t -r-p+1 (p-1)(r-1)
.

Next, the Neumann compatibility condition is:

- |Ω| r -1 L + ε 2 -L + ε 2 r ∂Ω b(x)dσ = η|Ω|
which is equivalent with L = L(r, b) defined in ( 7) to (38).

On the other hand we consider the boundary condition for both cases. Using (34) and (36), we obtain

∂w ∂ν |∇w| p-2 -b|w| r-1 w = -bM (t, x)t -r-p+1
(p-1)(r-1) ≥ 0.

Finally for ε given, we first choose η > 0 defined by (38). Therefore ψ is determined from (34). Then there exists T > t 0 such that

η - r (p -1)(r -1) L + ε 2 r p-1 ψ(x)t -r-p+1 (r-1)(p-1) -a(x) L + ε 2 q t -r-p+1
(r-1)(p-1) M (t, x) ≥ 0 if q = r and such that

η- r (p -1)(r -1) L + ε 2 r p-1 ψ(x)t -r-p+1 (p-1)(r-1) -a(x) L + ε 2 q t -q-r r-1 1 + M (t, x)t -r-p+1 (p-1)(r-1)
≥ 0 if q > r so that, because of (37) if q = r and (39) if q > r:

∂w ∂t -∆ p w -a(x)|w| q-1 w ≥ 0 on (T, ∞) × Ω and ∂w ∂ν |∇w| p-2 -b|w| r-1 w ≥ 0 on (T, ∞) × ∂Ω.
From Proposition 2, there exists τ ≥ T such that u(t, x) ≤ w(T, x) for all (t, x) ∈ [τ, ∞) × Ω. We apply the comparison principle to (t, x) → w(T + t, x) and (t, x) → u(t + τ, x) on (0, ∞) × Ω and we conclude that u(t + τ, x) ≤ w(t + T, x) for all (t, x) ∈ (0, ∞) × Ω, which implies that lim sup

t→+∞ t 1 r-1 u(t, x) ≤ L (40) 
uniformly on Ω.

Step 2: Subsolution. The proof is similar to step 1. Let ε > 0. We look for a subsolution of ( 1)-( 2) of the form 1) .

w(t, x) = L - ε 2 t -1 r-1 + L - ε 2 r p-1 ψ(x)t - r (p-1)(r-
We keep (34)-(35) replacing L + ε 2 by L -ε 2 but now we choose ψ negative in Ω, then M is also negative. The Neumann compatibility condition leads us to choose η defined by

η = 1 r -1 L - ε 2 r L 1-r -L - ε 2 1-r < 0. ( 41 
)
As in step 1, we deduce that ∂w ∂t -∆ p w -a(x)|w| q-1 w ≤ 0 on a set of the form (T, ∞) × Ω and ∂w ∂ν |∇w| p-2 -b|w| r-1 w ≤ 0 on (T, ∞) × ∂Ω.

Since w tends to 0 when t tends to +∞ uniformly in Ω, there exists T ≥ T such that

u(T + 1, x) ≥ w( T , x) ∀x ∈ Ω.
We apply the comparison principle to (t, x) → u(t + T + 1, x) and (t, x) → w(t + T , x) on (0, ∞) × Ω and we conclude that

u(t + T + 1, x) ≥ w(t + T , x)
for all (t, x) ∈ (0, ∞) × Ω, which implies that there exists T 1 > T such that

(t + T ) 1 r-1 u(t + T + 1, x) ≥ L - ε 2 + L - ε 2 r p-1 ψ(x)(t + T ) -r-p+1
(p-1)(r-1) ≥ L -ε for all (t, x) ∈ (T 1 , ∞) × Ω and we conclude that lim inf

t→+∞ t 1 q-1 u(t, x) ≥ L.
uniformly in Ω which ends the proof of Theorem 3 and 4.

The case of the Laplacian

The next result needs no sign assumption on a(x) and b(x). We introduce the mean function u of u definied by

u(t) = 1 |Ω| Ω u(t, x)dx (42) 
Lemma 2 Let u be a solution of (1)-( 2) in (0, ∞) × Ω. Assume that there exists a constant K > 0 such that

|u(t, x)| ≤ K min t -1 r-1 , t -1 q-1 (43) in [0, ∞) × Ω. Then there exists a constant C > 0 such that u(t, .) -u(t) L ∞ (Ω) ≤ C(t + 1) -r r-1 (44) 
for all t ≥ 0 Proof : We don't direcly compare the function u and its mean function but we introduce the function v defined by v(t, x) = t 1 r-1 u(t, x) for t > 0. This function satisfies

       ∂v ∂t -∆v -t -q-1 r-1 a(x)|v| q-1 v - 1 (r -1)t v = 0 in (0, ∞) × Ω ∂v ∂ν - b t |v| r-1 v = 0 on (0, ∞) × ∂Ω (45) 
and if we set w = v -v, we obtain

     ∂w ∂t -∆w + f = 0 in (0, ∞) × Ω ∂w ∂ν - b t |v| r-1 v = 0 on (0, ∞) × ∂Ω ( 46 
)
where f is defined by

f (t, x) = - 1 t 1 r -1 (v(t, x) -v(t)) - 1 |Ω| ∂Ω b(x)|v| r-1 (t, x)v(t, x)dσ -t -q-1 r-1 a(x)|v| q-1 v(t, x) - 1 |Ω| Ω a(x)|v| q-1 v(t, x)dx . (47) 
Note that f is bounded because of (43). We introduce the solution z of the following heat equation:

         ∂z ∂t -∆z = 0 in (0, ∞) × Ω ∂z ∂ν = b t |v| q-1 v on (0, ∞) × ∂Ω (48) 
and set W = w -z. Then

         ∂W ∂t -∆W + f = 0 in (0, ∞) × Ω ∂W ∂ν = 0 on (0, ∞) × ∂Ω. (49) 
Introducing the continuous semigroup of contractions of L 2 (Ω) generated by the Laplacian with Neumann boundary data and its restriction to L ∞ (Ω) ∩ (Ker(-∆)) ⊥ , the results of [START_REF] Gmira | Asymptotic behaviour of the solution of a semilinear parabolic equation[END_REF] and [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] p.128 lead us to the existence of a constant G > 0 such that W (t + 1, .) L ∞ (Ω) ≤ G t for all t near infinity. We conclude that this is the same for w and we obtain (44).

The proof of Theorems 5 and 6 is exacly the same as in [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF], using both Theorems 3 and 4 and Lemma 2.

Proof of Corollary

2 : Let v(t, x) = t r r-1 u(t, x). Then      ∂v ∂t -∆v = f in (0, ∞) × Ω ∂v ∂ν = bt r r-1 u r on (0, ∞) × ∂Ω (50) 
where f (t, x) = r r-1 t 1 r-1 u(t, x) + a(x)t r r-1 (u(t, x)) q . Now we introduce w = v -v = v - |Ω| Ω v(t, x) dx and g = f -f . Thus w is solution of

       ∂w ∂t -∆w = g - t r r-1
|Ω| ∂Ω b(x)(u(t, x)) q dσ in (0, ∞) × Ω ∂w ∂ν = bt r r-1 u q on (0, ∞) × ∂Ω.

As in the proof of 2, we obtain

       ∂ ∂t ∂w ∂t -∆ ∂w ∂t = G in (0, ∞) × Ω ∂ ∂ν ∂w ∂t = B on (0, ∞) × ∂Ω with G(t, x) = ∂ ∂t f -f - r r -1 t r r-1 -1 |Ω| ∂Ω b(x)(u(t, x)) q dσ -q t r r-1
|Ω| ∂Ω b(x)(u(t, x)) q-1 ∂u ∂t (t, x) dσ, B(t, x) = r r -1 t 1 r-1 b(x)(u(t, x)) q + qt r r-1 b(x)(u(t, x)) q-1 ∂u ∂t (t, x), and ∂f ∂t (t, x) = 1 t r (r -1) 2 t 1 r-1 u(t, x) + r r -1 t r r-1 ∂u ∂t (t, x) + r r -1 a(x)t r r-1 (u(t, x)) q + qa(x)t r r-1 u q-1 ∂u ∂t .

As a consequence of classical estimates for parabolic equations, there exists t 0 > 0 such that t r r-1 ∂u ∂t (t, x) remains bounded in (t 0 , ∞) × Ω and since q ≥ r, we have |t r r-1 u(t, x) q | ≤ |t 1 r-1 u(t, x)| q for all (t, x) ∈ (t 0 , ∞) × Ω for t 0 sufficiently large. Therefore, because of (8), there exists a positive constant M such that |G(t, x)| ≤ M t for all (t, x) ∈ (t 0 , ∞) × Ω and |B(t, x)| ≤ M t for all (t, x) ∈ (t 0 , ∞) × ∂Ω. Thus, as in the proof of Lemma 2, we deduce ∂v ∂t (., t) -∂v ∂t (t)

L ∞ (Ω) = ∂w ∂t (., t) L ∞ (Ω) ≤ C t (51) 
for t large enough and some positive constant C. By the definition of v, we have : |Ω| Ω a(x)(t 1 r-1 u(t, x)) q dx + 1 |Ω| ∂Ω b(x)(t 1 r-1 u(t, x)) r dσ .

∂v ∂t = r r -1 t 1 r-1 u + t
We distinguish two cases.

First case : q = r. From (8), we obtain lim

t→∞ ∂v ∂t = q q -1 L + 1 |Ω| Ω a(x)L q dx + ∂Ω b(x)L q dσ = L. ( 53 
)
Second case : q > r. From (8), we obtain

lim t→∞ ∂v ∂t = r r -1 L + 1 |Ω| Ω b(x)L r dσ = L. ( 54 
)
Because of (51), ( 52) and ( 53) or (54) we get

lim t→∞ t r r-1 ∂u ∂t = L - r r -1 L = - L r -1
uniformly in Ω which is [START_REF] Kamin | Classification of singular solutions of a nonlinear heat equation[END_REF].
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  (50), we have∂v ∂t (t) = f + 1 |Ω| ∂Ω b(x)(t 1 r-1 u(t, x)) r dσ
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