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1 Introduction

1.1 On Two-Scale Convergence first statements

The concept of Two-Scale Convergence was introduced in two papers of Nguetseng [22, 23]
in 1989. Then in 1992, Allaire [3] produced a synthetic and very readable proof of the result.

1.2 How Homogenization brought the concept

The concept of Two-Scale Convergence emerged from questions of Periodic Homogenization.
Homogenization is a Mathematical Theory, or more precisely, an Asymptotic Analysis The-
ory that originates from Material Engineering, or more precisely, from understanding the
way Constitutive Equation of composite material can be gotten from Constitutive Equation
of each component of the concerned material and from their topological and geometrical
distributions.

Microstructure

Material shape

Figure 1.1: Composite material has a macroscopic shape and a microstructure. The ratio
between the size of the microstructure and the size of the material is ε.

In order to make the purpose clear, we first consider the simplest - but rich enough -
example I know. (The explanation that follows does not aim to be mathematically rigorous.
It clearly appeals to intuition and to non-rigorous vocabulary.)
Imagine that we want to get the temperature field within a composite material which is in
thermal equilibrium, knowing the temperature on its boundary. Symbolically, as represented
in Figure 1.1 (in a bi-dimensional setting), the composite material has a macroscopic shape
at a macroscopic size. Within it, heterogeneities are more or less periodically distributed
with a periodicity - or a characteristic size - which is ε times smaller than its macroscopic
size, where ε is a small parameter. This makes up what is usually called the microstructure
of the composite material. Now, to achieve our goal, we contemplate the following Heat
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Equation

∇ ·
[

aε(x,
x

ε
)∇uε

]

= 0 within the material,

uε given on the boundary of the material,
(1.1)

that is supposed to describe how the temperature uε is being splitted within the material
from its distribution on the boundary. In this equation, aε stands for the Thermal Diffu-
sion Coefficient (it is the ratio Thermal Conduction over Calorific Capacity times material
Density), ∇ and ∇· stand for the gradient and divergence operators. (If a unidimensional
material is considered, x = x lives in R, if a bi-dimensional material is considered, x = (x, y)
lives in R2 and if a tridimensional material is considered, x = (x, y, z) lives in R3.)

The fact that aε depends on x and x/ε needs to be understood in the following sense.
Variable x is the dimensionless position, meaning that when used to describe the material at
its macroscopic scale, the needed variations of variable x are of the order of 1. Beside this, the
dependance of aε in x/ε models the variation of the Thermal Diffusion at the microstructure
scale. To illustrate this ability of x/ε−dependance to describe variations at the microscopic
scale, I show the graph of some kinds of functions in one and two dimensions. In Figure
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Figure 1.2: Graph of
1

2
sin(x) + 1 + ε cos(

x

ε
) for ε = 1/20 (left), 1/40 (center) and 1/80

(right) between −π and π.

1.2, is drawn the graph, between −π and π, of aε(x, x/ε) = (1/2) sin(x) + 1+ ε cos(x/ε) for
ε = 1/20, 1/40 and 1/80. Those functions have a variation at the macroscopic scale, which
is described by the piece (1/2) sin(x)+1 and variations at much smaller scales, which are the
microscopic variations. In this example, the microscopic variations can be qualified of being
high frequency periodic oscillations with small amplitude. They are described by the term
cos(x/ε) which needs to be multiplied by ε (explaining the presence of superscript ε in aε)
to insure amplitude of size ε of those high frequency periodic oscillations. The next figure
(figure 1.3) shows the graph of aε(x, x/ε) = a(x, x/ε) = (1/2) sin(x) + 1 + (1/2) cos(x/ε)
for the same values of ε as previously. Here, the macroscopic scale variation is always
given by the piece (1/2) sin(x) + 1 and the variations at a smaller scale, making up the
microscopic variations, are given by (1/2) cos(x/ε). (This term is not multiplied by ε,
bringing the uselessness of superscript ε in aε.) In this case the microscopic variations can
be qualified of high frequency periodic oscillations with large amplitude or periodic Strong
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Oscillations. Figure 1.4 shows the ability of a function depending on x and x/ε to describe
situations with microscopic variations which are with modulated amplitude - with regions
where they are Strong Oscillations and regions where they are not Strong. The drawn
function is (1/2)(sin(x) + 1) cos(x/ε). In this expression, the microscopic variations, which
are high frequency periodic oscillations, are described by factor cos(x/ε) and the modulated
amplitude is (1/2)(sin(x) + 1). Figure 1.5 shows function (1/2) cos(x) + 1 + (1/2)(sin(x) +
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Figure 1.5: Graph of
1

2
cos(x) + 1 +

1

2
(sin(x) + 1) cos(

x

ε
) for ε = 1/20 (left), 1/40 (center)

and 1/80 (right) between −π and π.

1) cos(x/ε) for always the same values of ε. Those functions possesses both macroscopic scale
variation and modulated amplitude high frequency oscillations as microscopic variations.

In every example above the microscopic scale variations are periodic. Yet, the x/ε−depen-
dancy may also describe microscopic scale variations that are not periodic. This is illustrated
in figure 1.6 where function (1/10) sin(x/3) + 1 + (1/4) cos(x/ε) sin((π/4)x/ε) is drawn.

Despite the fact that, for visibility reasons, the chosen value of ε is not very small (1/20),
figures 1.7 and 1.8 show bi-dimensional functions with periodic Strong Oscillations (figure
1.7) and modulated amplitude in one direction (figure 1.8).

At the end of the day, functions writing aε(x, x/ε) have the ability to describe a variety
of coupling both macroscopic and microscopic variations which is wide enough.

It is practicable to introduce a variable (say ξ, which may be ξ, (ξ, υ) or (ξ, υ, ζ), de-
pending on the dimension number) which describes the variations at the microscopic scale.
This consists in considering that aε in fact depends on two variables: aε(x, ξ) and that the
coefficient in equation (1.1) is

aε(x, ξ =
x

ε
). (1.2)

Applying this practicable trick to the examples involved in figures above, the following
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formulas are gotten:

aε(x, ξ) =
1

2
sin(x) + 1 + ε cos(ξ), in the case of figure 1.2,

aε(x, ξ) = a(x, ξ) =
1

2
sin(x) + 1 +

1

2
cos(ξ), in the case of figure 1.3,

aε(x, ξ) = a(x, ξ) =
1

2
(sin(x) + 1) cos(ξ), in the case of figure 1.4,

aε(x, ξ) = a(x, ξ) =
1

2
cos(x) + 1 +

1

2
(sin(x) + 1) cos(ξ), in the case of figure 1.5,

aε(x, ξ) = a(x, ξ) =
1

10
sin(

x

3
) + 1 +

1

4
cos(ξ) sin(

π

4
ξ),

aε(x, y, ξ, υ) = a(x, y, ξ, υ) = x2 + y2 +
1

2
(sin(υ + 1) + (sin(ξ) + 1), and

aε(x, y, ξ, υ) = a(x, y, ξ, υ) = x2 + y2 +
1

2
(sin(υ) + 1)(sin(ξ) + 1)

in the case of figure 1.7, and,

aε(x, y, ξ, υ) = a(x, y, ξ, υ) = x2 + y2 +
1

2
(sin(υ) + 1)(sin(ξ) + 1), in the case of figure 1.8.

(1.3)

If ξ 7→ aε(x, ξ) is periodic, the microscopic scale variations are qualified of high frequency
periodic oscillations.

Remark 1.1 Two-Scale Convergence is essentially designed to be used in the context of high
frequency periodic oscillations.
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Going back to the question we imagine we are interested in, we need to implement a
numerical method, for instance a Finite Difference Method or a Finite Element Method, in
order to compute an approximated solution of Partial Differential Equation (1.1). Since, x
is a dimensionless variable, the domain on which (1.1) is set has a size which order of magni-
tude is 1. But, to get a reasonable result, we must choose a discretization step ∆x which is
such that ∆x << ε. Otherwise, the effect of the microstruture is not taken into account, and
the resulting computation has nothing to do with reality. Hence, if ε is very small, meaning
that the microstructure is much smaller than the macroscopic size, the computation can be
very expensive and even not feasible. For instance, if we consider a tridimensional material,
with ε = 10−3 then, with the constraint ∆x << ε, that we consider to be achieved with
∆x = 10−1ε, the order of magnitude of the number of degrees of freedom needed for the
computation is (10 ·103)3 = 1012. This is quite expensive. Leading such a computation may
not be completely unreasonable if we are interested in knowing the intimate distribution of
the temperature at the microstructure scale, but in most of the situations the tiny variations
at this scale have no interest. In those cases, it is highly unreasonable to lead such a heavy
computation to get the result.

Hence, we would like to have on hand an equation, which does not explicitly involve
any microstructure, but which contains, or more precisely, which induces in its solution the
average effect of the microstructure (which is described by the x/ε−dependance of aε in
1.1). Denoting symbolically this equation by

Hu = 0, (1.4)

involving an operator H, with the constraint that u is close to uε in some senses, we can
expect to implement a numerical method to compute an approximated solution of (1.4) -
which is also an approximation of uε - with a cost much smaller (because the constraint
∆x << ε is useless) than the one needed for the direct approximation of equation (1.1).

Homogenization Theory gathers a collection of methods that allows us to build operators
H satisfying the required constraint.

The first Homogenization methods were set out by Engineers in the middle of the 1970s
and then formalize by Mechanical Scientists. They are based on Asymptotic Expansion.
Applying them in the case of equation (1.1) consists in writing

uε(x) = U(x,
x

ε
) + εU1(x,

x

ε
) + ε2U2(x,

x

ε
) + . . . , (1.5)

with functions U(x, ξ), U1(x, ξ), U2(x, ξ), . . . periodic with respect to ξ, in injecting this
expansion in equation (1.1), in identifying and gathering terms in factor of ε−2, ε−1, ε0, ε,
ε2, . . . and then in deducing a set of equations:

H−2U = 0, (1.6)

H−1U1 = I(U), (1.7)

H0U2 = I ′(U,U1), (1.8)

. . . .
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Extracting information from those equations, we get well-posed equations for U , U1, U2,
. . . .

For a full understanding of the methods based on Asymptotic Expansion, I refer to the
books by Sanchez-Palencia [27] and to the one by Bensoussan, Lions & Papanicolaou [5].

Then, if we want to get a rigorous mathematical justification of the process just described,
we need to prove results like

∥

∥

∥uε(x)− U(x,
x

ε
)
∥

∥

∥

?
→ 0, (1.9)

for a norm ‖ ‖? to be determined, or in a weaker sense,

(

uε(x)− U(x,
x

ε
)
)

⇀ 0. (1.10)

If we want to get justification at higher orders, we need to prove convergence results like





uε(x)− U(x,
x

ε
)

ε
− U1(x, ξ)



→ 0, (1.11)

in some senses,

(

1

ε

(

1

ε

(

uε(x)− U(x,
x

ε
)
)

− U1(x, ξ)

)

− U2(x, ξ)

)

→ 0, (1.12)

in some senses, and so on.
In the case of a Parabolic Partial Differential Equation like (1.1), with Dirichlet boundary

conditions, convergence results of the kind of (1.9) can be brought out using the Maximum
Principle and boundary estimates (see Bensoussan, Lions & Papanicolaou [5]).
In other cases, the way is less straightforward, and appeals to Oscillating Test Functions
used within a Weak Formulation of the Partial Differential Equation. Passing to the limit
using Compensated Compactness like results (see Tartar [29]) may give convergence results
of the kind of (1.9) or (1.10). This method is called "Energy Method" or "Oscillating Test
Function Method" and was designed by Tartar [28] in collaboration with Murat [21] (see
also [5]). For mathematical justification, works of Engquist have also to be consulted, in
particular [7].

The Weak Formulation with Oscillating Test Functions writes, in the case of equation
(1.1),

∫

Material

∇ ·
[

aε(x,
x

ε
)∇uε(x)

]

ϕ(x,
x

ε
) dx = 0, (1.13)

which yields, using the Stokes Formula,

∫

Material

aε(x,
x

ε
)∇uε(x) · ∇

[

ϕ(x,
x

ε
)
]

dx =

∫

Boundary

Something, (1.14)
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or
∫

Material

aε(x,
x

ε
)∇uε(x) ·

[

∇xϕ(x,
x

ε
) +

1

ε
∇ξϕ(x,

x

ε
)

]

dx =

∫

Boundary

Something. (1.15)

In those integrals, ∇uε converges generally in a weak sense only and this is the same for
the other involved functions: aε(x, xε ), ∇xϕ(x,

x

ε ) and ∇ξϕ(x,
x

ε ). It is well known that
passing to the limit in a product of two weak converging sequences of functions is a non-
straightforward task. Hence, passing to the limit in (1.13), (1.14) or (1.15) is not so easy
and consequently involves relatively sophisticated analytical methods (like Compensated
Compactness results).

The situation just described is typical of the mathematical justification of homogeniza-
tion results.

Two-Scale Convergence offers an efficient framework to pass to the limit in such terms,
in the case when oscillations are periodic. It is certainly possible to infer that Two-Scale
Convergence emerges from those kind of questioning. Yet, as it will be illustrated by the
example treated in section 3, Two-Scale Convergence is much more than a method to justify
Asymptotic Expansion: it is a constructive Homogenization Method very well adapted to
Singularly Perturbed Hyperbolic Equations.

Of course, we can try to provide an answer to question of the same type. For instance
we can be interested in the time varying version of (1.1):

∂uε

∂t
−∇ ·

[

aε(x,
x

ε
)∇uε

]

= 0 within the material,

uε(t, .) given on the boundary of the material,

uε(0, .) given at initial time within the material,

(1.16)

where t stands for a dimensionless time and where x has the same meaning as in equation
(1.1).

We can also consider the following equations :

∂zε

∂t
−

1

ε
∇ ·

[

a(t,
t

ε
,x)∇zǫ

]

=
1

ε
∇ · c(t,

t

ε
,x), (1.17)

and
∂zε

∂t
−

1

ε2
∇ ·

[

a(t,
t

ε
,x)∇zǫ

]

=
1

ε2
∇ · c(t,

t

ε
,x), (1.18)

which are relevant models for the short-term and long-term dynamics of dunes on a seabed
of a coastal ocean where tide is strong. In equation (1.17) and (1.18), zε = zε(t,x), where t
stands is the dimensionless time and x is the bi-dimensional dimensionless position variable,
is the dimensionless seabed altitude at time t and in position x. Those equations were widely
studied in Faye, Frénod & Seck [9, 8].
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We can also be interested in the following Vlasov equations :

∂f ε

∂t
+ v · ∇xf

ε + (E(x, t) +
1

ε
v ×B(x, t)) · ∇vf

ε = 0, (1.19)

and

∂f ε

∂t
+ v‖ · ∇xf

ε +
1

ε
v⊥ · ∇xf

ε + (E(x, t) +
1

ε
v ×B(x, t)) · ∇vf

ε = 0, (1.20)

which are models involved in Tokamak Plasma physic. In those equations x ∈ R3 stands for
the dimensionless position, v ∈ R3 for the dimensionless velocity and t for the dimensionless
time. The solution f ε = f ε(t,x,v) which is also dimensionless is, at time t the density of
ions in position x and with velocity v. Field E is the Electric field and field (1/ε)B(x, t) is
the Strong Magnetic field. We denote by ‖ and ⊥ the directions parallel and perpendicular
to this magnetic field.

Those two last equations involve neither oscillating coefficients nor any microstructure.
Nevertheless, the strong magnetic field induces in the solution high frequency periodic oscil-
lations. Equations (1.19) or (1.20) can be cast into the following framework of a singularly
perturbed convection equation:

∂uε

∂t
+ a · ∇uε +

1

ε
b · ∇uε = 0, x ∈ Rd, t > 0, (1.21)

by setting, in the case of (1.19),

a(x,v, t) =

(

v

E(t,x)

)

and b(x,v) =

(

0
v ×B(t,x)

)

, (1.22)

and, in the case of (1.20),

a(x,v, t) =

(

v‖

E(t,x)

)

and b(x,v) =

(

v⊥

v ×B(t,x)

)

. (1.23)

Equation of this type are studied in Frénod & Sonnendrücker [16, 17, 18], Frénod & Watbled
[19], Frénod, Raviart & Sonnendrücker [14], Frénod [10, 11], Frénod & Hamdache [12] Ailliot,
Frénod & Monbet [1, 2], Frénod, Mouton & Sonnendrücker [13] and Frénod, Salvarani &
Sonnendrücker [15] .

1.3 A remark concerning periodicity

Two-Scale Convergence is well-adapted to the framework of high frequency periodic oscilla-
tions (or to cases that can be brought to this framework by an adequate transformation).
But, it essentially does not work in non-periodic cases. Even in the case of oscillations with
a period depending on the variable describing the macroscopic variation, it does not work.
Many questions linked with non-periodic homogenization are essentially open.
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1.4 A remark concerning weak-* convergence

Here, I give the proof of two important and representative results. They concern the char-
acterization of the weak limit of functions with high frequency periodic oscillations.

I will denote, for p = 1, . . . ,∞, by Lp(R) the space of functions defined almost everywhere
on R such that their p-th power is Lebesgue integrable, by Lp

#(R) the space of functions

being in Lp(R) and periodic of period 1, by C0
#(R) the space of functions being continuous

over R and periodic of period 1, by C∞(R) the space of functions being infinitely derivable
over R, by D(R) the space of functions being in C∞(R) and compactly supported and by
Lp(R; C0

#(R)) the space of functions mapping R to C0
#(R) such that the p-th power of their

norm is Lebesgue integrable.
The first result gives the asymptotic behavior, with respect to weak topology, of a peri-

odic function applied in ξ = x/ε.

Lemma 1.1 Let ψ ∈ L∞
# (R). Defining [ψ]ε by [ψ]ε(x) = ψ(

x

ε
), then

[ψ]ε ⇀

∫ 1

0
ψ(ξ) dξ in L∞(R) weak-*. (1.24)

Remark 1.2 Convergence (1.24) means that for any function φ ∈ L1(R),

∫

R

[ψ]ε(x) φ(x) dx→

∫ 1

0
ψ(ξ) dξ

∫

R

φ(x) dx. (1.25)

Proof. The first step of the proof consists in noticing that, since the space D(R) is dense
in L1(R), it is enough to prove

∫

R

[ψ]ε(x) ϕ(x) dx→

∫ 1

0
ψ(ξ) dξ

∫

R

ϕ(x) dx. (1.26)

for any fixed ϕ ∈ D(R).
In a second step, fixing a D(R)-function ϕ, a real M such that [−M,M ] contains the sup-

port of ϕ is chosen. Then, the set of points {−M,−M+ε,−M+2ε, . . . ,M+E(2M/ε)ε,M+
(E(2M/ε)+1)ε}, where E stands for the integer part, is considered and the integral in (1.26)
is shared in the following way:

∫

R

[ψ]ε(x) ϕ(x) dx =

E(2M/ε)+1
∑

i=1

∫ −M+iε

−M+(i−1)ε
ψ(
x

ε
) ϕ(x) dx. (1.27)

In the third step, since ϕ is regular, it is possible to write that, for any i = 1, . . . ,E(2M/ε)+
1, for any x ∈ [−M + (i− 1)ε,−M + iε], there exists a ci(x) ∈ [−M + (i− 1)ε, x] such that
ϕ(x) = ϕ(−M + (i− 1)ε) + (x+M − (i− 1)ε)ϕ′(ci(x)). Clearly,

|(x+M − (i− 1)ε)| ≤ ε and |ϕ′(c(x))| ≤ ‖ϕ′‖∞. (1.28)
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Using this in the sum of (1.27) yields

∫

R

[ψ]ε(x) ϕ(x) dx =

E(2M/ε)+1
∑

i=1

∫ −M+iε

−M+(i−1)ε
ψ(
x

ε
) dx ϕ(−M(i− 1)ε)

+

E(2M/ε)+1
∑

i=1

∫ −M+iε

−M+(i−1)ε
ψ(
x

ε
) (x+M − (i− 1)ε)ϕ′(ci(x)) dx. (1.29)

In the last step, using the periodicity of ψ, the first term of (1.29) becomes

∫ 1

0
ψ(ξ) dξ ε

E(2M/ε)+1
∑

i=1

ϕ(−M(i− 1)ε), (1.30)

which, because of Riemann like definitions of an integral, converges towards

∫ 1

0
ψ(ξ) dξ

∫

R

ϕ(x) dx. (1.31)

as ε goes to 0. Beside this using (1.28), the second term of (1.29) is bounded in the following
way:

∣

∣

∣

∣

∣

∣

E(2M/ε)+1
∑

i=1

∫ −M+iε

−M+(i−1)ε
ψ(
x

ε
) (x+M − (i− 1)ε)ϕ′(ci(x)) dx

∣

∣

∣

∣

∣

∣

≤

∫ 1

0
|ψ(ξ)| εdξ

(

2M + 1

ε

)

ε‖ϕ′‖∞ ≤ ε(2M + 1)

∫ 1

0
|ψ(ξ)| dξ‖ϕ′‖∞, (1.32)

and then converges to 0 as ε goes to 0.
A careful watch to (1.27), (1.31) and (1.32) gives convergence 1.25. Since, this can be

done for any ϕ ∈ D(R), the Lemma is proved.

In view of Lemma 1.1, and from the application point of view, it is cleaver to see the
L∞(R) weak-* convergence as a way to generalize the concept of average value to functions
which have non-periodic oscillations.

Hence finding H involved in (1.4) - or other similar question - may be translated into a
mathematical framework as: "Find an equation satisfied by the weak-* limit of uε."

This explains why weak-* limit is a key-notion of Homogenization Theory

The second result characterizes the asymptotic behavior of a function depending on x
and ξ, with a periodic dependence in ξ, and applied in ξ = x/ε. Notice that here more
regularity with respect to ξ is needed than previously.

Lemma 1.2 Let ψ = ψ(x, ξ) ∈ L∞(R; C0
#(R)) and define [ψ]ε by setting [ψ]ε(x) = ψ(x,

x

ε
).

Then

[ψ]ε ⇀

∫ 1

0
ψ(x, ξ) dξ in L∞(R) weak-*. (1.33)
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Remark 1.3 Convergence (1.33) means that for any function φ ∈ L1(R),

∫

R

[ψ]ε(x) φ(x) dx→

∫

R

(∫ 1

0
ψ(x, ξ) dξ

)

φ(x) dx. (1.34)

But, for the same reason as previously, if the following convergence

∫

R

[ψ]ε(x) ϕ(x) dx→

∫

R

(∫ 1

0
ψ(x, ξ) dξ

)

ϕ(x) dx, (1.35)

is proven for any ϕ ∈ D(R), it gives the Lemma.

Proof. (I chose to restrict the proof to the case when ψ ∈ C0(R; C0
#(R)) to avoid technical

arguments linked with Integration Theory.) The first stage of this proof consists in parti-
tioning interval [0, 1] into m intervals of length 1/m, for any integer m. Then, fixing any
value of m, the characteristic functions χi, for i = 1 . . . ,m, of all intervals are considered.
They are extended by periodicity over R. The center ξi of each interval is also considered.
Using them, function ψ̃m defined by

ψ̃m(x, ξ) =
m
∑

i=1

ψ(x, ξi)χi(ξ), (1.36)

is built. For every x, ξ 7→ ψ̃m(x, ξ) is constant by intervals and, as m tends to infinity,

ψ̃m(x, ξ) → ψ(x, ξ) uniformly on every compact of R2 . (1.37)

Since, applying Lemma 1.1,

[χi]
ε ⇀

∫ 1

0
χ(ξ) dξ =

1

m
in L∞(R) weak-*, (1.38)

it may be gotten:

[ψ̃m]ε ⇀

m
∑

i=1

ψ(x, ξi)
1

m
in L∞(R) weak-*, (1.39)

which is clearly

∫ 1

0
ψ̃m(x, ξ) dξ. Hence, as ε goes to 0,

[ψ̃m]ε ⇀

∫ 1

0
ψ̃m(x, ξ) dξ in L∞(R) weak-*. (1.40)

The second stage of the proof consists in fixing ϕ ∈ D(R), and in showing that for any
δ > 0, it is possible find an ε0, such that for any ε ≤ ε0,

∣

∣

∣

∣

∫

R

[ψ]ε(x)ϕ(x) dx−

∫

R

(∫ 1

0
ψ(x, ξ) dξ

)

ϕ(x) dx

∣

∣

∣

∣

≤ δ. (1.41)
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The way to get this inequality consists in writing :

∣

∣

∣

∣

∫

R

[ψ]ε(x)ϕ(x) dx−

∫

R

(∫ 1

0
ψ(x, ξ) dξ

)

ϕ(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

(

[ψ]ε(x)− [ψ̃m]ε(x)
)

ϕ(x) dx+

∫

R

(

[ψ̃m]ε(x)−

∫ 1

0
ψ̃m(x, ξ) dξ

)

ϕ(x) dx

+

∫

R

(∫ 1

0
ψ̃m(x, ξ) dξ −

∫ 1

0
ψ(x, ξ) dξ

)

ϕ(x) dx

∣

∣

∣

∣

≤

∫

R

∣

∣

∣[ψ]ε(x)− [ψ̃m]ε(x)
∣

∣

∣ |ϕ(x)| dx+

∣

∣

∣

∣

∫

R

(

[ψ̃m]ε(x)−

∫ 1

0
ψ̃m(x, ξ) dξ

)

ϕ(x) dx

∣

∣

∣

∣

+

∫

R

(∫ 1

0

∣

∣

∣ψ̃m(x, ξ)− ψ(x, ξ)
∣

∣

∣ dξ

)

|ϕ(x)| dx (1.42)

Because of uniform convergence (1.37), it is possible to fix an m such that

∫

R

∣

∣

∣
[ψ]ε(x)− [ψ̃m]ε(x)

∣

∣

∣
|ϕ(x)| dx ≤

δ

3
for any ε, (1.43)

∫

R

(∫ 1

0

∣

∣

∣
ψ̃m(x, ξ)− ψ(x, ξ)

∣

∣

∣
dξ

)

|ϕ(x)| dx ≤
δ

3
, (1.44)

and once this m is fixed, because of (1.40), it is possible to fix an ε0 such that

∣

∣

∣

∣

∫

R

(

[ψ̃m]ε(x)−

∫ 1

0
ψ̃m(x, ξ) dξ

)

ϕ(x) dx

∣

∣

∣

∣

≤
δ

3
for any ε ≤ ε0. (1.45)

Using (1.43), (1.43) and (1.45) in (1.42) gives the sought formula (1.41).
Since, this can be done for any ϕ ∈ D(R), the Lemma is proved.

2 Two-Scale Convergence - Definition and Results

2.1 Definitions

There are several variants of the Two-Scale Convergence result, more or less well adapted to
targeted applications and involving various functional spaces (see Nguetseng [22, 23], Allaire
[3], Amar [4], Casado-Díaz & Gayte [6], Frénod, Raviart & Sonnendrücker [14], Nguetseng
& Woukeng [25] and Nguetseng & Svanstedt [24]). They are in fact very close to each other
in what concerns what they claim and their proofs all follow the same routine based on these
two phases :

• A continuous injection Lemma,

• A compactness Theorem,

Remark 2.1 In 2005, Pak [26] made a important improvement in the Two-Scale Conver-
gence Theory adapting it to manifolds and differential forms.
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I have chosen to present the Two-Scale Convergence in the framework set out in Frénod,
Raviart & Sonnendrücker [14] since this framework permits to select among the variables
the ones that carry oscillations and the others.

I begin by giving some notations.

Definition 2.1 Let Ω be a regular domain in Rn, L a separable Banach space and L′ its
topological dual space. Let q ∈ [1,+∞) and p ∈ (1,+∞] being such that 1/q + 1/p = 1.
Let C0

#(R
n;L) be the space of continuous functions Rn → L and periodic of period 1 with

respect to every variable and Lp(Ω,L′) be the space of (equivalence classes for the equivalence
relation "= a.e." of measurable) functions f : Ω → L′ such that the p-th power of the norm
of f : |f |pL′ is Lebesgue integrable. Let Lp

#(R
n;L′) be the space of functions g : Rn → L′

such that the p-th power of the norm of f : |f |pL′ is locally Lebesgue integrable and periodic
of period 1. (Lp

#(R
n;L′) = (Lp

#(R
n;L))′.) Spaces Lq(Ω;Lq

#(R
n,L)), Lq(Ω; C0

#(R
n;L)) and

Lp(Ω;Lp
#(R

n,L′)) are also considered.

Now, I give the definition of Two-Scale Convergence.

Definition 2.2 A sequence (uε) = (uε(x)) ⊂ Lp(Ω;L′) is said to Two-Scale converges to a
profile U = U(x, ξ) ∈ Lp(Ω;Lp

#(R
n,L′)) if, for any function φ = φ(x, ξ) ∈ Lq(Ω; C0

#(R
n;L)),

the following convergence holds:

lim
ε→0

∫

Ω
〈L′ uε(x), φ(x,

x

ε
)〉L dx =

∫

Ω

∫

[0,1]n
〈L′ U(x, ξ), φ(x, ξ)〉L dxdξ, (2.1)

where 〈L′ ., .〉L is the duality bracket between L′ and L.

To end this definition subsection, I give two definitions of the Strong Two-Scale Convergence.

Definition 2.3 If p = q = 2, L is a Hilbert space and U ∈ L2(Ω; C0
#(R

n;L′)), the sequence

(uε) = (uε(x)) ⊂ L2(Ω;L′) is said to Strongly Two-Scale convergences to U = U(x, ξ) if

lim
ε→0

∫

Ω

∣

∣

∣
uε(x) − U(x,

x

ε
)
∣

∣

∣

2

L′

dx = 0. (2.2)

In (2.2) |.|2L′ is the norm in L′ - which can be identified with L - associated with inner product
〈L′ ., .〉L′ of L′ - which is also the inner product 〈L ., .〉L of L and the duality bracket 〈L′ ., .〉L

between L′ and L.

In Definition 2.3, the assumption that U is continuous with respect to ξ is to insure the
ability to compute U(x,x/ε), which is not insured for a function which is defined only almost
everywhere, since the measure of {(x,x/ε),x ∈ Rn} is 0 in Rn×Rn. Nguetseng & Woukeng
[25] gave a definition of Strong Two-Scale Convergence which involves less regularity:
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Definition 2.4 If p = q = 2, L is a Hilbert space and U ∈ L2(Ω;L2
#(R

n;L′)), the sequence

(uε) = (uε(x)) ⊂ L2(Ω;L′) is said to Strongly Two-Scale convergences to U = U(x, ξ) if

∀δ > 0, ∃ε0 and Ũ ∈ L2(Ω; C0
#(R

n;L′)) such that
∫

Ω

∫

[0,1]n

∣

∣

∣U(x, ξ) − Ũ(x, ξ)
∣

∣

∣

2

L′

dxdξ ≤
δ

2
, and (2.3)

∫

Ω

∣

∣

∣uε(x) − Ũ(x,
x

ε
)
∣

∣

∣

2

L′

dx ≤
δ

2
, for every ε ≤ ε0.

2.2 Link with Weak Convergence

Two-Scale Convergence and weak-* convergence are strongly related. In fact Two-Scale
Convergence may be seen are a generalization of weak-* convergence. This link expresses
by the following Proposition.

Proposition 2.1 If a sequence (uε) ⊂ Lp(Ω;L′) Two-Scale converges to U ∈ Lp(Ω;Lp
#(R

n;
L′)), then

uε ⇀

∫

[0,1]n
U(., ξ) dξ weak-* in Lp(Ω;L′). (2.4)

Proof. Choosing test functions φ(x, ξ) = φ(x) - independent of the oscillating variable
ξ - for any φ ∈ Lq(Ω;L)) in the definition of Two-Scale Convergence is possible since
Lq(Ω;L)) ⊂ Lq(Ω; C0

#(R
n;L)). Doing this yields:

lim
ε→0

∫

Ω
〈L′ uε(x), φ(x)〉L dx =

∫

Ω

∫

[0,1]n
〈L′ U(x, ξ), φ(x)〉L dxdξ =

∫

Ω
〈L′

(

∫

[0,1]n
U(x, ξ)dξ

)

, φ(x)〉L dx. (2.5)

which is nothing but (2.4), proving the Proposition.

Remark 2.2 The last equality in (2.5) can be considered as trivial. Nevertheless, I give in
this Remark the details bringing it.

For any fixed integer m, a partition of a subdomain ωm of Ω with mK(m) hypercubes of
measure 1/m and a partition of [0, 1]n with m hypercubes of measure 1/m are considered.
If Ω is compact, ωm = Ω for every m and K(m) is constant and equal to the measure of Ω;
if Ω is not compact, (ωm) is a sequence of subdomains such that ωm ⊂ ωm+1 for every m,
such that the measure of ωm is K(m) < +∞ and ∪m∈N ωm = Ω.
φk, for k = 1, . . . ,mK(m), stands for the value on the k-th hypercube of a piecewise constant
function approximating φ and Uk,l, for k = 1, . . . ,mK(m) and l = 1, . . . ,m, is the value on
the tensor product of the k-th hypercube of ωm and the l-th hypercube of [0, 1]n of a piecewise
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constant function approximating U .

∫

Ω

∫

[0,1]n
〈L′ U(x, ξ), φ(x)〉L dxdξ = lim

m→+∞

mK(m)
∑

k=1

m
∑

=1

1

m2
〈L′ Uk,l, φk〉L =

lim
m→+∞

mK(m)
∑

k=1

1

m
〈L′

(

1

m

m
∑

=1

Uk,l

)

, φk〉L =

∫

Ω
〈L′

(

∫

[0,1]n
U(x, ξ)dξ

)

, φ(x)〉L dx. (2.6)

2.3 Injection Lemma

Now, I turn to the first important ingredient of Two-Scale Convergence which is the fact
that taking functions of Lq(Ω; C0

#(R
n,L)) in ξ = x/ε is a way to inject continuously this

space in Lq(Ω;L).

Lemma 2.1 If φ ∈ Lq(Ω; C0
#(R

n;L)), then for all ε > 0, function [φ]ε : Ω → L defined by

[φ]ε(x) = φ(x,
x

ε
) (2.7)

is mesurable and satisfies

‖[φ]ε‖Lq(Ω;L) ≤ ‖φ‖Lq(Ω;C0
#
(Rn;L)) . (2.8)

Proof. The first point is to see that φ ∈ Lq(Ω; C0
#(R

n;L)) if and only if there exists a set
E of measure zero in Ω such that

∀x ∈ Ω \ E, ξ 7→ φ(x, ξ) is continuous and periodic, (2.9)

∀ξ ∈ [0, 1]n, x 7→ φ(x, ξ) is mesurable over Ω, (2.10)

x 7→ sup
ξ∈[0,1]n

|φ(x, ξ)|L is Lq(Ω;R+). (2.11)

Remark 2.3 This equivalence property is a consequence of integration theory but is not
completely obvious. Nevertheless, I take it for granted. In this Remark, I just recall mile-
stones that are needed to get it.

Denoting Lq(Ω; C0
#(R

n;L)) means that measured space [Ω, completed of Borelian σ−alge-
bra, Lebesgue measure] in considered.
Since L is a separable Banach space, C0

#(R
n;L) is also a separable Banach space. Hence,

the following measurable space [C0
#(R

n;L), Borelian σ−algebra] may be considered.

Then, the use of the definition of strictly measurable function Ω → C0
#(R

n;L) is needed.
(A function f is strictly measurable if there exists a set E′ of measure zero in Ω such that
f(Ω \ E′) is included in a separable subset of C0

#(R
n;L), and, if the inverse image by f of

any set of the σ−algebra of C0
#(R

n,L) belongs to σ−algebra of Ω.)
With this, the integration theory can be implemented, involving step functions Ω →

C0
#(R

n,L) (which is quite long) and characterizations of integrable functions are gotten.
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Among them, there is the following one: A function f : Ω → C0
#(R

n;L) is integrable if it is
strictly measurable and if

∫

Ω
‖f‖C0

#
(Rn;L) dx < +∞. (2.12)

Finally, spaces Lp(Ω; C0
#(R

n;L)) and Lq(Ω; C0
#(R

n;L)) can be built. Characterization of

Lq(Ω; C0
#(R

n;L)) by (2.9), (2.10) and (2.11) can also be gotten.

The second point consists in fixing ε. From (2.9), for all fixed ε, [φ]ε(x) = φ(x,
x

ε
) is well

defined on Ω \ E.
Now, the goal is to prove that [φ]ε is mesurable. For this purpose, for any fixed integer m,

a partition of a subdomain ωm of Ω with mK(m) hypercubes of measure 1/m is considered.
(If Ω is compact, ωm = Ω for every m and K(m) is constant and equal to the measure of
Ω; if Ω is not compact, (ωm) is a sequence of subdomains such that ωm ⊂ ωm+1 for every
m, such that the measure of ωm is K(m) and ∪m∈N ωm = Ω.)
For every i = 1, . . . ,mK(m), the center xi of the i-th hypercube and the characteristic
function ιi of the i-th hypercube are considered. With this, function ηε

m defined by

ηε
m(x) =

mK(m)
∑

i=1

xi

ε
ιi(x), (2.13)

is a step function approximating
x

ε
.

Considering now function [φ]εm defined by

[φ]εm(x) = φ(x,ηε
m(x)), (2.14)

clearely,

∀x ∈ Ω \ E, [φ]εm(x) → [φ]ε(x) as m→ +∞, (2.15)

and, since

[φ]εm(x) = φ(x,ηε
m(x)) =

mK(m)
∑

i=1

φ(x,
xi

ε
) ιi(x), (2.16)

and because of (2.10), [φ]εm is a finite sum of measurable functions, hence is measurable.
Hence, [φ]ε is almost everywhere the limit of a measurable function. Hence it is measurable.

The last point is the proof of (2.8). From (2.11) it is deduced that

‖φ‖q
Lq(Ω;C0

#
(Rn;L))

=

∫

Ω

(

sup
ξ∈[0,1]n

|φ(x, ξ)|L

)q

dx < +∞. (2.17)

On the other hand

‖[φ]ε‖Lq(Ω;L) =

∫

Ω

∣

∣

∣φ(x,
x

ε
)
∣

∣

∣

q

L
dx ≤

∫

Ω

(

sup
ξ∈[0,1]n

|φ(x, ξ)|L

)q

dx = ‖φ‖q
Lq(Ω;C0

#
(Rn;L))

, (2.18)
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which is (2.8), ending the proof of the Lemma.

This Injection Lemma is supplemented by a property giving information on the asymp-
totic behavior of [φ]ε as ε goes to zero.

Proposition 2.2 Under the same assumption as in Lemma 2.1, function [φ]ε defined by
(2.7) satisfies:

lim
ε→0

‖[φ]ε‖Lq(Ω;L) = lim
ε→0

∫

Ω

∣

∣

∣φ(x,
x

ε
)
∣

∣

∣

q

L
dx =

∫

Ω
|φ(x, ξ)|qL dxdξ = ‖φ‖Lq(Ω;Lq(Rn;L)) . (2.19)

Proof. For any fixed integer m, a partition of [0, 1]n with m hypercubes of measure 1/m
is considered. the center of the i-th hypercube is called ξi and its characteristic function,
extended by periodicity over Rn is called χi. With φ is associated the sequence of function
φ̃m defined by

φ̃m(x, ξ) =
m
∑

i=1

φ(x, ξi)χi(ξ), (2.20)

The second step consists in considering [χi]
ε defined by

[χi]
ε(x) = χi(

x

ε
). (2.21)

using Lemma 1.1, generalized to the multidimensional setting, the following is deduced:

[χi]
ε ⇀

∫

[0,1]n
χi(ξ) dξ =

1

m
in L∞(Ω;R) weak-*, (2.22)

([χi]
ε)q ⇀

∫

[0,1]n
χq
i (ξ) dξ =

1

m
in L∞(Ω;R) weak-*. (2.23)

Hence

lim
ε→0

∫

Ω

∣

∣

∣φ̃m(x,
x

ε
)
∣

∣

∣

q

L
dx = lim

ε→0

∫

Ω

m
∑

i=1

|φ(x, ξi)|
q
L ([χi]

ε)qdx =

m
∑

i=1

1

m

∫

Ω
|φ(x, ξi)|

q
L dx =

∫

Ω

∫

[0,1]n

∣

∣

∣φ̃m(x, ξ)
∣

∣

∣

q

L
dxdξ. (2.24)

The goal of the third step is to get, as m→ 0,

φ̃m → φ in Lq(Ω; C0
#(R

n;L)). (2.25)

For this purpose, the function Γm : Ω → R defined by

Γm(x) = sup
ξ∈[0,1]n

∣

∣

∣φ̃m(x, ξ)− φ(x, ξ)
∣

∣

∣

q

L
, (2.26)

is used. Since ξ 7→ φ̃m(x, ξ)− φ(x, ξ) is piecewise continuous,

sup
ξ∈[0,1]n

∣

∣

∣
φ̃m(x, ξ)− φ(x, ξ)

∣

∣

∣

q

L
= sup

ξ∈[0,1]n∩Qn

∣

∣

∣
φ̃m(x, ξ)− φ(x, ξ)

∣

∣

∣

q

L
. (2.27)
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Hence, Γm is a supremum on an countable set of measurable functions and, as such, mea-
surable.

Moreover,

Γm(x) → 0 a.e. on Ω, (2.28)

0 ≤ Γm(x) ≤ 2 sup
ξ∈[0,1]n

|φ(x, ξ)|qL , (2.29)

and supξ∈[0,1]n |φ(x, ξ)|
q
L is an integrable function. Hence, invoking the Lebesgue Dominated

Convergence Theorem, it may be deduced that, as m→ 0:

Γm(x) → 0 in L1(Ω;R), (2.30)

and consequently (2.25).
The last step consists in using (2.24) and (2.25) and writing

‖[φ]ε‖qLq(Ω;L) =

∫

Ω

∣

∣

∣
φ(x,

x

ε
)
∣

∣

∣

q

L
dx =

(∫

Ω

∣

∣

∣
φ(x,

x

ε
)
∣

∣

∣

q

L
dx−

∫

Ω

∣

∣

∣
φ̃m(x,

x

ε
)
∣

∣

∣

q

L
dx

)

+

(∫

Ω

∣

∣

∣
φ̃m(x,

x

ε
)
∣

∣

∣

q

L
dx−

∫

Ω

∣

∣

∣
φ̃m(x, ξ)

∣

∣

∣

q

L
dxdξ

)

+

(∫

Ω

∣

∣

∣
φ̃m(x, ξ)

∣

∣

∣

q

L
dxdξ

)

. (2.31)

The last term of the right hand side of this formula satisfies
(∫

Ω

∣

∣

∣φ̃m(x, ξ)
∣

∣

∣

q

L
dxdξ

)

→

(∫

Ω
|φ(x, ξ)|qL dxdξ

)

as m→ +∞, (2.32)

the second term satisfies
(∫

Ω

∣

∣

∣
φ̃m(x,

x

ε
)
∣

∣

∣

q

L
dx−

∫

Ω

∣

∣

∣φ̃m(x, ξ)
∣

∣

∣

q

L
dxdξ

)

→ 0 as ε→ 0, (2.33)

and concerning the first term,

∣

∣

∣

∣

∫

Ω

∣

∣

∣φ(x,
x

ε
)
∣

∣

∣

q

L
dx−

∫

Ω

∣

∣

∣φ̃m(x,
x

ε
)
∣

∣

∣

q

L
dx

∣

∣

∣

∣

≤

∫

Ω

∣

∣

∣

∣

∣

∣φ(x,
x

ε
)
∣

∣

∣

q

L
−
∣

∣

∣φ̃m(x,
x

ε
)
∣

∣

∣

q

L

∣

∣

∣ dx

≤

∫

Ω
sup

ξ∈[0,1]n

∣

∣

∣
φ(x, ξ)− φ̃m(x, ξ)

∣

∣

∣

q

L
dx → 0 as m→ +∞. (2.34)

Using these three convergence results in (2.31) give (2.19) and prove the proposition.

2.4 Two-Scale Convergence criterion

Once the Injection Lemma gotten, the following Theorem, which is important for Homoge-
nization issues, may be proven relatively easily.

Theorem 2.1 If a sequence (uε) is bounded in Lp(Ω;L′), i.e. if

‖uε‖Lp(Ω;L′) =

(∫

Ω
|uε(x)|pL′ dx

) 1
p

≤ c, (2.35)
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for a constant c independent of ε, then, there exists a profile U ∈ Lp(Ω;Lp
#(R

n;L′)) such
that, up to a subsequence,

(uε) Two-Scale converges to U . (2.36)

Proof. In a first stage of the proof, the Injection Lemma and assumption (2.35) is used to
get that, for any function φ = φ(x, ξ) ∈ Lq(Ω; C0

#(R
n;L)) ((1/p) + (1/q) = 1),

∣

∣

∣

∣

∫

Ω
〈L′ uε(x), φ(x,

x

ε
)〉L dx

∣

∣

∣

∣

≤ c ‖[φ]ε‖Lq(Ω,L) (2.37)

≤ c‖φ‖Lq(Ω;C0
#
(Rn;L)). (2.38)

Hence the sequence (µε) of applications, where

µε : Lq(Ω; C0
#(R

n;L)) → R

φ 7→

∫

Ω
〈L′ uε(x), φ(x,

x

ε
)〉L dx,

(2.39)

is bounded in the dual (Lq(Ω; C0
#(R

n;L)))′ of Lq(Ω; C0
#(R

n;L)) which is a separable space.

Remark 2.4 The norm on (Lq(Ω; C0
#(R

n;L)))′ is

‖µ‖ = sup
0 6=φ∈Lq(Ω;C0

#
(Rn;L))

|〈µ, φ〉|

‖φ‖Lq(Ω;C0
#
(Rn;L))

. (2.40)

Since (µε) is the dual of a separable space, extracting a subsequence, there exists an appli-
cation µ ∈ (Lq(Ω; C0

#(R
n;L)))′

µε ⇀ µ in (Lq(Ω; C0
#(R

n;L)))′ weak-*. (2.41)

In particular, it implies

〈µε, φ〉 → 〈µ, φ〉, (2.42)

for any φ ∈ Lq(Ω; C0
#(R

n;L)).

The beginning of the second stage of the proof consists in making ε→ 0 in (2.37). The
left hand side converges towards 〈µ, φ〉 and, according to Proposition 2.2, the right hand side
converges towards c ‖φ‖Lq(Ω;Lq(Rn;L)). Hence, for every function in φ ∈ Lq(Ω; C0

#(R
n;L)),

〈µ, φ〉 ≤ c ‖φ‖Lq(Ω;Lq(Rn;L)) . (2.43)

Knowing that Lq(Ω; C0
#(R

n;L)) is dense in Lq(Ω;Lq
#(R

n;L′)) - whose dual is Lp(Ω;Lp
#(R

n;L)),
applying the Riez Representation Theorem, it may be deduced that there exists

U ∈ Lp(Ω;Lp
#(R

n;L′)) such that 〈µ, φ〉 =

∫

Ω

∫

[0,1]n
〈L′ U(x, ξ), φ(x, ξ)〉L dxdξ, (2.44)
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and consequently, such that, up to a subsequence, as ε goes to zero,

∫

Ω
〈L′ uε(x), φ(x,

x

ε
)〉L dx →

∫

Ω

∫

[0,1]n
〈L′ U(x, ξ), φ(x, ξ)〉L dxdξ, (2.45)

which is exactly (2.1) of definition 2.2, proving (2.36) and so ending the proof.

2.5 Strong Two-Scale Convergence criterion

In this section p = q = 2 and L and L′ are the same separable Hilbert space. In order to go
on gradually, I begin by the following very simple result.

Lemma 2.2 If ψ = ψ(x, ξ) ∈ L2(Ω; C0
#(R

n;L)) then the sequence of functions ([ψ]ε) ⊂

L2(Ω; C0
#(R

n;L)) defined by

[ψ]ε(x) = ψ(x,
x

ε
), (2.46)

Strongly Two-Scale converges towards ψ.

Proof. Applying directly (2.19) of Proposition 2.2, it can be gotten:

∫

Ω
〈L ψ(x,

x

ε
), φ(x,

x

ε
)〉L dx →

∫

Ω

∫

[0,1]n
〈L ψ(x, ξ), φ(x, ξ)〉L dxdξ, (2.47)

for all function φ ∈ L2(Ω; C0
#(R

n;L)), meaning that ([ψ]ε) Two-Scale converges towards ψ.
Now, in view of (2.2) in Definition 2.3, since

∫

Ω

∣

∣

∣
[ψ]ε(x) − ψ(x,

x

ε
)
∣

∣

∣

2

L′

dx → 0, (2.48)

is completely obvious, the Strong Two-Scale Convergence is insured.

As easyly, the following result may also be proven.

Proposition 2.3 If ψ is like in Lemma 2.2,

‖[ψ]ε‖L2(Ω;L) =

(∫

Ω
〈L ψ(x,

x

ε
), ψ(x,

x

ε
)〉L dx

) 1
2

→

(

∫

Ω

∫

[0,1]n
〈L ψ(x, ξ), ψ(x, ξ)〉L dxdξ

) 1
2

= ‖ψ‖L2(Ω;L2
#
(Rn;L)) . (2.49)

Now I will give a result, that was already evoked by Lemma 2.2, establishing the link
between Strong Two-Scale Convergence and Two-Scale Convergence.

Theorem 2.2 If a sequence (uε) ⊂ L2(Ω;L)) Strongly Two-Scale Converges towards U and
if U ∈ L2(Ω; C0

#(R
n;L)), then it Two-Scale Converges towards U .
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Proof. Considering the following quantity

Iε =

∫

Ω
〈L uε(x)− U(x,

x

ε
), φ(x,

x

ε
)〉L dx, (2.50)

for any function φ ∈ L2(Ω; C0
#(R

n;L)), on the one hand this quantity satisfies

|Iε| ≤

(∫

Ω

∣

∣

∣
uε(x)− U(x,

x

ε
)
∣

∣

∣

2

L
dx

) 1
2
(∫

Ω

∣

∣

∣
φ(x,

x

ε
)
∣

∣

∣

2

L
dx

) 1
2

→ 0, (2.51)

as ε→ 0, because of the Strong Two-Scale Convergence. On the other hand,

Iε =

∫

Ω
〈L uε(x), φ(x,

x

ε
)〉L dx−

∫

Ω
〈L U(x,

x

ε
), φ(x,

x

ε
)〉L dx, (2.52)

and according to Lemma 2.2,

∫

Ω
〈L U(x,

x

ε
), φ(x,

x

ε
)〉L dx →

∫

Ω

∫

[0,1]n
〈L U(x, ξ), φ(x, ξ)〉L dxdξ. (2.53)

Using (2.51) and (2.53) it is gotten that, as ε goes to 0,

∫

Ω
〈L uε(x), φ(x,

x

ε
)〉L dx →

∫

Ω

∫

[0,1]n
〈L U(x, ξ), φ(x, ξ)〉L dxdξ, (2.54)

i.e. (uε) Two-Scale Converges to U , ending the proof.

Now, I give the important Theorem concerning Strong Two-Scale Convergence.

Theorem 2.3 If a sequence (uε) ⊂ L2(Ω;L) Two-Scale converges towards a profile U , if
U ∈ L2(Ω; C0

#(R
n;L)) and if

lim
ε→0

‖uε‖L2(Ω;L) = ‖U‖L2(Ω;L2([0,1]n;L) , (2.55)

then

(uε) Strongly Two-Scale converges to U, (2.56)

and, for any sequence (vε) ⊂ L2(Ω;L) Two-Scale converging towards a profile V ,

〈L uε, vε〉L ⇀

∫

[0,1]n
〈L U(., ξ), V (., ξ)〉L dξ, in D′(Ω). (2.57)

Proof. The proof of the first part of the Theorem consists just in computing:

∫

Ω

∣

∣

∣
uε(x)− U(x,

x

ε
)
∣

∣

∣

2

L
dx =

∫

Ω
|uε(x)|2L dx− 2

∫

Ω
〈L uε(x), U(x,

x

ε
)〉L dx+

∫

Ω

∣

∣

∣
U(x,

x

ε
)
∣

∣

∣

2

L
dx, (2.58)
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and in passing to the limit, as ε goes to 0, using the assumptions of the Theorem,

lim
ε→0

∫

Ω

∣

∣

∣uε(x)− U(x,
x

ε
)
∣

∣

∣

2

L
dx = lim

ε→0

∫

Ω
|uε(x)|2L dx

− 2

∫

Ω

∫

[0,1]n
〈L U(x, ξ), U(x, ξ)〉L dxdξ +

∫

Ω

∫

[0,1]n
|U(x, ξ)|2L dxdξ = 0. (2.59)

In order to prove the second part of the Theorem, for any test function ϕ ∈ D(Ω) the
following quantity is computed:

〈D′ 〈L uε, vε〉L, ϕ〉D =

∫

Ω
〈L uε(x), vε(x)〉L ϕ(x) dx =

∫

Ω
〈L U(x,

x

ε
), vε(x)〉L ϕ(x) dx−

∫

Ω
〈L uε(x)− U(x,

x

ε
), vε(x)〉L ϕ(x) dx. (2.60)

Since uε(x)− U(x, xε ) → 0, the second term of the right hand side is such that
∫

Ω
〈L uε(x)− U(x,

x

ε
), vε(x)〉L ϕ(x) dx → 0, (2.61)

as ε goes to 0. A direct calculation gives the behavior of the first term as ε goes to 0:

∫

Ω
〈L U(x,

x

ε
), vε(x)〉L ϕ(x) dx =

∫

Ω
〈L vε(x), U(x,

x

ε
)〉L ϕ(x) dx =

∫

Ω
〈L vε(x), ϕ(x)U(x,

x

ε
)〉L dx →

∫

Ω

∫

[0,1]n
〈L V (x, ξ), ϕ(x)U(x, ξ)〉L dxdξ

=

∫

Ω

∫

[0,1]n
〈L V (x, ξ), U(x, ξ)〉L ϕ(x) dxdξ =

∫

Ω

∫

[0,1]n
〈L U(x, ξ), V (x, ξ)〉L ϕ(x) dxdξ,

(2.62)

coupling (2.60), (2.61) and (2.62) gives

〈D′ 〈L uε, vε〉L, ϕ〉D →

∫

Ω

∫

[0,1]n
〈L U(x, ξ), V (x, ξ)〉L ϕ(x) dxdξ (2.63)

for any test function ϕ ∈ D(Ω), as ε goes to 0, i.e (2.57), ending the proof.

3 Application : Homogenization of linear Singularly Perturbed

Hyperbolic Equations

Here, I show how to homogenize a linear Singularly Perturbed Hyperbolic Equation with
a method based on Two-Scale Convergence. As said in the Introduction, this equation is
related to Tokamak Plasma Physics. The setting is a very simplified one. A more general
setting may be found in Frénod, Raviart & Sonnendrücker [14] despite the presentation is
different: In [14], we used Two-Scale Convergence to justify Asymptotic Expansion while
here the Two-Scale Convergence based method is used as a constructive Homogenization
Method.
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3.1 Equation of interest and setting

The considered equation is the following:

∂uε

∂t
+ a · ∇uε +

1

ε
b · ∇uε = 0, (3.1)

uε|t=0 = u0. (3.2)

This equation is set for uε = uε(t,x) with x ∈ Rd and t ∈ [0, T ), for a given T > 0.
Concerning a, it is assumed that a = a(x) does not depend on time t, is very regular
and that its divergence ∇ · a is zero. (Those assumptions can be relaxed but it complicates
calculations.) Concerning b the following assumptions (which can essentially not be relaxed)
are done: b = b(x) =Mx, where M is a matrix such that trM = 0, and such that τ 7→ eτM

is periodic of period 1.

Remark 3.1 According to those assumptions, the divergence ∇ · b of b is zero, and since
X(τ) = eτMx is solution to

∂X

∂τ
=MX(= b(X)), X(0) = x, (3.3)

the characteristics associated with operator (b · ∇) are periodic of period 1 and preserve the
Lebesgue measure.

3.2 A priori estimate

Multiplying equation 3.1 by uε and integrating over Rd gives

d

(∫

Rd

|uε|2 dx

)

dt
= 0, (3.4)

since
∫

Rd

a · ∇uεuε dx = −

∫

Rd

a · ∇uεuε dx−

∫

Rd

∇ · a uεuε dx = −

∫

Rd

a · ∇uεuε dx = 0.

(3.5)

Integrating 3.4 from 0 to t yields
∫

Rd

|uε(t, .)|2 dx =

∫

Rd

|u0|
2 dx, (3.6)

and consequently

‖uε‖L2([0,T );L2(Rd)) =

∫ T

0

∫

Rd

|uε|2 dxdt = T

∫

Rd

|u0|
2 dx. (3.7)

As a consequence, the following result can be claimed.

Lemma 3.1 If u0 ∈ L2(Rd), then the sequence (uε) is bounded in L2([0, T );L2(Rd)). Hence,
up to a subsequence

(uε) Two-Scale Converges to U = U(t, τ,x) ∈ L2([0, T );L2
#((R;L

2(Rd))), (3.8)

uε ⇀ u =

∫ 1

0
U(., τ, .) dτ in L2([0, T );L2(Rd)) weak-*. (3.9)
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3.3 Weak Formulation with Oscillating Test Functions

From any function φ = φ(t, τ,x) ∈ C1([0, T ); C1
#((R; C

1(Rd))) it is possible to define [φ]ε by

[φ]ε(t,x) = φ(t,
t

ε
,x). (3.10)

Since

∂[φ]ε

∂t
=

[

∂φ

∂t

]ε

+
1

ε

[

∂φ

∂τ

]ε

, (3.11)

multiplying (3.1) by [φ]ε and integrating the result by parts, the following Weak Formulation
with Oscillating Test Functions is gotten:

∫ T

0

∫

Rd

uε
([

∂φ

∂t

]ε

+
1

ε

[

∂φ

∂τ

]ε

+ a · [∇φ]ε +
1

ε
b · [∇φ]ε

)

dxdt+

∫

Rd

u0 φ(0, 0, .) dx = 0.

(3.12)

3.4 Order 0 Homogenization - Constraint

Multiplying Weak Formulation with Oscillating Test Functions (3.12) by ε and passing to
the limit using the Two-Scale Convergence, we obtain:

∫ T

0

∫ 1

0

∫

Rd

U

(

∂φ

∂τ
+ b · ∇φ

)

dxdτdt = 0, (3.13)

that is nothing but a weak formulation of

∂U

∂τ
+ b · ∇U = 0. (3.14)

This last equation says that U is constant along the characteristics of operator (b·∇). Hence
the following Lemma is true.

Lemma 3.2 There exists a function V = V (t,y) ∈ L2([0, T );L2(Rd)) such that U(t, τ,x) =
V (t, e−τMx).

Remark 3.2 The result of this Lemma may also be gotten by direct computations. For
instance,

∂(V (t, e−τMx))

∂τ
+ b · ∇(V (t, e−τMx)) =

∇V (t, e−τMx)) · ((−e−τM )Mx) + ((e−τM )Mx) · ∇V (t, e−τMx)) = 0. (3.15)
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3.5 Order 0 Homogenization - Equation for V

From any regular function γ = γ(t,y) ∈ C1([0, T ); C1(Rd)), φ defined by φ(t, τ,x) =
γ(t, e−τMx) is regular and satisfies

∂φ

∂τ
+ b · ∇φ = 0. (3.16)

Using such functions in Weak Formulation with Oscillating Test Functions (3.12) cancels
the terms in factor of 1/ε:

∫ T

0

∫

Rd

uε
([

∂φ

∂t

]ε

+ a · [∇φ]ε
)

dxdt+

∫

Rd

u0 φ(0, 0, .) dx = 0. (3.17)

Passing to the limit yields

∫ T

0

∫ 1

0

∫

Rd

U(t, τ,x)

(

∂φ

∂t
(t, τ,x) + a(x) · ∇φ(t, τ,x)

)

dxdτdt+

∫

Rd

u0 φ(0, 0, .) dx = 0,

(3.18)

and using expression of U in terms of V and of φ in terms of γ, since

∂φ

∂t
(t, τ,x) =

∂γ

∂t
(t, e−τMx) and ∇φ(t, τ,x) = (e−τM )T∇γ(t, e−τMx), (3.19)

gives

∫ T

0

∫ 1

0

∫

Rd

V (t, e−τMx)

(

∂γ

∂t
(t, e−τMx) + e−τMa(x) · ∇γ(t, e−τMx)

)

dxdτdt

+

∫

Rd

u0(x) γ(0,x) dx = 0. (3.20)

In the first integral of the left hand side we make the change of variables (t, τ,x) 7→ (t, τ,y =
e−τMx) which preserves the Lebesgue measure and which reverse transform is (t, τ,y) 7→
(t, τ,x = eτMy). It gives

∫ T

0

∫ 1

0

∫

Rd

V (t,y)

(

∂γ

∂t
(t,y) + e−τMa(eτMy) · ∇γ(t,y)

)

dydτdt

+

∫

Rd

u0(y) γ(0,y) dy = 0, (3.21)

or

∫ T

0

∫

Rd

V (t,y)

(

∂γ

∂t
(t,y) +

(∫ 1

0
e−τMa(eτMy) dτ

)

· ∇γ(t,y)

)

dydt

+

∫

Rd

u0(y) γ(0,y) dy = 0, (3.22)

Which says:
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Theorem 3.1 Under assumption of Lemma 3.1, function V (t,y) linked by Lemma 3.2 with
the Two-Scale limit U(t, τ,x) of (uε) is solution to

∂V

∂t
+

(∫ 1

0
e−σMa(eσMy) dσ

)

· ∇V = 0, (3.23)

V|t=0 = u0. (3.24)

Remark 3.3 Clearly, the solution of (3.23) and (3.24) is unique. As a consequence, the
whole sequence (uε) converges (Two-Scale towards U , and weak-* towards u)

3.6 Order 1 Homogenization - Preparations: equation for U and u

Because of the linearity of the problem, it is possible to deduce from (3.23) an equa-
tion for U also. Indeed, since ∇U(t, τ,x) = (e−τM )T∇V (t, e−τMx) or ∇V (t, e−τMx) =
(eτM )T∇U(t, τ,x), writing (3.23) in y = e−τMx, we obtain that

0 =
∂
(

V (t, e−τMx)
)

∂t
+

(∫ 1

0
e−σMa(eσMe−τMx)dσ

)

· ∇V (t, e−τMx)

=
∂U

∂t
+

(

eτM
∫ 1

0
e−σMa(e(σ−τ)Mx)dσ

)

· ∇U =
∂U

∂t
+

(∫ 1

0
e(τ−σ)Ma(e(σ−τ)Mx)dσ

)

· ∇U

=
∂U

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)

· ∇U, (3.25)

the last equality being gotten from periodicity of σ 7→ eσM .
Now, since (

∫ 1
0 e

−σMa(e(σ)Mx)dσ) does not depend on τ and because of (3.9), integrating
(3.25) gives

∂u

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)

· ∇u = 0. (3.26)

Finally, since u(0,x) =

∫ 1

0
U(0, τ,x) dτ and U(0, τ,x) = V (0, e−τMx) = u0(e

−τMx),

the following Lemma is true

Lemma 3.3 Under assumption of Lemma 3.1, the Two-Scale limit U(t, τ,x) of (uε) and
its weak-* limit u are solutions to

∂U

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)

· ∇U = 0, (3.27)

U|t=0 = u0(e
−τMx), (3.28)

and

∂u

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)

· ∇u = 0, (3.29)

u|t=0 =

∫ 1

0
u0(e

−τMx) dσ. (3.30)
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3.7 Order 1 Homogenization - Strong Two-Scale convergence of U

Because

∂(uε)2

∂t
= 2uε

∂uε

∂t
and ∇(uε)2 = 2uε∇uε, (3.31)

multiplying (3.1) by 2uε, we obtain that (uε)2 is solution to:

∂(uε)2

∂t
+ a · ∇(uε)2 +

1

ε
b · ∇(uε)2 = 0, (3.32)

(uε)2|t=0 = u20. (3.33)

Hence if u20 is in L2(Rd), i.e. if u0 ∈ L4(Rd), it is possible to do the same for equation (3.32)
as for (3.1) and find that (uε)2 Two-Scale converges to a profile, called Z, and that Z is
solution to

∂Z

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)

· ∇Z = 0, (3.34)

Z|t=0 = u20(e
−τMx), (3.35)

leading to the conclusion that Z = U2 or

((uε)2) Two-Scale Converges to U2. (3.36)

From (3.36), it is easy to get that

‖uε‖L2([0,T );L2(Rd)) → ‖U‖L2([0,T );L2
#
((R;L2(Rd))) , (3.37)

as ε→ 0.
Indeed, we only need to consider for any δ > 0 the regular function βδ = βδ(x) which is
such that βδ(x) = 1 when |x| < 1/δ, βδ(x) = 0 when |x| > 1/δ+1 and 0 ≤ βδ ≤ 1. Clearly
from (3.36), for any δ,

∫ T

0

∫

Rd

(uε)2βδ dxdt→

∫ T

0

∫ 1

0

∫

Rd

U2βδ dxdτdt, (3.38)

and as δ → 0,

∫ T

0

∫

Rd

(uε)2βδ dxdt→ ‖uε‖L2([0,T );L2(Rd)) , (3.39)

∫ T

0

∫

Rd

U2βδ dxdτdt→ ‖U‖L2([0,T );L2
#
((R;L2(Rd))) . (3.40)

Moreover, if u0 is in C0(Rd) then, uε ∈ C0([0, T ); C0(Rd)), U ∈ C0([0, T ); C0
#((R; C

0(Rd)))

and V ∈ C0([0, T ); C0(Rd)). This can be directly deduced from the equations satisfied by
those functions.

Hence Theorem 2.3 can be invoked to deduce the next Lemma.
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Lemma 3.4 If u0 ∈ (L2 ∩ L4 ∩ C0)(Rd), then in addition to every already stated results,

(uε) Strongly Two-Scale Converges to U. (3.41)

Having this result, we know that (uε − [U ]ε) → 0, we now can show more:
(

(uε − [U ]ε)/ε
)

Two-Scale Converges.

3.8 Order 1 Homogenization - Function W1

In a first stage, from equation (3.1), (3.14) and (3.27) we deduce

∂(uε − [U ]ε)

∂t
+ a · ∇(uε − [U ]ε) +

1

ε
b · ∇(uε − [U ]ε)

= −

(

a−

∫ 1

0
e−σMa(eσMx)dσ

)

· ∇[U ]ε, (3.42)

(uε − [U ]ε)|t=0 = 0. (3.43)

Multiplying this equation by 1/ε we obtain

∂

(

uε − [U ]ε

ε

)

∂t
+ a · ∇

(

uε − [U ]ε

ε

)

+
1

ε
b · ∇

(

uε − [U ]ε

ε

)

= −
1

ε

(

a−

∫ 1

0
e−σMa(eσMx)dσ

)

· ∇[U ]ε, (3.44)

(

uε − [U ]ε

ε

)

|t=0

= 0. (3.45)

The left hand side of this equation is the same as in (3.1) but the right hand side is in factor
of 1/ε.

Hence, in a second stage, we introduce a function W1 =W1(t, τ,y) such that

W̃1 = W̃1(t, τ,x) =W1(t, τ, e
−τMx), (3.46)

satisfies

∂W̃1

∂τ
+ b · ∇W̃1 = −

(

a−

∫ 1

0
e−σMa(eσMx)dσ

)

· ∇U. (3.47)

Because of (3.47), considering [W̃1]
ε = [W̃1]

ε(t,x) = W̃1(t, t/ε,x),

∂[W̃1]
ε

∂t
+ a · ∇[W̃1]

ε +
1

ε
b · ∇[W̃1]

ε

=

[

∂W̃1

∂t

]ε

+
1

ε

[

∂W̃1

∂τ

]ε

+ a · ∇[W̃1]
ε +

1

ε
b · ∇[W̃1]

ε

=

[

∂W̃1

∂t

]ε

+ a · ∇[W̃1]
ε −

1

ε

(

a−

∫ 1

0
e−σMa(eσMx)dσ

)

· ∇[U ]ε. (3.48)
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Subtracting (3.48) from (3.42) gives

∂

(

uε − [U ]ε

ε
− [W̃1]

ε

)

∂t
+ a · ∇

(

uε − [U ]ε

ε
− [W̃1]

ε

)

+
1

ε
b · ∇

(

uε − [U ]ε

ε
− [W̃1]

ε

)

= −

[

∂W̃1

∂t

]ε

− a · ∇[W̃1]
ε, (3.49)

(

uε − [U ]ε

ε
− [W̃1]

ε

)

|t=0

= −[W̃1]
ε
|t=0. (3.50)

The goal of the third stage is to give an expression of the function W1: Function W̃1 is
solution of (3.47) if and only if W1 is solution to

∂W1

∂τ
= −

(

a(eτMy)−

∫ 1

0
e−σMa(e(σ+τ)My)dσ

)

· ∇U(t, τ, eτMy). (3.51)

Beside this, ∇U(t, τ, eτMy) = (e−τM )T ∇
(

U(t, τ, eτMy)
)

= (e−τM )T∇V (t,y), hence W1 is
solution to

∂W1

∂τ
= −

(

e−τMa(eτMy)−

∫ 1

0
e−(σ+τ)Ma(e(σ+τ)My) dσ

)

· ∇V (t,y)

= −

(

e−τMa(eτMy)−

∫ 1

0
e−σMa(eσMy) dσ

)

· ∇V (t,y), (3.52)

(using once again periodicity of τ 7→ eτM ) which is:

W1(t, τ,y) = −

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

)

· ∇V (t,y). (3.53)

This allows us to compute [W̃1]
ε. In particular in (3.50), [W̃1]

ε
|t=0 = 0 and if u0 is regular

(for instance in C2(R2)) in addition to assumptions of Lemma 3.4, because of equation (3.27)
V satisfies, it is easily gotten that

∥

∥

∥

∥

∥

−

[

∂W̃1

∂t

]ε

− a · ∇[W̃1]
ε

∥

∥

∥

∥

∥

L∞([0,T );L2(Rd))

≤ C1, (3.54)

for a constant C1 not depending on ε.

3.9 Order 1 Homogenization - A priori estimate and convergence

Multiplying (3.49) by ((uε − [U ]ε)/ε− [W̃1]
ε), we get

d

(

∫

Rd

∣

∣

∣

∣

uε − [U ]ε

ε
− [W̃1]

ε

∣

∣

∣

∣

2

dx

)

dt
≤ C1

(

∫

Rd

∣

∣

∣

∣

uε − [U ]ε

ε
− [W̃1]

ε

∣

∣

∣

∣

2

dx

) 1
2

, (3.55)

from which an estimate can be gotten and expressed in the following Lemma.
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Lemma 3.5 If u0 ∈ (L2∩L4∩C2)(Rd), then in addition to every already stated results, the
sequences

uε − [U ]ε

ε
− [W̃1]

ε, and consequently
uε − [U ]ε

ε
, (3.56)

are bounded in L2([0, T );L2(Rd)). Then, up to subsequences,
(

uε − [U ]ε

ε

)

Two-Scale Converges to U1 = U1(t, τ,x) ∈ L2([0, T );L2
#((R;L

2(Rd))),

(3.57)
(

uε − [U ]ε

ε
− [W̃1]

ε

)

Two-Scale Converges to U1 − W̃1, (3.58)

where W1 is defined in (3.53) and W̃1 by (3.46).

3.10 Order 1 Homogenization - Constraint

For any Oscillating Test Function φ = φ(t, τ,x) ∈ C1([0, T ); C1
#((R; C

1(Rd))), it is possible
to write the following Weak Formulation:

∫ T

0

∫

Rd

(

uε − [U ]ε

ε
− [W̃1]

ε

)([

∂φ

∂t

]ε

+
1

ε

[

∂φ

∂τ

]ε

+ a · [∇φ]ε +
1

ε
b · [∇φ]ε

)

dxdt

=

∫ T

0

∫

Rd

(

−

[

∂W̃1

∂t

]ε

− a · ∇[W̃1]
ε

)

[φ]εdxdt. (3.59)

Multiplying this equation by ε and passing to the limit yields the next constrain equation:

∂(U1 − W̃1)

∂τ
+ b · ∇(U1 − W̃1) = 0. (3.60)

Hence the following Lemma is true.

Lemma 3.6 There exists a function V1 = V1(t,y) ∈ L2([0, T );L2(Rd)) such that U1(t, τ,x)−
W̃1(t, τ,x) = V1(t, e

−τMx) or, in other words, such that

U1(t, τ,x) = V1(t, e
−τMx) +W1(t, τ, e

−τMx), (3.61)

where W1 is defined in (3.53).

3.11 Order 1 Homogenization - Equation for V1

Using now in (3.59) Oscillating Test Function φ(t, τ,x) = γ(t, e−τMx) for any regular func-
tion γ = γ(t,y), the terms in factor of ε cancel and passing to the limit, it gives

∫ T

0

∫ 1

0

∫

Rd

V1(t, e
−τMx)

(

∂γ

∂t
(t, e−τMx) + e−τMa(x) · ∇γ(t, e−τMx)

)

dxdτdt

=

∫ T

0

∫ 1

0

∫

Rd

(

−
∂W̃1

∂t
− a(x) · ∇W̃1

)

γ(t, e−τMx)dxdτdt. (3.62)
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Making in (3.62) the change of variables (t, τ,x) 7→ (t, τ,y = e−τMx) gives

∫ T

0

∫ 1

0

∫

Rd

V1(t,y)

(

∂γ

∂t
(t,y) + e−τMa(eτMy) · ∇γ(t,y)

)

dydτdt

=

∫ T

0

∫ 1

0

∫

Rd

(

−
∂W1

∂t
− e−τMa(eτMy) · ∇W1

)

γ(t,y)dydτdt, (3.63)

which is the weak formulation of

∂V1
∂t

+

(∫ 1

0
e−σMa(eσMy)dσ

)

· ∇V1 =

∫ 1

0

(

−
∂W1

∂t
− e−τMa(eτMy) · ∇W1

)

dτ, (3.64)

V1|t=0 = 0. (3.65)

Now, it remains to express the right hand side of (3.64) using expression (3.53) of
W1. For this we need to compute the time derivative of ∇V and the Jacobian matrices
of −(

∫ τ
0 e

−σMa(eσMy) dσ − τ
∫ 1
0 e

−σMa(eσMy) dσ) and of ∇V (i.e. the Hessian matrix of
V ).

First, using the equation (3.23) satisfied by V ,

∂(∇V )

∂t
=

∇
∂V

∂t
= −

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]]T

(∇V )− [∇∇V ]

(∫ 1

0
e−σMa(eσMy) dσ

)

. (3.66)

Hence,

∫ 1

0
−
∂W1

∂t
dτ =

∫ 1

0
−

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

)

(

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]]T

· (∇V )

)

dτ

+

∫ 1

0
−

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

)

·

(

[∇∇V ]

(∫ 1

0
e−σMa(eσMy) dσ

))

dτ

=

∫ 1

0
−

(

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]]

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

)

)

· (∇V ) dτ

+

∫ 1

0
−

(

[∇∇V ]

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

))

·

(∫ 1

0
e−σMa(eσMy) dσ

)

dτ. (3.67)
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On another hand,

∫ 1

0
−
(

e−τMa(eτMy)
)

· ∇W1 dτ =

∫ 1

0

(

e−τMa(eτMy)
)

·

(

[

∇

[∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

]]T

(∇V )

)

dτ

+

∫ 1

0

(

e−τMa(eτMy)
)

·

(

[∇∇V ]

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

))

=

∫ 1

0

([

∇

[∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

]]

(

e−τMa(eτMy)
)

)

· (∇V ) dτ

+

∫ 1

0

(

[∇∇V ]

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

))

·
(

e−τMa(eτMy)
)

dτ.

(3.68)

As a consequence, the right hand side of (3.64) expresses as

∫ 1

0

(

−
∂W1

∂t
−
(

e−τMa(eτMy)
)

· ∇W1

)

dτ =

∫ 1

0

([

∇

[∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

]]

(

e−τMa(eτMy)
)

−

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]](∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

))

·

(∇V ) dτ

+

∫ 1

0

(

[∇∇V ]

(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

))

·

(

(

e−τMa(eτMy)
)

−

∫ 1

0
e−σMa(eσMy) dσ

)

dτ. (3.69)

The integrand in the last term is the dot product of a symmetric matrix (not depending on
τ) applied to a vector with the τ -derivative of this same vector; so it is an exact τ -derivative.
Consequently, the last term is zero. Beside this, integrating by parts the first piece of the
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first term of the right hand side of (3.69) gives:

∫ 1

0

([

∇

[∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

]]

(

e−τMa(eτMy)
)

−

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]](∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

))

·

(∇V ) dτ =

−

∫ 1

0

([

∇

[

e−τMa(eτMy)−

∫ 1

0
e−σMa(eσMy) dσ

]](∫ τ

0
e−σMa(eσMy)

)

−

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]](∫ τ

0
e−σMa(eσMy) dσ

)

+

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]](

τ

∫ 1

0
e−σMa(eσMy) dσ

))

· (∇V ) dτ =

∫ 1

0

(

[

∇
[

e−τMa(eτMy)
]]

(∫ τ

0
e−σMa(eσMy)

)

+

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]](

τ

∫ 1

0
e−σMa(eσMy) dσ

))

· (∇V ) dτ (3.70)

Using this and injecting in (3.64), allows us to claim the following Theorem.

Theorem 3.2 Under assumption of Lemma 3.5, function V1(t,y) linked by Lemma 3.6 with
the Two-Scale limit U1(t, τ,x) of (uε − [U ]ε)/ε is solution to

∂V1
∂t

+

(∫ 1

0
e−σMa(eσMy)dσ

)

· ∇V1 = (3.71)

(

∫ 1

0

(

[

∇
[

e−τMa(eτMy)
]]

(∫ τ

0
e−σMa(eσMy)

)

dτ

+
1

2

[

∇

[∫ 1

0
e−σMa(eσMy) dσ

]](∫ 1

0
e−σMa(eσMy) dσ

))

)

· (∇V )

V1|t=0 = 0. (3.72)

Remark 3.4 Uniqueness of the solution of (3.71) and (3.72) leads that the whole sequence
(uε − [U ]ε)/ε converges.

3.12 For the numerics

In the case when ε is small, computing a numerical approximation of (3.1) can be expensive
in term of CPU time since it requires a time step which is small compared with ε.

If the result we just set out is reinterpreted, it can be claimed that

uε(t,x) ∼
[

V (t, e−τMx) + ε
(

V1(t, e
−τMx) +W1(t, τ, e

−τMx)
)]

|τ=t/ε
, (3.73)
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where V is given as the solution of equation (3.23) and (3.24) which neither contain or
generate small oscillations in its solution, W1 is explicitly given in terms of V by (3.53) and
where V1 is also solution of a problem without oscillation: (3.71) and (3.72).

This approach can be used to build numerical methods called Two-Scale Numerical
Methods. Such an approach was used in Ailliot, Frénod & Monbet [1], Frénod, Mouton &
Sonnendrücker [13], Frénod, Salvarani & Sonnendrücker [15] and Mouton [20].
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