Denis Flaig 
  
Christian Ochsenfeld 
email: christian.ochsenfeld@cup.uni-muenchen.de
  
  
  
  
Combining the Advantages of Semi-Direct Schemes and Linear-Scaling Self-Consistent Field Methods

Keywords: SCF, Hartree-Fock, Density-Functional Theory, linear scaling, integral storage

A new stored-integral self-consistent field (SCF) scheme is presented for both Hartree-Fock (HF) and density-functional theory (DFT), that combines the advantages originally attributed to the direct and also linear-scaling SCF methods with those of traditional indirect or semi-direct approaches. By storing the densityscreened two-electron integrals in the first time-consuming SCF iteration, recalculation of integrals can be almost entirely avoided in subsequent iterations as the one-particle density matrix is shown to be quite representative for the one in later iterations. For the dominant exchange-type contractions speed-ups of typically 1.5-3.7 are observed.

I. INTRODUCTION

Since its introduction in the 1980s [1-3] the direct self-consistent field (SCF) method has become the standard procedure for the iterative solution of both the Hartree-Fock (HF) and Kohn-Sham equations in density functional theory (DFT) for large molecules. The direct method avoids storage of the a priori N 4 four-center two-electron integrals (as it is done in integral indirect schemes; with N as the number of Gaussian-type basis functions) and in this way overcomes limitations with respect to memory or storage capacities. Although this entails a recomputation of the two-electron integrals in each SCF iteration, the advan-

tage is that for screening negligible two-electron integrals the one-particle density matrix is available, which contrasts the case of an indirect SCF scheme where integrals are calculated beforehand. In this way, not only typically many more integrals can be neglected, but also linear-scaling methods can be devised that exploit the locality of the one-particle density matrix (see, e.g., Ref. [START_REF] Ochsenfeld | Reviews in Computational Chemistry[END_REF] for an overview). Although recently semidirect approaches [START_REF] Mitin | [END_REF]6] have been introduced that avoid to read back all of the stored integrals, using a screening with density matrices as well, they still require the calculation and storage of a quadratic number of integrals.

In our present work, we present a modified quasi-indirect or semi-direct SCF scheme, which allows for both linear scaling and efficient reuse of integrals. The accuracy and scaling behavior of the conventional direct or linear-scaling schemes is fully unchanged, since the same integrals are employed for forming the integral contractions and only the way they are stored or recalculated is changed. Efficiency is illustrated for various systems for the dominant exchange part.

II. APPROACH

With the present work we aim for a new stored-integral Hartree-Fock SCF method which preserves the favorable scaling of the direct and linear-scaling methods. The fundamental concept of the new approach is to avoid the computation of a quadratic number of ERIs prior to the SCF iterations by exploiting the sparsity of the density matrix not only for the reading of integrals, but also for calculating and storing them. For this purpose integrals are stored not before the first iteration, but in an early SCF iteration, typically in the first costly iteration where a full and meaningful one-particle density matrix is available for the screening, so that negligible integral-density products can be discarded. The preselection is performed according to the well-established density based Schwarz screening:

|P νσ • (µν|λσ)| ≤ |P νσ | • (µν|µν) 1 2 • (λσ|λσ) 1 2
(1)

As will be shown, the second iteration is typically a good choice for the storage iteration for two main reasons: On the one hand the initial guess of the first iteration, e.g. obtained by a superposition of atomic densities (SAD), is still quite poor for a meaningful integral selection.

In addition, since the initial guess density matrix is extremely sparse, the calculation of the On the other hand, storing in a later than the second iteration, would sacrifice too much of the potential gain of time. Furthermore, we will show below that the density matrix in the second iteration is typically already quite representative for the converged density matrix and in this way a good choice for a realistic selection process of the integrals.

For minimizing the overhead of storage access, the present method is developed for an integral storage in core memory (although of course disc-based storage is also possible in principle). This means, that for large molecules or basis sets, additional criteria for the integral selection are essential, although the memory (or disc) capacities on personal computers increase steadily. Therefore within the memory limitations we adapt the well-established criteria of time and size estimates in semi-direct SCF theory [3] and improve the time criterion by counts of floating point operations needed for integral evaluation.

In order to play out the strength of the CFMM [7] and LinK methods [8,9] within linearscaling SCF schemes, the current methods need to form the exchange and Coulomb part separately. Here, the exchange part is typically three to five times more time-consuming than the Coulomb part depending on integral thresholds, basis sets and the molecular system.

Therefore the focus of the present work is on the exchange part. However, the method can as well been established for the near-field integrals needed for the Coulomb part.

III. IMPLEMENTATION

The new stored-integral method was implemented into a development version of Q-Chem [START_REF]Development version of the program package Q-Chem[END_REF]. Fig. 1 outlines the implementation, which is composed of three main steps. The first iteration is fully identical to a conventional direct SCF, based on the default initial guess, the superposition of atomic densities (SAD), which typically results in a fast computation of the first iteration. The second iteration is the iteration where the integrals are selected, screened, calculated and stored to the main memory. In the following iterations a modified screening is performed, the required integrals are read back from memory, and additional integrals are calculated, if necessary.

Within the selection run a Schwarz screening that accounts for the corresponding density matrix is performed. Moreover, additional selection criteria for the decision which integrals to store are applied: i.e. estimates for size and time. Since neither the effective size of This holds in particular if difference densities are employed and the Fock matrix is build incrementally [2,3]. The second factor, the time for calculating an integral can be estimated by counting necessary floating point operations n flop for a chosen integral evaluation path for each integral class divided by the number of integrals per class. Here an integral class is defined as set of integrals sharing the same momentum type and degree of contraction for the bra and ket. Fig. 2 shows the correlation between time and number of floating point operations per integral class for the cyclic S 6 allotrope. The time within the second SCF iteration, averaged for 50 exchange builds to be statistically balanced, is compared to the number of floating point operations for different integral classes. Only if an integral class exceeds a minimum number ϑ flop of floating point operations the corresponding integrals are selected for storage. Within the current implementations the threshold ϑ flop is not user defined but is the result of the size criteria ϑ size and available memory capacities.

Once the exact number of ERIs selected for storage is known, all the memory for integral storage may be allocated at a time. Then, as the ERIs are batchwise calculated as usual, ERIs belonging to the same shell quartet are written consecutively to the integral buffer.

For future addressing the offset for each shell quartet is additionally stored.

By a modified screening procedure in the following iterations, the decision is made, which integrals are significant according to (difference) densities and the Schwarz inequality and, moreover, which of them can be read back from the memory or need to be calculated. Within the present scheme the necessity for calculating new integrals upon the iteration process may thus have two causes: Firstly, changes of the difference density matrix within the SCF iteration process that influence the density based Schwarz screening. Secondly, if due to memory constraints not all integrals were storable (as defined by the separate selection criteria ϑ size and ϑ flop ). Any additionally needed integrals are calculated and contracted batchwise like in the conventional direct procedure. Fig. 3 shows the best possible theoretical speed-ups of the stored-integral method as compared to the direct scheme, assuming that the stored-integral method could save the full time for integral evaluation and if the time for storage access and other overhead were completely neglected. The maximum theoretical speed-up is plotted against the percentage of exchange time, which is required by the integral evaluation within the direct method. For example, if the percentage was 66.7 % (two-thirds), the stored-integral method would at best be three times faster than the direct one for building one exchange matrix. The ratio for integral formation and contraction can be strongly dependent on the computer architecture, so that speed-ups may vary to some extent. These considerations illustrate the optimal limit that one may aim for and allow to assess the efficiency of our present implementation.

Certainly, in real timings, the time for storage access becomes clearly noticeable and, moreover, the time for the calculation of integrals within the second iteration remains:

For comparison, Tab. I lists the CPU time for each component of the stored-integral and direct method. As test case, a DNA fragment with one base pair deoxyadenosine and deoxythymidine DNA(A-T) 1 [START_REF] Doser | [END_REF] is considered. All timings were performed on one core of an Intel(R) Xeon(R), 2x CPU E5420 (quadcore), 64 GB RAM. For the stored-integral method the time for selection, storage and reading of the integrals is listed, in addition to screening, calculation, and contraction. The integral selection for storage is based on the second density matrix. For iterations 3 to 8 the total time over all these iterations is given for each component (where always incremental Fock builds were employed). Besides the specific iteration time also the total time for the SCF is shown. The percentage always refers to the total exchange time of the stored-integral or direct method, respectively. Within the direct method the percentage of the total integral evaluation time is about 65.5 % with respect to the total exchange time. Of course the stored-integral method cannot save the integral evaluation within the second iteration (13.6 %), but only (and for the best case) the integral evaluation within the reading iterations 3 to 8 (51.9 %). Therefore the best possible speed-up for this example is g = 2.08. The assumption, that the time for the calculation of additional integrals within the iterations 3 to 8 is negligible, proves to be correct here:

It decreases to about 0.5 % of the exchange time. Clearly, this is where the stored-integral method takes its speed-up from. On the contrary, additional time need to be spent for the The overall speed-up of the stored-integral method depends on different aspects, which are considered in the following. First of all, Tab. II reveals its dependence on the integral threshold and SCF convergence criterion, again for the example of DNA(A-T) 1 . For variable integral thresholds a constant convergence criterion was used and vice versa. The speed-up increases with the tightness of the integral thresholds, because the ratio of time for screening, calculation and contraction shifts to a domination of the integral calculation time. As CPU time can only be saved in the third and later iterations, but not in the first and second one, the speed-up increases the tighter the convergence criteria and the more iterations are needed.

Moreover, the speed-ups depend of course on the chosen basis set and molecular system.

Once again, the speed-ups increase, if the integral evaluation is more expensive within the later iterations of the direct SCF method compared to the screening and contraction steps.

Therefore the largest speed-ups are reached e.g. for heavy atoms with non-split valence basis sets, including high momentum types. In Tab. III several benchmark calculations are arranged according to increasing speed-ups of the stored-integral with respect to the direct SCF for the formation of the exchange part. For example, using the cc-pVQZ basis set and a convergence criterion of ϑ SCF = 10 -7 and an integral threshold of ϑ Int = 10 -10 , the percentage of the integral evaluation in the reading iterations with respect to the total exchange time reaches 78 % for the cyclic S 6 molecule and speed-ups of 3.70 are achieved as compared to the best possible speed-ups of 4.55.

The test cases described so far were all based on the first calculated density matrix (i.e., of the second iteration), without the use of additional criteria ϑ size and ϑ flop , that means 100 % of integrals selected by the first calculated density matrix were stored. However, for large systems, due to memory limitations, the additional criteria ϑ size and ϑ flop may be essential and their effect on the described stored integral method is considered in the following. Firstly, the effect of ϑ size is shown in Tab. IV for the example of DNA(A-T) 1 and a TZP basis. Here, the percentage of stored and additionally calculated integrals are listed for three cases:

• In the direct method (case 1) no integrals are stored. • In the second case, all integrals as selected by the second density matrix are stored.

• In the third case, of density selected integrals only those integrals are stored for which the Schwarz estimates are larger than ϑ size = 10 -4 .

The data in Tab. IV indicate, that the selection by ϑ size = 10 -4 strongly enlarges the number of additional ERIs required in later iterations: For example in the third SCF iteration 24.98 % instead of 0.76 % in case of full storage 100 % (32.39 GB) need to be calculated additionally, while the memory requirements are reduced to 68.45 %(22.17 GB). As consequence of the high percentage of additional required integrals in later iterations the speed-up with respect to the direct method typically quickly decreases, if a large additional criterion ϑ size needs to be set due to memory restrictions. For the example of DNA(A-T) 1 and a TZP basis it reduces from 1.55 to 1.40, if ϑ size is set to 10 -4 .

For another example, the cyclic S 6 allotrope (cc-pVQZ basis, integral threshold ϑ Int = 10 -8 , convergence criterion ϑ Int = 10 -5 ), where the evaluation time for ERIs of different integral classes strongly differs, the effect of the second additional storage criterion, the time estimates (cf. Fig. 2) is considered. The selection of integrals according to the number of floating point operations per integral ϑ flop proves to be very efficient: It leads to a speed-up of 2.70, as compared to 2.79 if all integrals are stored, and reduces the memory capacities from 100 % (31.02 GB) to 61.76 % (19.16 GB). In contrast a selection according to the product of total degree of contraction and total momentum type shows a speed-up of 2.53 using roughly the memory as above. The third most primitive option, to avoid storing integrals once the memory limit is hit, leads to a speed up of 1.44. This clearly smaller speed-up is reached, since the most primitive option employs no time criteria and the default integral ordering does not start with the most expensive integrals.

For the investigation of the scaling behavior, three model system are considered: Linear alkanes, helical oligopeptides, and fragments of amylose, which can be systematically enlarged. Due to rising memory requirements a small 6-31G* basis set and a rather loose integral threshold of ϑ int = 10 -7 are employed for the investigation of the scaling behavior, so that the overall speed-ups of the stored-integral methods are comparatively small (see also Tab. III). Tab. V compares the direct case with a conventional semidirect method and the present stored-integral method. Besides the total CPU time for the formation of the exchange part and its scaling behavior, also the memory requirements and its scaling are listed for the two stored-integral cases. The storage selection of the present stored-integral method is again based on the Schwarz estimates including the first calculated density matrix. In contrast, the conventional semidirect method selects the integrals by Schwarz estimates prior to the SCF iterations and therefore does not include maximum elements of the one-particle density matrix. Since such a selection quickly results in a lack of memory, e.g. 152.49 GB would be required for Alk 160 , additional estimates of time and size are used for the semidirect method. The criteria for time and size are kept constant for each example and are chosen in a way that the maximum memory requirements for the largest molecule can be satisfied. For this purpose a suitable selection for ϑ size and ϑ flop is made: ϑ size is throughout set to 10 -4 and from the remaining selection, according to the time estimates ϑ flop , only the more expensive half of integrals is stored in each case. Comparison of the total time for the semidirect and direct case shows that for the chosen basis set and integral threshold the linear scaling behavior of the direct method pays off already for the second smallest molecules within the series of examples. For larger molecules the conventional semidirect method becomes more and more inefficient compared to the direct method, because the calculation of the integrals chosen prior to the SCF cycle scales quadratically. This problem is solved by the new stored-integral method, where the favorable scaling behavior of the CPU time of the direct method is preserved. The linear scaling also holds for the memory requirements for storing the two-electron integrals.

V. CONCLUSION

In our present work, we have introduced a new stored-integral SCF method that combines the advantages of semi-direct or quasi-indirect SCF methods with those of linear-scaling methods. The key is to use the first computed one-particle density matrix for screening the significant two-electron integrals and then storing the corresponding integrals for subsequent iterations. It is shown that typically the first computed density matrix (following the cheap SAD guess iteration that is almost negligible in time) is sufficiently accurate for preselecting the integrals, so that only a few integrals need to be recomputed in later iterations. The speed-ups depend on the molecular system, the basis set, and the chosen thresholds, where for exchange-type contractions an acceleration by factors of typically 1.5-3.7 are observed, which is relatively close to the optimum of estimated speed-ups. Our scheme is not only useful for the calculation of energetics, but will also accelerate the calculation of molecular properties (see e.g. [12,13]), where relatively tight convergence thresholds are required. Also, with the availability of computers with more core memory, the possibilities for storing integrals and avoiding their recalculation will increase, which underlines the usefulness of the present approach. Response to the reviewers' comments (manuscript TMPH-2010-0289)
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  very fast and the time negligible as compared to the total SCF cycle.

  nor the effective time for its calculation is known in advance, one has to use estimates. For the integral size the conventional Schwarz estimates provide an upper bound[3]. An additional user-defined threshold ϑ size allows the selection of large integrals for storage, since such integrals are most probably reused within the SCF iteration process.
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TABLE II :

 II ). a) Influence of the integral threshold ϑ Int and b) of the convergence criterion ϑ SCF on speed-ups g = t dir. /t sem. for the formation of the exchange part for the DNA(A-T) 1 system. For a) ϑ SCF = 10 -4 is used throughout and for b) ϑ Int = 10 -10 .
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	a) -log(ϑ Int )	6	7	8	9	10
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TABLE III :

 III Speed-ups for the formation of the exchange part for different molecular systems and basis set for two different thresholds. In addition, the energy difference between the tighter thresholds (7/10) and the lower ones (5/8) is listed. SCF = 10 -α and integral threshold ϑ Int = 10 -β b Absolute value of the energy difference between the use of 7/10 and 5/8 thresholds
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a α/β denotes a convergence criterion ϑ

TABLE IV :

 IV Percentage of stored integrals in the second iteration and additionally calculated integrals in later iterations for DNA(A-T) 1 , basis set TZP, convergence criterion ϑ SCF = 10 -5 , integral threshold ϑ int = 10 -8 and threshold for integral storage ϑ size . The ratio refers to the number of calculated integrals within the second SCF iteration (4347.95 millions). For all cases an incremental Fock build is used.
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TABLE V :

 V Total CPU times t (in seconds) for the formation of the exchange part, memory requirements m (in gigabytes) and scaling behavior (n x ) for linear alkanes Alk n (n C atoms), helical peptides Gly n (n glycine units), and amylose fragments Glu n (n glucose units) (basis set 6-31G*, convergence criterion ϑ SCF = 10 -5 , integral threshold ϑ Int = 10 -7 ). The stored-integral scheme of the present work (P-screening) is compared to the direct SCF using LinK and to a semidirect scheme, which does not include the density matrix for the integral selection (no P-screening), but size and time estimates (see text for details). For the dependence of the speed-ups on basis sets, integral thresholds and convergence criteria see Tab. III (e.g., for larger basis sets larger speed-ups are expected).
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