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Abstract. The problem of controlling induction motors, together with associated AC/DC rectifiers and 

DC/AC inverters, is addressed. The control objectives are threefold: (i) the motor speed should track 

any reference signal despite mechanical parameter uncertainties and variations; (ii) the DC Link 

voltage must be tightly regulated; (iii) the power factor correction (PFC) w.r.t. the power supply net 

must be performed in a satisfactory way. First, a nonlinear model of the whole controlled system is 

developed within the Park coordinates. Then, a multi-loop nonlinear adaptive controller is 

synthesized using the backstepping design technique. A formal analysis based on Lyapunov stability 

and average theory is made to exhibit the control system performances. In addition to closed-loop 

global asymptotic stability, it is proved that all control objectives (motor speed tracking, rotor flux 

regulation, DC link voltage regulation and unitary power factor) are asymptotically achieved, up to 

small but unavoidable harmonic errors (ripples). 

Index Terms. Induction machines, speed and flux regulation, AC/DC/AC converters, PFC, 

Lyapunov methods, backstepping design technique. 

 

1. INTRODUCTION 

It is widely recognized that the induction motor has become a main actuator for industrial purposes. 

Indeed, as compared to the DC machine, it provides a better power/mass ratio, simpler maintenance 

(as it includes no mechanical commutators) and a relatively lower cost. However, the problem of 

controlling induction motors is more complex because these are multivariable and highly nonlinear 

systems and some of their parameters are time-varying. From the technological viewpoint, a 

considerable progress has been made in power electronics over the last two decades. Reliable power 

converters have become available which makes technically possible flexible speed variation of 

electrical drives including induction machines. Accordingly, the speed variation of these machines is 

carried out by acting on the supply network frequency. Similarly, before the recent progress in 

modern power electronics, there was no effective and flexible way to vary the frequency of a supply 

network. In this respect, recall that the power networks may be either DC or AC but mono-phase (this 

is for instance the case in the electric traction domain). Therefore, three-phase DC/AC inverters turn 

out to be the only possible interface (between railway networks and 3-phase AC motors) due to their 

high capability to ensure flexible voltage and frequency variation.  
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The control problem at hand is to design a speed controller for the complex system including an 

AC/DC rectifier, a DC/AC inverter and an induction motor. The controller is expected to ensure a 

wide range speed regulation, despite mechanical parameters’ variations. Indeed, the rotor inertia 

moment, the viscous friction coefficient and the load torque are presently allowed to be unknown and 

step-like varying. 

The rectifier is (of?) a pulse width modulation (PWM ) type that features power regeneration, 

controlled DC-link voltage, small filter, 4-quadrant operation (bidirectional power transmission). 

Nowadays, the use of PWM rectifiers has considerably spread in industry and concerns a wide range 

spectrum of applications, [12], [4]. The point is that the association ‘rectifier-inverter-motor’ acts as a 

highly nonlinear load vis-à-vis to the main power AC network (which is supposed to provide almost 

perfect sinusoidal voltage to all other connected loads). Therefore, undesirable higher harmonics are 

generated (due to the load nonlinearity) and pollute the supply network. This harmonic pollution 

reduces the rectifier efficiency, induces voltage distortion in the AC supply network and induces 

electromagnetic compatibility problems [12]. 

In the light of the above considerations, it turns out that the control objective must not only be motor 

speed regulation but also the current harmonics rejection through power factor correction (PFC), [7]. 

In most previous works on induction machine speed control, the control problem was simplified by 

ignoring the dynamics of the AC/DC/AC converters. Accordingly, the machine is supposed to be 

directly controlled by stator voltages. The simplified control problem has been dealt with using 

several control strategies ranging from simple techniques, e.g. field-oriented control [5], to more 

sophisticated nonlinear approaches, e.g. passivity control [1], direct torque control [11], [3], or sliding 

mode control [10]. A control strategy that ignores the presence of the AC/DC rectifier suffers at least 

from two main drawbacks. First, the controller design relies on the assumption that the DC voltage 

(provided by the AC/DC rectifier) is perfectly regulated; the point is that perfect regulation of the 

rectifier output voltage cannot be ensured when ignoring the rectifier load which is nothing but the 

‘inverter-motor’ set. The second drawback is concerned by the entire negligence of the PFC 

requirement. That is, from a control viewpoint, it is not judicious to consider separately the inverter-

motor association, on one hand, and the power rectifier, on the other hand. 

In the present work, we will develop a new control strategy that simultaneously accounts for all system 

components i.e. the AC/DC rectifier and the association ‘DC/AC inverter-motor’. Our control 

strategy is featured by its multi-loops nature. First, a current loop is designed so that the coupling 

between the power supply network and the AC/DC rectifier operates with a unitary power factor. 

Then, a second loop is designed to regulate the output voltage of the AC/DC rectifier so that the DC-

link between the rectifier and the inverter keeps on a constant voltage despite changes in the motor 

operation conditions. Finally, a bi-variable loop is designed to make the motor velocity track its 
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varying reference value and regulate the rotor flux norm to its nominal value. All control loops are 

designed using the Lyapunov and backstepping techniques [9]. Interestingly, the load torque, rotor 

inertia and friction coefficient are presently allowed to be unknown parameters subject to step-like 

changes. This parametric uncertainty is coped with, by providing the controller with a parameter 

adaptation capability. It will be formally proved that the proposed multi-loop nonlinear adaptive 

controller actually stabilizes (globally and asymptotically) the controlled system and meets its 

tracking objectives with a good accuracy. Specifically, the motor speed and rotor flux norm will be 

shown to perfectly track their references, whatever the initial conditions. The rectifier input current 

and output voltage are shown to match well their reference values. More precisely, the steady-state 

tracking errors for these two variables are both harmonic signals with amplitudes depending, among 

others, on the supply network frequency. These theoretical results are obtained by making a judicious 

use of adequate control theory tools, e.g. averaging theory and Lyapunov stability [8].  

The paper is organized as follows: the system under study (i.e. the AC/DC/AC converter and induction 

motor association) is modeled and given a state space representation in Section 2; the controller 

design and the closed-loop system analysis are presented in Section 3; the controller performances are 

illustrated through numerical simulations in Section 4. For convenience, the main notations used 

throughout the paper are described in Table II given at the end of the paper.  

2. MODELING ‘AC/DC/AC CONVERTER-INDUCTION MOTOR’ ASSOCIATION  

The controlled system scheme is represented by Fig 1. It includes an AC/DC boost rectifier, on one 

hand, and an ‘inverter-induction motor’ combination, on the other hand. The inverter is a DC/AC 

converter operating, like the AC/DC rectifier, according to the known pulse width modulation 

(PWM) principle.  

 

 

Fig.1. AC/DC/AC drive circuit with three-level inverter 
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 2.1 AC/DC Rectifier Modeling 

The power supply network is connected to an H-bridge converter consisting of four IGBT’s with anti-

parallel diodes for bidirectional power flow mode. The converter should be controlled so that two 

main tasks are accomplished: (i) providing a constant DC link voltage; (ii) ensuring an almost unitary 

power factor connection with the power network. Applying Kirchhoff’s laws, this subsystem is 

described by the following set of differential equations: 

dc

ee vs
LL

v

dt

di

11

1
   (1a) 

se

dc
i

C
is

Cdt

dv

2

1

2

1
   (1b) 

where 
e

i  is the current in inductor 
1

L , 
dc

v  denotes the voltage in capacitor C2 , 
s

i  designates the input 

current inverter, )cos(..2 tEv
ee

  is the sinusoidal network voltage (with known constants 
e

E , ) 

and s  is the switch position function taking values in the discrete set { 1,1 }. Specifically: 










ON  is  S and  OFF  is  S if   

OFF  is  S and  ON  is  S if   
s

1

1
  (1c) 

The above (instantaneous) model describes accurately the physical inverter. Then, it is based upon to 

build up converter simulators. However, it is not suitable for control design due to the switched nature 

of the control input s . As a matter of fact, most existing nonlinear control approaches apply to systems 

with continuous control inputs. Therefore, the control design for the above converter will be performed 

using the following average version of (1a-b) [6]: 

21

11

1
1

xu
LL

v

dt

dx
e
   (2a) 

s
i

C
xu

Cdt

dx

2

1

2

1
11

2     (2b) 

where: 

e
ix 

1
,     

dc
vx 

2
,      

1
u = s    (2c) 

are the average values over the cutting periods of 
e

i , 
dc

v  and s , respectively. 

2.2 Inverter-Motor Modeling  

The induction model is based on the motor equations in the rotating  -and-   axes and reads as: 

J

T
ii

J

m

J

f

dt

d
L

rsrs



)(


   (3a) 



 
ssrr

s
vmibpba

dt

di
1

   (3b) 
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




ssrr

s
vmibpba

dt

di

1
   (3c) 



 


rssrr

r
piaMa

dt

d
   (3d) 







rssrr

r
piaMa

dt

d
   (3e) 

where 
s

i ,
s

i ,



r

,



r

, , and, 
L

T , are the stator currents, rotor fluxes, angular speed, and load torque, 

respectively. Wherever they come in, the subscripts s  and r  refer to the stator and rotor, respectively. 

That is, 
s

R and 
r

R are the stator and rotor resistances; 
s

L  and
r

L  are the self-inductances. 
sr

M  denotes 

the mutual inductance between the stator and rotor windings. p  designates the number of pole-pairs, 

J  the inertia of the motor-load set, and f  is the friction coefficient. The remaining parameters are 

defined as follows: 

r

r

L

R
a  , 

rs

sr

LL

M
b


 , 

222
/)(

rsrsrsr
LLRMRL   , )/(1

2

rssr
LLM ,

r

sr

L

M
pm  , 

s
L

m


1
1
 . 

In (3a-e), 
 ss

vv ,  are the stator voltage in the  -coordinates (Park’s transformation of the three 

phase stator voltages). The inverter is featured by the fact that the stator α- and β-voltages can be 

controlled independently. To this end, these voltages are expressed in function of the corresponding 

control action (see e.g. [2]):  

3
uvv

dcs



, 

2
uvv

dcs



  (4a) 

where ),(
32

uu  represent the average α- and β-axes (Park’s transformation) of the three phase duty ratio 

system ),,(
321

sss . The latter are defined by (1c) replacing there ( S , '
S ) by (

i
S , '

i
S ) ( 3,2,1i ).  

Now, let us introduce the state variables: 

 
3

x ,   
s

ix 
4

,   s
ix 

5
,




r
x 

6
 , 




r
x 

7
, (4b) 

where the bar refers to signal averaging over cutting periods (just as in (2c)). Using the power 

conservation principle, the power absorbed by the DC/AC inverter is given by the usual expression 

sai
ixP

2
 . On the other hand, the power released by the inverter is given by )(

53422
xuxuxP

rm
 . As 

rmai
PP  , it follows that: 

 
5342

xuxui
s

   (4c) 

Then, substituting (4a-c) in (3a-e) yields the following state-space representation of the association 

‘inverter-motor’:  

J

T
xxxx

J

m
x

J

f

dt

dx
L )(

47653

3   (5a) 
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2214736

4 xumxxbpxbax
dt

dx
    (5b) 

2315637

5
xumxxbpxbax

dt

dx
    (5c) 

7346

6
xpxxaMax

dt

dx
sr

   (5d) 

6357

7
xpxxaMax

dt

dx
sr

   (5e) 

The state space equations thus obtained are put together to get a state-space model of the whole system 

including the AC/DC/AC converters and the induction motor. For convenience, the whole system’s 

model is rewritten here for future reference: 

21

11

1
1

xu
LL

v

dt

dx
e
   (6a) 

)(
2

1

2

1
534211

2 xuxu
C

xu
Cdt

dx
   (6b) 

J

T
xxxx

J

m
x

J

f

dt

dx
L )(

47653

3   (6c) 

2214736

4 xumxxbpxbax
dt

dx
    (6d) 

2315637

5 xumxxbpxbax
dt

dx
    (6e) 

7346

6 xpxxaMax
dt

dx
sr

   (6f) 

6357

7 xpxxaMax
dt

dx
sr

   (6g) 

3. CONTROLLER DESIGN 

3.1 Control Objectives 

There are two operational control objectives: 

(i) Speed regulation: the machine speed   must track, as closely as possible, a given reference signal 

ref
 , despite the parametric uncertainties (concerning the load torque 

L
T , rotor inertia J  and friction 

coefficient f ). 

(ii) PFC requirement: the rectifier input current 
e

i  must be sinusoidal and in phase or opposed phase 

with the AC supply voltage
e

v . 
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As there are three control inputs at hand, namely 
1

u , 
2

u  and 
3

u , two more control objectives are 

added: 

(iii) Controlling the continuous voltage 
dc

v  making it track a given reference signal
dcref

v . 

 (iv) Regulating the rotor flux norm 2

7

2

6
xx

r
  to a reference value

ref
 , preferably equal to its 

nominal value.  

3.2 AC/DC rectifier control design 

3.2.1 Controlling rectifier input current to meet PFC 

The PFC objective means that the input current rectifier should be sinusoidal and in phase (or opposite 

phase) with the AC supply voltage. Therefore, one seeks a regulator that enforces the current 
1

x  to 

tack a reference signal *

1
x  of the form: 

e
vkx 

*

1
  (7) 

At this point, k  is any real parameter that is allowed to be time-varying. This parameter is positive 

when the induction machine operates in motor mode and negative in the generator mode. Introduce the 

current tracking error:   

*

111
xxz     (8) 

In view of (6a), the above error undergoes the following equation: 

*

112111
// xLxuLvz

e
    (9) 

To get a stabilizing control law for this first-order system, consider the quadratic Lyapunov function 

2

11
5.0 zV  . It can be easily checked that the time-derivative 

1
V  is a negative definite function of 

1
z  if 

the control input is chosen as follows: 

 
2

*

111111
/)/( xxLvzcLu

e
   (10) 

with 0
1
c  is a design parameter. The properties of such a control law are summarized in the 

following proposition, the proof of which is straightforward. 

Proposition 1. Consider the system, next called current (or inner) loop, composed of the current 

equation (6a) and the control law (10) where 0
1
c  is arbitrarily chosen by the user. If the reference 

e
vkx 

*

1
 and its first time derivative are available, then one has the following properties: 

1) The current loop undergoes the equation 
111

zcz   with *

111
xxz  . As 

1
c  is positive, this equation 

is globally exponentially stable, i.e. 
1

z  vanishes exponentially, whatever the initial conditions.   
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2) If in addition k  converges (to a finite value), then the PFC requirement is asymptotically fulfilled in 

average i.e. the (average) input current 
1

x  tends (exponentially fast) to its reference 
e

vk  as t    

3.2.2 DC link voltage regulation 

The aim is now to design a tuning law for the ratio k in (7) so that the rectifier output voltage 
dc

vx 
2

 

is steered to a given reference value 
dcref

v . As mentioned above, 
dcref

v  is generally (but not mandatory) 

set to the nominal value of the stator voltage amplitude. The first step in designing such a tuning law is 

to establish the relation between the ratio k  (control input) and the output voltage
2

x . This is the 

subject of the following proposition. 

Proposition 2. Consider the power rectifier described by (6a-b) together with the control law (10). 

Under the same assumptions as in Proposition 1, one has the following properties: 

1) The output voltage 
2

x  varies, in response to the tuning ratio k , according to the equation: 

)(
2

1
)(

2

1
53421

2

2

2 xuxu
C

vzvk
xCdt

dx
ee

  (11) 

2) The squared voltage ( 2

2
xy  ) varies, in response to the tuning ratio k , according to the equation: 

),(//
1

2
txCvzCvk

dt

dy
ee

   (12) 

with 

Cxuxuxtx /)(),(
53422

   (13) 

Proof. The power absorbed by the AC/DC rectifier is given by the well known expression 

eabsorbed
vxP

1
 . On the other hand, the power released by the rectifier (toward the load including the 

capacity and the inverter) is given by 
211

xxuP
released

 . Using the power conservation principle, one 

has 
releasedabsorbed

PP   or, equivalently: 

2111
xxuvx

e


  (14) 

Also, from (7)-(8), one immediately gets that 
11

zvkx
e
  which together with (14) yields 

21

2

11
)( xvzvkxu

ee
 . This establishes (11) due to (6b). Deriving 2

2
xy   with respect to time and 

using (11) yields relation (12) and completes the proof of Proposition 2  

The ratio k  stands up as a control signal in the first-order system defined by (12). As previously 

mentioned, the reference signal 2

dcref

def

ref
vy   (of the squared DC-link voltage

dc
vx 

2
) is chosen to be 

constant (i.e. 0
ref

y ), it is given the nominal value of stator voltage amplitude. Then, it follows from 

(12) that the tracking error 
ref

yyz 
2

 undergoes the following equation:  
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refee
ytxCtzECtkECkEz   ),(/)cos(2/)2cos(/

1

22

2
  (15) 

where one used the fact that )cos(..2 tEv
ee

  and ))2cos(1(
22

tEv
ee

 . To get a stabilizing 

control law for the system (15), consider the following quadratic Lyapunov function: 

2

22
5.0 zV    (16) 

It is easily checked that the time-derivative 
2

V  can be made negative definite in the state 
2

z  by letting: 

 ),()cos(2)2cos(
221

22
txzcCtzEtEkEk

ee
 

ref
yC   (17a) 

where 0
2
c  is a design parameter. The point is that such an equation involves a periodic singularity 

due to the mutual neutralization of the first two terms on the left side of (17a). To get off this 

singularity and, besides, to avoid an excessive chattering in the solution, the two terms in cos(.)  on the 

left side of (17a) are ignored, leading to the following approximate simpler solution: 

  2

22
/),( EtxzcCk 

2
/ EyC

ref
   (17b) 

Bearing in mind the fact that the first derivative of the control ratio k  must be available (Proposition 

1), the following filtered version of the above solution is proposed: 

  2

22
/),( EtxzcCdkdk 

2
/ EyCd

ref
  (18) 

At this point, the regulator parameters  
2

, cd  are any positive real constants. The proof of the 

forthcoming proposition 3 (?) will make it clear how these should be chosen for the control objectives 

to be achieved. For now, let us summarize the main findings (?) in the following proposition. 

Proposition 3. Consider the inner control loop consisting of the AC/DC rectifier described by (6a-b) 

together with the control laws (10) and (18). Using Proposition 1 (Part 1), it turns out that the inner 

loop undergoes, in the ),,(
21

kzz -coordinates, the following equation, where *

111
xxz   and 

ref
yyz 

2
:

 
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


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 
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  (19)  
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3.3 Motor speed and rotor flux norm regulation 

The problem of controlling the rotor speed and flux norm is now addressed for the induction machine 

described by (5a-e). The speed reference 
ref

  is any bounded and derivable function of time and its 

two first derivatives are available and bounded. These properties can always be achieved filtering the 

reference through second-order linear filters. The flux reference 
ref

  is fixed to its nominal value. The 

controller design will now be performed in two steps using the tuning-functions backstepping adaptive 

technique [9]. First, introduce the tracking errors: 

33
xz

ref
   (20) 

)(
2

7

2

6

2

ref4
xxz 

  (21) 

Step 1. It follows from (5a) and (5d-e) that the errors 
3

z  and 
4

z  undergo the differential equations: 

JxfJTJxxxxmz
Lref

///)(
347563

   (22) 

)(22
5746refref4

xxxxaMz
sr

  )(2
4

2

ref
za   (23) 

In (22) and (23), the quantities )(
4756

xxxxm  and )(2
5746

xxxxaM
sr

  stand up as virtual control 

signals. If these were the actual control signals, the error system (22)-(23) could be globally 

asymptotically stabilized by letting 
14756

)(  xxxxm  and 
15746

)(2  xxxxaM
sr

 with: 

)()(
3331

zfTzcJ
refLref

def

    (24a) 

On the other hand, the fact J , 
L

T and f  are unknown suggests the certainty equivalence from of 

equations (24a). 

))(ˆˆ)(ˆ
3331

zfTzcJ
refLref

def

    (24b) 

)(22
4

2

refrefref441
zazc

def

    (25) 

where 
3

c  and 
4

c  are any positive design parameters and Ĵ , 
L

T̂ and f̂  are the estimates of J , 
L

T and 

f  respectively. Indeed, considering the Lyapunov function: 

)(5.0
2

4

2

33
zzV    (26) 

one would get from (22)-(23), letting 
14756

)(  xxxxm  and 
15746

)(2  xxxxaM
sr

: 

2

44

2

333
zczcV    (27) 

This would prove the global asymptotic stability of the system (22)-(25). As the quantities 

)(
4756

xxxxm  and )(2
5746

xxxxaM
sr

  are not the actual control signals, they cannot be let equal to 
1

  
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and 
1

 , respectively. Nevertheless, we retain the expressions of  
1

  and 
1

  as first stabilizing functions 

and introduce the new errors:  

)(
475615

xxxxmz     (28) 

)(2
574616

xxxxaMz
sr

 
  (29) 

Then, using the notations (24) to (29), the dynamics of the errors 
3

z  and 
4

z , initially described by 

(22)-(23), can be rewritten as follows: 

JzJxfJTJzcJzcz
Lref

//
~

/
~

/)(
~

5333333
   (30) 

6444
zzcz    (31) 

where  

JJJ ˆ~
 , 

LLL
TTT ˆ~

  and fff ˆ~
   (32) 

Step 2. The second design step consists in choosing the actual control signals,
2

u  and 
3

u , so that all 

errors (
3

z ,
4

z ,
5

z ,
6

z ) converge to zero. To this end, we should make (?) how these errors depend on the 

actual control signals (
2

u ,
3

u ). We start focusing on 
5

z ; it follows from (28) that: 

)(
4747565615

xxxxxxxxmz      (33) 

Assume that the parameters J , 
L

T and f  are constant or slowly time-varying and using (5a-e), (32) 

and (24), one gets from (33): 

)(/)ˆˆ(
3627215325

uxuxxmmJzfJcz    

      





 










3333333

~~
)(

~
~~

)(

~

)ˆˆ( xfTzcJx
J

f

J

T
zc

J

J
fJc

Lref

L

ref

  (34) 

with 

 

)()(

))((ˆˆ)ˆˆ(

2

7

2

6346573

47563332

xxmbpxxxxxmpx

xxxxamfJfJczc
refref



  

 (35) 

Similarly, it follows from (29) that 
6

z  undergoes the following differential equation: 

)(2
5757464616

xxxxxxxxaMz
sr

  
  (36) 

Using (5a-e) and (25), it follows from (36): 

)(2
37261226

uxuxmxaMz
sr

 
  (37) 
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with 

)(2422))(2(
65473refref

2

refref64442
xxxxpxaMazzcac

srref
     

       )(2)()(2))((2
4

222

5

2

4

2

7564
zbMaxxaMxxxxaaM

refsrsrsr
    (38) 

To analyze the error system, composed of equations (30-31), (34) and (37-38), let us consider the 

following augmented Lyapunov function candidate: 

JfJTJJzzzzV
L

/
~

5.0/
~

5.0/
~

5.05.05.05.05.0
2222

6

2

5

2

4

2

34
  (39) 

Its time-derivative along the trajectory of the state vector (
3

z ,
4

z  ,
5

z , 
6

z ) is: 

JTTJffJJJzzzzzzzzV
LL

/
~~

/
~~

/
~~

665544334


   (40) 

Using (30), (34) and (37) in (40) and adding 2

66

2

66

2

55

2

55
zczczczc   yields: 

2

66

2

55

2

44

2

334
zczczczcV  Jzf /

2

5
 Jzz /

53


 2

533335333
))((ˆˆ()(

~
~

zczcfJczzzcJ
J

J
refref

   )ˆˆ(
~

~

353
fJczzT

J

T
L

L



 

      





 
2

533533
)ˆˆ(

~
~

zfJcxzxzf
J

f 
 )(2

37261224666
uxuxmxaMzzcz

sr
   

       













 
33336272153525

~~
)(

~
)()( xfTzcJuxuxxmzccz

Lref


  (41) 

This suggests the following parameter adaptation laws : 

LTL
T 
~

 ,
J

J 
~

 and 
f

f 
~

  (42) 

erehw 

))(ˆˆ()(
3335333

2

53 refrefJ
zcfJczzczzc    (43a) 

533
)ˆˆ( zfJcz

LT


  (43b) 

2

533533
)ˆˆ( zfJcxzxz

f


  (43c) 

from (32) and (42), the expressions of Ĵ , 
L

T̂ and f̂  can be calculated with the following equations: 

J
J 
̂

 , 
LTL

T 
̂

 , 
f

f 
̂

  (44) 

Substituting the parameter adaptation laws (42) to 
L

T
~

, J
~

and f
~

in the right side of (41) yields: 

53

2

5

2

66

2

55

2

44

2

334

1
zz

J
z

J

f
zczczczcV   )(2

37261266426
uxuxmxaMzczz

sr
   

         
33336272153525

)()()( xzcuxuxxmzccz
fTrefJ L

     (45) 
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where 
5

c  and 
6

c  are new positive real design parameters. Equation (45) suggests that the control 

signals 
32

, uu  must be chosen so that the two quantities between curly brackets (on the right side of 

(45) are set to zero. Letting these quantities equal to zero and solving the resulting second-order linear 

equation system with respect to (
32

, uu ), gives the following control law:  

 



































2664

2535333

1

32

10

3

2 )()(









zcz

zccxzc

u

u
fTrefJ L


 (46) 

with: 

2710
xxm ,  

2611
xxm , 

262
2 xxaM

sr
 , 

273
2 xxaM

sr
  (47) 

It is worth noting that the matrix 









32

10




 is nonsingular. Indeed, it is easily checked that its 

determinant is )(2
2

7

2

6

2

212130
xxxaMmD

sr
  never vanishes in practice because of the 

machine remnant flux. Substituting the control law (46) to (
32

, uu ) on the right side of (45) yields: 

JzzJzfzczczczcV //
53

2

5

2

66

2

55

2

44

2

334
  (48a) 

By using the following inequality: 

2

5

2

353
2

1

2
zzzz




   (48b) 

 1,0  we obtain: 
2

66

2

55

2

44

2

334
zczzczV     (49) 

where 

))2/(1sup(
33

Jc   , ))2/(/sup(
55

JJfc    (50) 

As the right side of (49) is a negative definite function of the state vector (
3

z ,
4

z ,
5

z ,
6

z ), the closed-

loop system is globally asymptotically stable [8]. The result thus established is more precisely 

formulated in the following proposition: 

Proposition 4 (Speed regulation). Consider the closed-loop system composed of the induction 

machine, described by model (5), and the nonlinear controller defined by the control law (46). Then, 

one has the following properties: 

1) The closed-loop error system undergoes, in the (
3

z ,
4

z ,
5

z ,
6

z ) coordinates, the following equations: 

)/
~

,/
~

,/
~

,,(
~

/
5335333

JfJTJJzzJzzcz
L

  (51a) 

6444
zzcz    (51b) 

)/
~

,/
~

,/
~

,,(
~

)/(
535555

JJJJJJzzzJfcz   (51c) 



14 

4666
zzcz    (51d) 

 

where  

)(

~~

)(

~

)

~

,

~

,

~

,,(
~

333533
z

J

f

J

T
zc

J

J

J

f

J

T

J

J
zz

ref

L

ref

def

L
   (51e) 

   
533353333535

)ˆˆ(

~~

)ˆˆ())(ˆˆ(

~

)

~

,

~

,

~

,,(
~

zxfJc
J

f

J

T
fJczczcfJc

J

J

J

f

J

T

J

J
zz

L

ref

def

L
   (51f) 

2) The above linear system is globally asymptotically stable with respect to the Lyapunov function 
4

V . 

Consequently, the errors (
3

z ,
4

z ,
5

z ,
6

z ) vanish exponentially fast, whatever the initial conditions   

Remark 1. Note that the exponential nature of stability guarantees stability robustness with respect to 

modelling and measurements errors [8]. 

3.4 PFC Achievement 

In the following proposition, it is shown that, for a specific class of reference signals, including 

periodic signals, the control objectives are achieved (in the mean) with an accuracy that depends, 

among others, on the network frequency 
e

 . The following notations are needed to formulate results: 

 TkzzZ 211  ;  
T

zzzzZ
65432

 ,  
T

L
JfJTJJ /

~
/

~
/

~
  (52a) 

 CEa /
2

0
 ;   2

21
/ ECdca  ;     CEa /2

2
 ;     2

3
/ Eda  ;     

e
 /1  (52b) 

77

2)3,4(

)4,3(1 



















 IR

A

A
A   (52c) 



























da

a

c

A

1

0

1

1

0

00

00

;        





































6

5

4

3

2

010

0)/(00

100

0/10

c

Jfc

c

Jc

A  (52d) 

)4,3(
O , 

)3,4(
O null matrices in 

43
R  and 

34
R , respectively. 

   7

120
00000)cos()2cos(0),( IRtzatkatZf

T

ee
   (52e) 

  7

3
0000/10 IRaCg

T
   (52f) 

  72

1
0000/10 IRECdh

T

  (52g) 

T
ZZZh ]0),(

~
0),(

~
000[),(

252322
   (52h) 

Proposition 5. Consider the system including the AC/DC/AC power converters and the induction 

motor, connected in tandem as shown in Fig.1. For control design purpose, the system is represented 

by its average model (6a-e). The system is set in closed-loop with the adaptive controller defined by 

the control laws (10, 18, 46) and the parameter adaptive law (44), where all design parameters (i.e. 
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654321
,,,,, cccccc , d ) are positive. Let the reference signals 

dcref
v , 

ref
  and 

ref
  be selected such that 

0
dcref

v , 0
ref

 and 
ref

  equal to its nominal value. Then, one has the following properties: 

1) The resulting closed-loop system undergoes the state-space equation: 

),(),(),(
2212
 ZhyhtZgtZfZAZ

ref
   (53) 

2) Let the 
dcref

v , and 
ref

 be either constant or periodic signals, with period 
e

N  /  (for some positive 

integer N), and suppose them to be time derivable (up to second order for 
ref

 ) with bounded 

derivatives. Then, there exists a positive real *
 such that, if *

0    then:  

a) The tracking error 
ref

yyz 
2

 and the tuning parameter k  are harmonic signals continuously 

depending on  . 

 b) Furthermore, 

 i)  0),(lim
2

0







tz ;                              ii)  )/()0(),(lim
04

0

Catk 





 (54) 

where )0(
4

 denotes the mean value of the periodic time function ),0(
4

t  and 
4

0   denotes the null 

vector of 4
IR   

Remarks 2. a) The motor speed and the rotor flux norm both converge to their respective references 

because the errors ),(
53

zz converge to zero as a result of Proposition 4. 

b) Using Proposition 1 and the fact that the tuning parameter and its time derivative are available, we 

get that the error 
ee

vkixxz 
*

111
 converges exponentially fast to zero. The importance of 

Proposition 5 (part 2) lies (partly) in the fact that the (time varying) parameter k  does converge to a 

fixed value (up to a harmonic error that depends on 
e

 ). This demonstrates that the PFC requirement 

is actually fulfilled with an accuracy that depends on 
e

 . The larger 
e

 , the more accurate the PFC 

quality. It will be seen in the next simulation study that the usual value Hz
e

50  leads to a quite 

acceptable quality. 

c) Proposition 5 (Part 2) also demonstrates that the tracking objective is achieved (in the mean) for the 

DC-link squared voltage 22

2 dc
vxy   with an accuracy that depends on the voltage network 

frequency 
e

 . The class of admissible references 
dcref

v  and 
ref

 includes periodic signals with the 

period 
e

N  . That is, these signals must vary slower than the network voltage. 



16 

d) The fact that the tracking error 
22

2 dcrefdc
vvz   is harmonic proves the existence of output ripples. 

Proposition 5 (Part 2) ensures that the effect of ripples is not significant if 
e

  is sufficiently large. It 

will be observed through simulations that the value Hz
e

50  leads to sufficiently small ripples.   

4. SIMULATION 

4.1 Simulation Protocol 

The nonlinear adaptive controller, developed in Section 3, including the control laws (10, 18, 46) and 

the parameter adaptive law (42-44), is  now evaluated by simulation. The simulated system is given 

the following characteristics, corresponding to a real-life experimental set-up available in the GIPSA 

Lab (Grenoble, France): 

. Supply network: )cos(.2)( tEtv
ee

  a single phase 220V/50Hz . AC/DC/AC converters: 

15mHL
1
 ; 1.5mFC  ; modulation frequency KHz 10 . Induction machine: it is a 7.5KW motor 

whose characteristics are summarized in Table I. The indicated values of design parameters 

500,c300,c40,c10000,c
4321
 100d00,9c,102c

6

5

5
  have been selected using a 

‘try-and-error’ search method and proved to be suitable. 

TABLE I.  NUMERICAL VALUES OF CONSIDERED MOTOR CHARACTERISTICS 

CHARACTERISTICS SYMBOL VALUE UNITY 

Nominal power nP  7.5 kW 

Nominal voltage snU  380 V 

Nominal flux rn  1 Wb 

Stator resistance sR  0.6 Ω 

Rotor resistance rR  0.5 Ω 

Number of pole pairs p  2  

stator self inductance sL  98.3 Hm 

rotor self inductance rL  90 Hm 

Mutual inductance between the 

stator and rotor windings. 
srM  90 mH 

The simulation protocol is described by Figs. 2 to 4 which show that the reference signals and machine 

load are profiled so that the machine is enforced to operate, successively, both at high and low speeds 

and in motor and generator modes. 

The DC-link voltage reference is set to the constant value Vv
dcref

600 . The reference value 
ref

  for 

the rotor flux norm is set to its nominal value (1Wb ).  

Fig. 4 shows the changing inertia moment J  and viscous friction coefficient f . The variations are 

100% of the corresponding nominal values, approaching the physically allowed limits. The nonlinear 

controller developed in Section 3 will be applied.  
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4.2. Control performances in absence of model uncertainties 

The controller performances are illustrated by Figs 3 and 5 to 8. Fig. 6 shows that the DC-link voltage 

dc
vx 

2
 is well regulated and quickly settles down after each change in the speed reference or the load 

torque. As expected by Proposition 5 and commented on in Remark 2c, the DC link voltage 
dc

v  is 

subject to small amplitude ripples oscillating at the supply network frequency 
e

 . The resulting input 

current 
e

i  is illustrated by Fig 7. It is seen that the current amplitude changes whenever the speed 

reference or load torque vary (Fig. 2). However, the current frequency is insensitive to these changes. 

Specifically, the current remains (almost) always in phase or in opposed phase with the supply net 

voltage complying with the PFC requirement. This is further demonstrated by Fig. 5 which shows that 

the ratio k  takes a constant value after transient periods following the changes in speed reference and 

load torque. The ratio k  is negative whenever the network gets back some energy. This confirms 

Proposition 5 (part 2) and Remark 2c. Figs 2 and 8 show that the motor speed and the rotor flux norm 

match well their respective references (no ripples) despite the variation of mechanical parameters (load 

torque
L

T , moment of inertia J  and viscous friction coefficient f ). This confirms the result of 

Proposition 4 and Remark 2a. For both controlled variables ),(
r

 , the tracking quality is quite 

satisfactory at high speed as well as at low speed. The response time, after each change in speed 

reference and load torque, is less than s 0.1 . In this respect, let us note that the global convergence 

nature of the tracking results in Propositions 4 and 5 guarantee that all transients remain of finite 

duration, whatever the variable initial conditions and the unknown parameter jumps. Nevertheless, it is 

recommended to use any available prior knowledge to improve the choice of initial conditions in 

control laws and in parameter adaptive laws. 

4.3. Control performances in presence of errors on model nominal parameters  

The robustness of the proposed control to modeling errors is now illustrated by considering errors on 

the nominal values of some parameters. The parameters
r

R , 
s

R , 
s

L , 
r

L , and 
sr

M  are given a different 

value higher than 50% compared to the true system model parameters. Specifically, the (unknown) 

true system parameters are used in the simulated machine model while the nominal values are used in 

the control laws (46-47). The experimental operation protocol is kept unchanged with respect to 

Subsection 4.2. The obtained control scheme’s performances are illustrated by Fig 9 where the 

tracking errors for both rotor flux and rotor speed are plotted. For comparison purpose, the tracking 

errors obtained in the case of no difference between the simulator and controller parameters (i.e. 

nominal parameters equal true parameters) are also plotted in Fig. 9. It is seen clearly seen that the 

tracking errors obtained when the nominal parameters deviate from the true parameters remain quite 
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close to those obtained in the parameters coincide. In both cases, the rotor flux norm and rotor speed 

match well their references and converge to them after a transient period of nearly 0.02s. 
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Fig. 2. Applied load torque Fig. 3. Rotor speed Ω (rd/s) . Upper: reference and 

measured speed; lower: speed error control. 
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Fig. 4. Upper: Rotor inertia variation. lower: Friction 

coefficient variation 

Fig. 5. Upper: Reference and measured AC-link current 

ei (A). lower: Tuning parameter k  
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Fig. 6. DC-link voltage dcv (V) . Upper: reference and 

measured; lower: error control 

Fig. 7. Unitary power factor checking in presence of a varying 

speed reference and load torque,  

0 5 10 15
0

0.5

1

Time (s)

R
o

to
r 

fl
u

x
 (

W
b

)

 

 

measured

reference

0 5 10 15
-0.1

-0.05

0

0.05

0.1

Time (s)

 f
lu

x
  

e
rr

o
r(

W
b

)

 

0 0.02 0.04 0.06 0.08 0.1
-6

-4

-2

0

2

Time (s)

S
p

e
e

d
 e

rr
o

r(
rd

/s
)

0 0.02 0.04 0.06 0.08 0.1
-0.6

-0.4

-0.2

0

0.2

Time (s)

F
lu

x
 e

rr
o

r(
W

b
)

 
Fig. 8. Rotor flux norm (Wb) response. Upper: reference 

and measured; lower: error control 

Fig. 9. Control performances in presence of parameter bias. 

Upper: speed tracking error. Lower: rotor flux norm 

tracking error.  
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5. CONCLUSION 

The problem of controlling associations including AC/DC rectifier, DC/AC inverter and induction 

motor has been addressed. The system dynamics have been described by the averaged seventh order 

nonlinear state-space model (6a-g). Based on such a model, the multi-loops nonlinear adaptive 

controller defined by (10, 18, 42, 43, 44, 46) has been designed and analyzed using tools from the 

Lyapunov stability and averaging theory. It was formally established that the proposed controller 

achieves the objectives it has been designed for, i.e. (i) an almost unitary power factor; (ii) a tight 

regulation of DC-link voltage (vdc); (iii) a satisfactory rotor speed reference tracking over a wide 

range of mechanical parameter variations; (iv) a tight regulation of the rotor flux norm. These results 

have been confirmed by a simulation study which further showed additional features of the proposed 

controller, e.g. its weak sensitivity to electrical model parameters, its supremacy over conventional 

regulators. To the authors’ knowledge, it is the first time that a so complete formal control design and 

analysis framework is developed for induction motors and associated power converters. 

APPENDIX : Proof of proposition 5 

Proof. Part 1. Substituting the right sides of (46) to 
2

u  and 
3

u  in (13) leads to: 

CtZtx /),(),(
2

     (55) 

where we have used (52a-g). Substituting the right side of (55) to ),( tx  in (19) gives: 























































0

)cos(
2

)2cos(

0

/

1

0
),(

1

2

2

2

111
tzE

C
tk

C

E

ECd

y
C

tZ
ZAZ

eeref



  (56) 

where notations (52b-g) have been used. Putting together (56) and (51) in a global state space equation 

one gets (53) and proves Part 1. 

Part 2. As 
dcref

v , and 
ref

 as well as their derivatives are constant or periodic (with period 
e

N  ), it 

follows that the system (53) is periodically time-varying. Therefore, the averaging theory turns out to 

be a suitable framework to analyze its stability (see e.g. [8]). To this end, introduce the time-scale 

change t
e

   and the following signal changes: 

 )()( tZW  ,      
erefref

tNyty 2/
*

 ,    
erefref

tNt 2/
*

  (57a) 

This readily implies that *

refy , and 
*

ref
  are in turn constant or periodic, with period 2, and: 

    Nyty
refref

/2
*

 ,           Nt
refref

/2
*

 . (57b) 

Also, it is easily seen that )(/)(/)()( tZdttdZddWW     with 
e /1 . Then, it follows 

from (53) and using (57b), that the state vector W  undergoes the following state equation:  
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  ),(/2),,(),,(
22

*

1211
 WhNyhWgWfWAW

ref
   (58a) 

with 

),(),,(1  WfWf  ,    ),(),,(
221
 WW       (58b) 

It readily follows from (52e) that: 

  
T

wakaWf 00000)cos()2cos(0),,(
1201

   (58c)  

where the following notations are adopted in coherence with (52a): 

 
TTT

WWW
21

 ,    TwwwW 211   ,     
T

wwwwW
65432

  (59) 

According to the system averaging theory, one gets stability results regarding the system of interest 

(58a-b) by analyzing the averaged system defined by: 

),()()(
22211
 WhWgWfWAW 


     where    7

IRW   (60a) 
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   
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0
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0
1 ,,lim ,  (60b) 

 



N

dWW








2

0
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dWhWh
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
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0
22

0
22
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N2

1
 lim),(

  (60d) 

Note that the last term on the right side of (58a) has not been accounted for in (60a) because its 

average value is null, due to the periodicity (with period 2 ) of 
*

ref
y .  From (58c), one has: 

   
T

Wf 0000000
1

   (61) 

In view of (61) the average system (60a) simplifies to: 

),()(
2221
 WhWgWAW 


  (62) 

where the following notations are used in coherence with (59) and (60a): 

 
TTT

WWW
21

 ,        TwwwW 211  ,      
T

wwwwW
65432

  (63) 

In view of (52f), the vector g  assumes the following partition:  

 
TTT

gg
41

0         with     
T

aCg
31

/10  ,    
T

00000
4
  (64) 

This together with (52d) implies that (60a) can be decomposed in the following two state equations: 

)(
211111

WgWAW  


  (65a) 

),(
22222
 WhWAW 


  (65b) 
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It has already noted (see Proposition 4) that if 
6543

,,, cccc  are positive. Then, it follows from (65b) 

that: 

42
0)(lim 



tW
t

  (66) 

exponentially and whatever )0(
2

W . Then: 

   
4121

0)(lim  


tW
t

  (67) 

exponentially and whatever )0(
2

W . Now, let us check that 
1

A  is in turn Hurwitz. Its characteristic 

polynomial is: 

 
2121

2

1

3

1
)()(det ccdccddcAI    (68) 

Applying for instance the well known Routh’s algebraic criteria, it follows that all zeros of the 

polynomial (68) have negative real parts if the coefficients (
21

, cc , d ) are positive which is actually the 

case. Hence, the matrix 
1

A  is Hurwitz, implying that the autonomous part of the linear system (65a) is 

globally exponentially stable. Then, one gets from (66) that the solution of the nonautonomous system 

(65a) satisfies: 

1

1

1411
)0()(lim gAtW

t





    (69) 

exponentially and whatever  )0(
1

W . Again, the exponential feature of the convergence is due to the 

linearity of (65a). Combining (66) and (69), it follows that the state vector 

7

4

1

1

141*

0

)0(
IR

gA
W

def















  (70) 

is a globally exponentially stable equilibrium of the average system (62). Now, invoking the averaging 

theory (e.g. Theorem 10.4 in [8]), we conclude that there exists a positive real constants *
 such that, 

for all *
0   , the differential equation (58a) has a 2π-periodic solution ),()(  WW  , that 

continuously depends on   and that: 

  *
,lim WW 

0







  (71a) 

The same result applies to the differential equation (56) using the relation    WtZ   with t
e

  . 

That is,    ,tZtZ   is (
e

 /2 )-periodic, it depends continuously on   and: 

  *
,lim WtZ 

0







  (71b) 

This establishes Part 2-a of Proposition 5.  

To prove Part 2-b, let us obtain more insight on the equilibrium  *
W . In coherence with (52a), this is 

decomposed as follows: 
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 
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Then, it readily follows from (70) that: 

1

1

141

*

1
)0( gAW


    and  

4

*

2
0W   (73) 

Also, it is readily checked using (52d) and (64) that: 

 
T

CaaCaaCadgAW )/(1)/()(0)0()0(
01030411

1

141
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1
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
  (74) 

one gets from (52b), (71b), (72), (74) and (75) that: 

  0, lim
*

22
0
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

wtz 
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041
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Cawtk 





  (76b) 

Finally, notice that: 

 



N

d



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


2

0
41
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






2

0
4

0

),0(
N2

1
 lim    (using (58b)) (77a) 

Introducing the variable change t
e

  , (69a) becomes: 

)0(),0(
N2

 lim)0(
4

/2

0
4

e

0
41










 



eN

dtt   (77b) 

This, together with (76a-b), establishes Part 2-b and completes the proof of Proposition 5   

Table II. Main notations 

dc i , : design parameters 3x  : (average) rotor speed ( 3x ) 

ef
 voltage network frequency (Hz) 4x  : (average) α-axis stator current ( six 4

) 

 ss ii ,  : α- and β- axis stator currents 5x  : (average) β-axis stator current (
six 5

) 

ei  : rectifier input current 6x  : (average) α-axis rotor flux (
 rx 6

) 

CL 2,1  : passive components of input  converter 7x  : (average) β-axis rotor flux (
 rx 7

) 

 1,1s  : PWM input signal controlling converter IGBT’s y  : (average) squared DC Link voltage 22

2 dcvxy   

LT  : machine load torque refy  : reference value of y i.e. 2

dcrefref vy   

3,2,1iu : duty ratios i.e. average values of s  and the three 

phase  duty ratio system ( 321 ,, sss ) over cutting 

periods  

1z  : input current tracking error  ekvxz  11  

 ss vv ,  : α- and β- axis stator voltages 2z  : squared DC Link voltage error refyyz 2  

dcv  : rectifier output voltage 3z : rotor  speed  tracking error   refz3  

dcrefv  : reference value of rectifier output voltage dcv  4z : rotor flux norm tracking error 
22

4 rrefz   

)(tv e  : AC line voltage 5z , 6z : additional error variables in control design 

iV : 
Lyapunov functions introduced in various control 

design steps )61( i  r  rotor flux norm )(
2

7

2

6 xxr   

*

1x  : input current reference ekvx 
*

1  ref  : reference value of machine rotor angular velocity 

2x  : (average) rectifier output voltage dcvx 2    : inverse of supply net frequency i.e.  e /1  
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