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INTRODUCTION

It is widely recognized that the induction motor has become a main actuator for industrial purposes. Indeed, as compared to the DC machine, it provides a better power/mass ratio, simpler maintenance (as it includes no mechanical commutators) and a relatively lower cost. However, the problem of controlling induction motors is more complex because these are multivariable and highly nonlinear systems and some of their parameters are time-varying. From the technological viewpoint, a considerable progress has been made in power electronics over the last two decades. Reliable power converters have become available which makes technically possible flexible speed variation of electrical drives including induction machines. Accordingly, the speed variation of these machines is carried out by acting on the supply network frequency. Similarly, before the recent progress in modern power electronics, there was no effective and flexible way to vary the frequency of a supply network. In this respect, recall that the power networks may be either DC or AC but mono-phase (this is for instance the case in the electric traction domain). Therefore, three-phase DC/AC inverters turn out to be the only possible interface (between railway networks and 3-phase AC motors) due to their high capability to ensure flexible voltage and frequency variation.

The control problem at hand is to design a speed controller for the complex system including an AC/DC rectifier, a DC/AC inverter and an induction motor. The controller is expected to ensure a wide range speed regulation, despite mechanical parameters' variations. Indeed, the rotor inertia moment, the viscous friction coefficient and the load torque are presently allowed to be unknown and step-like varying.

The rectifier is (of?) a pulse width modulation (PWM ) type that features power regeneration, controlled DC-link voltage, small filter, 4-quadrant operation (bidirectional power transmission).

Nowadays, the use of PWM rectifiers has considerably spread in industry and concerns a wide range spectrum of applications, [START_REF] Xiong Jian | Simplified Control Circuit of Three Phase PWM Rectifier[END_REF], [START_REF] Marques | A PWM Rectifier Control System with DC Current Control Based on the Space Vector Modulation and Stabization[END_REF]. The point is that the association 'rectifier-inverter-motor' acts as a highly nonlinear load vis-à-vis to the main power AC network (which is supposed to provide almost perfect sinusoidal voltage to all other connected loads). Therefore, undesirable higher harmonics are generated (due to the load nonlinearity) and pollute the supply network. This harmonic pollution reduces the rectifier efficiency, induces voltage distortion in the AC supply network and induces electromagnetic compatibility problems [START_REF] Xiong Jian | Simplified Control Circuit of Three Phase PWM Rectifier[END_REF].

In the light of the above considerations, it turns out that the control objective must not only be motor speed regulation but also the current harmonics rejection through power factor correction (PFC), [START_REF] Singh | Improved Power Quality AC-DC Converter for Electric Multiple Units in Electric Traction[END_REF].

In most previous works on induction machine speed control, the control problem was simplified by ignoring the dynamics of the AC/DC/AC converters. Accordingly, the machine is supposed to be directly controlled by stator voltages. The simplified control problem has been dealt with using several control strategies ranging from simple techniques, e.g. field-oriented control [START_REF] Ortega | On Speed Control of Induction Motors[END_REF], to more sophisticated nonlinear approaches, e.g. passivity control [START_REF] Duarte-Mermoud | Induction motor control based on adaptive passivity[END_REF], direct torque control [START_REF] Jasinski | Direct Control for AC/DC/AC Converter-Fed Induction Motor With Active Filtering Function[END_REF], [START_REF] Barambones | Vector Control for Induction Motor Drives Based on Adaptive Variable Structure Control Algorithm[END_REF], or sliding mode control [START_REF] Traoré | Sensorless Induction Motor: High Order Sliding Mode Controller and Adaptive Interconnected Observer[END_REF]. A control strategy that ignores the presence of the AC/DC rectifier suffers at least from two main drawbacks. First, the controller design relies on the assumption that the DC voltage (provided by the AC/DC rectifier) is perfectly regulated; the point is that perfect regulation of the rectifier output voltage cannot be ensured when ignoring the rectifier load which is nothing but the 'inverter-motor' set. The second drawback is concerned by the entire negligence of the PFC requirement. That is, from a control viewpoint, it is not judicious to consider separately the invertermotor association, on one hand, and the power rectifier, on the other hand.

In the present work, we will develop a new control strategy that simultaneously accounts for all system components i.e. the AC/DC rectifier and the association 'DC/AC inverter-motor'. Our control strategy is featured by its multi-loops nature. First, a current loop is designed so that the coupling between the power supply network and the AC/DC rectifier operates with a unitary power factor.

Then, a second loop is designed to regulate the output voltage of the AC/DC rectifier so that the DClink between the rectifier and the inverter keeps on a constant voltage despite changes in the motor operation conditions. Finally, a bi-variable loop is designed to make the motor velocity track its varying reference value and regulate the rotor flux norm to its nominal value. All control loops are designed using the Lyapunov and backstepping techniques [START_REF] Krstic | Nonlinear and Adaptive Control Design[END_REF]. Interestingly, the load torque, rotor inertia and friction coefficient are presently allowed to be unknown parameters subject to step-like changes. This parametric uncertainty is coped with, by providing the controller with a parameter adaptation capability. It will be formally proved that the proposed multi-loop nonlinear adaptive controller actually stabilizes (globally and asymptotically) the controlled system and meets its tracking objectives with a good accuracy. Specifically, the motor speed and rotor flux norm will be shown to perfectly track their references, whatever the initial conditions. The rectifier input current and output voltage are shown to match well their reference values. More precisely, the steady-state tracking errors for these two variables are both harmonic signals with amplitudes depending, among others, on the supply network frequency. These theoretical results are obtained by making a judicious use of adequate control theory tools, e.g. averaging theory and Lyapunov stability [START_REF] Khalil | Nonlinear systems[END_REF].

The paper is organized as follows: the system under study (i.e. the AC/DC/AC converter and induction motor association) is modeled and given a state space representation in Section 2; the controller design and the closed-loop system analysis are presented in Section 3; the controller performances are illustrated through numerical simulations in Section 4. For convenience, the main notations used throughout the paper are described in Table II given at the end of the paper.

MODELING 'AC/DC/AC CONVERTER-INDUCTION MOTOR' ASSOCIATION

The controlled system scheme is represented by Fig 1 . It includes an AC/DC boost rectifier, on one hand, and an 'inverter-induction motor' combination, on the other hand. The inverter is a DC/AC converter operating, like the AC/DC rectifier, according to the known pulse width modulation (PWM) principle. 

AC/DC Rectifier Modeling

The power supply network is connected to an H-bridge converter consisting of four IGBT's with antiparallel diodes for bidirectional power flow mode. The converter should be controlled so that two main tasks are accomplished: (i) providing a constant DC link voltage; (ii) ensuring an almost unitary power factor connection with the power network. Applying Kirchhoff's laws, this subsystem is described by the following set of differential equations: }. Specifically:

       ON is S and OFF is S if OFF is S and ON is S if s 1 1 (1c)
The above (instantaneous) model describes accurately the physical inverter. Then, it is based upon to build up converter simulators. However, it is not suitable for control design due to the switched nature of the control input s . As a matter of fact, most existing nonlinear control approaches apply to systems with continuous control inputs. Therefore, the control design for the above converter will be performed using the following average version of (1a-b) [START_REF] Sira | Control Design Techniques in Power Electronics Devices[END_REF]:

2 1 1 1 1 1 x u L L v dt dx e   (2a) s i C x u C dt dx 2 1 2 1 1 1 2   (2b)
where:

e i x  1 , dc v x  2 , 1 u = s (2c)
are the average values over the cutting periods of e i , dc v and s , respectively.

Inverter-Motor Modeling

The induction model is based on the motor equations in the rotating  -and- axes and reads as:

J T i i J m J f dt d L r s r s        ) (       (3a)         s s r r s v m i bp ba dt di 1      (3b)         s s r r s v m i bp ba dt di 1      (3c)        r s sr r r p i aM a dt d      (3d)        r s sr r r p i aM a dt d      (3e)
where

 s i ,  s i ,   r ,   r ,  ,
and, L T , are the stator currents, rotor fluxes, angular speed, and load torque, respectively. Wherever they come in, the subscripts s and r refer to the stator and rotor, respectively. That is, p designates the number of pole-pairs, J the inertia of the motor-load set, and f is the friction coefficient. The remaining parameters are defined as follows:

r r L R a  , r s sr L L M b   , 2 2 2 / ) ( r s r sr s r L L R M R L     , ) / ( 1 2 r s sr L L M    , r sr L M p m  , s L m  1 1  . In (3a-e),   s s v v ,
are the stator voltage in the  -coordinates (Park's transformation of the three phase stator voltages). The inverter is featured by the fact that the stator α-and β-voltages can be controlled independently. To this end, these voltages are expressed in function of the corresponding control action (see e.g. [START_REF] Ryan | Modeling of Sinewave Inverters: A Geometric Approach[END_REF]): . The latter are defined by (1c) replacing there ( S , ' S ) by

( i S , ' i S ) ( 3 , 2 , 1  i ).
Now, let us introduce the state variables:

  3 x ,  s i x  4 ,  s i x  5 ,   r x  6 ,   r x  7 , (4b) 
where the bar refers to signal averaging over cutting periods (just as in (2c)). Using the power conservation principle, the power absorbed by the DC/AC inverter is given by the usual expression

s ai i x P 2 
. On the other hand, the power released by the inverter is given by ) ( , it follows that:

  5 3 4 2 x u x u i s   (4c)
Then, substituting (4a-c) in (3a-e) yields the following state-space representation of the association 'inverter-motor': The state space equations thus obtained are put together to get a state-space model of the whole system including the AC/DC/AC converters and the induction motor. For convenience, the whole system's model is rewritten here for future reference: 

J T x x x x J m x J f dt dx L      ) ( 4 7 6 5 3 3 (5a)
2 1 1 1 1 1 x u L L v dt dx e   (6a) ) ( 2 1 2 1 5 3 4 2 1 1 2 x u x u C x u C dt dx    (6b) J T x x x x J m x J f dt dx L      ) ( 4 7 6 5 3 3 (6c) 2 2 1 4 7 3 6 4 x u m x x bpx bax dt dx      (6d)

CONTROLLER DESIGN

Control Objectives

There are two operational control objectives: 

AC/DC rectifier control design

Controlling rectifier input current to meet PFC

The PFC objective means that the input current rectifier should be sinusoidal and in phase (or opposite phase) with the AC supply voltage. Therefore, one seeks a regulator that enforces the current 1

x to tack a reference signal * 1 x of the form:

e v k x  * 1 (7)
At this point, k is any real parameter that is allowed to be time-varying. This parameter is positive when the induction machine operates in motor mode and negative in the generator mode. Introduce the current tracking error:

* 1 1 1 x x z   (8)
In view of (6a), the above error undergoes the following equation:

* 1 1 2 1 1 1 / / x L x u L v z e      (9)
To get a stabilizing control law for this first-order system, consider the quadratic Lyapunov function V  is a negative definite function of 1 z if the control input is chosen as follows:

  2 * 1 1 1 1 1 1 / ) / ( x x L v z c L u e     (10) with 0 1  c
is a design parameter. The properties of such a control law are summarized in the following proposition, the proof of which is straightforward. and its first time derivative are available, then one has the following properties:

Proposition 1. Consider the system, next called current (or inner) loop, composed of the current equation (6a) and the control law (10) where

1) The current loop undergoes the equation

1 1 1 z c z    with * 1 1 1 x x z  
. As 1 c is positive, this equation is globally exponentially stable, i.e. 1 z vanishes exponentially, whatever the initial conditions.

2) If in addition k converges (to a finite value), then the PFC requirement is asymptotically fulfilled in average i.e. the (average) input current 1

x tends (exponentially fast) to its reference e v k as

  t 

DC link voltage regulation

The aim is now to design a tuning law for the ratio k in (7) so that the rectifier output voltage x . This is the subject of the following proposition.

Proposition 2. Consider the power rectifier described by (6a-b) together with the control law [START_REF] Traoré | Sensorless Induction Motor: High Order Sliding Mode Controller and Adaptive Interconnected Observer[END_REF].

Under the same assumptions as in Proposition 1, one has the following properties:

1) The output voltage 2 x varies, in response to the tuning ratio k , according to the equation:

) ( 2 1 ) ( 2 1 5 3 4 2 1 2 2 2 x u x u C v z v k x C dt dx e e     (11)
2) The squared voltage (

2 2 x y 
) varies, in response to the tuning ratio k , according to the equation: or, equivalently:

) , ( / / 1 2 t x C v z C v k dt dy e e     (12) with C x u x u x t x / ) ( ) , (
2 1 1 1 x x u v x e  (14) 
Also, from ( 7)-( 8), one immediately gets that

1 1 z v k x e   which together with (14) yields 2 1 2 1 1 ) ( x v z v k x u e e  
. This establishes [START_REF] Jasinski | Direct Control for AC/DC/AC Converter-Fed Induction Motor With Active Filtering Function[END_REF] due to (6b). Deriving x y  with respect to time and using [START_REF] Jasinski | Direct Control for AC/DC/AC Converter-Fed Induction Motor With Active Filtering Function[END_REF] yields relation [START_REF] Xiong Jian | Simplified Control Circuit of Three Phase PWM Rectifier[END_REF] and completes the proof of Proposition 2 

The ratio k stands up as a control signal in the first-order system defined by [START_REF] Xiong Jian | Simplified Control Circuit of Three Phase PWM Rectifier[END_REF]. As previously mentioned, the reference signal 

e e y t x C t z E C t k E C k E z        ) , ( / ) cos( 2 / ) 2 cos( / 1 2 2 2    (15)
where one used the fact that

) cos( . . 2 t E v e e   and )) 2 cos( 1 ( 2 2 t E v e e   
. To get a stabilizing control law for the system (15), consider the following quadratic Lyapunov function:

2 2 2 5 . 0 z V  (16)
It is easily checked that the time-derivative 2 V  can be made negative definite in the state 2 z by letting:

  ) , ( ) cos( 2 ) 2 cos( 2 2 1 2 2 t x z c C t z E t E k E k e e         ref y C   (17a) where 0 2  c
is a design parameter. The point is that such an equation involves a periodic singularity due to the mutual neutralization of the first two terms on the left side of (17a). To get off this singularity and, besides, to avoid an excessive chattering in the solution, the two terms in cos(.) on the left side of (17a) are ignored, leading to the following approximate simpler solution:

  2 2 2 / ) , ( E t x z c C k     2 / E y C ref   (17b)
Bearing in mind the fact that the first derivative of the control ratio k must be available (Proposition 1), the following filtered version of the above solution is proposed:

  2 2 2 / ) , ( E t x z c C d k d k       2 / E y C d ref   (18)
At this point, the regulator parameters  

2

, c d are any positive real constants. The proof of the forthcoming proposition 3 (?) will make it clear how these should be chosen for the control objectives to be achieved. For now, let us summarize the main findings (?) in the following proposition.

Proposition 3. Consider the inner control loop consisting of the AC/DC rectifier described by (6a-b)

together with the control laws [START_REF] Traoré | Sensorless Induction Motor: High Order Sliding Mode Controller and Adaptive Interconnected Observer[END_REF] and (18). Using Proposition 1 (Part 1), it turns out that the inner loop undergoes, in the

) , , ( 2 1 k z z
-coordinates, the following equation, where

* 1 1 1 x x z   and ref y y z   2 :                                                                        0 ) cos( 2 ) 2 cos( 0 ) , ( 1 
0 0 0 0 0 0 1 2 2 2 1 2 2 2 1 2 1 t z E C t k C E y t x E C d k z z d c E C d C E c k z z e e ref        (19) 

Motor speed and rotor flux norm regulation

The problem of controlling the rotor speed and flux norm is now addressed for the induction machine described by (5a-e). The speed reference ref  is any bounded and derivable function of time and its two first derivatives are available and bounded. These properties can always be achieved filtering the reference through second-order linear filters. The flux reference ref  is fixed to its nominal value. The controller design will now be performed in two steps using the tuning-functions backstepping adaptive technique [START_REF] Krstic | Nonlinear and Adaptive Control Design[END_REF]. First, introduce the tracking errors:

3 3 x z ref    (20) ) ( 2 7 2 6 2 ref 4 x x z     (21)
Step 1. It follows from (5a) and (5d-e) that the errors 3 z and 4 z undergo the differential equations:

J x f J T J x x x x m z L ref / / / ) ( 3 4 7 5 6 3         (22) ) ( 2 2 5 7 4 6 ref ref 4 x x x x aM z sr        ) ( 2 4 2 ref z a    (23)
In ( 22) and ( 23), the quantities ) ( 

) ( ) ( 3 3 3 1 z f T z c J ref L ref def          (24a)
On the other hand, the fact J , L T and f are unknown suggests the certainty equivalence from of equations (24a).

)  , respectively. Nevertheless, we retain the expressions of 1  and 1  as first stabilizing functions and introduce the new errors:

) ( ) ( ˆ3 3 3 1 z f T z c J ref L ref def          (24b) ) ( 2 2 4 2 ref ref ref 4 4 1 z a z c def          (25) 
) ( 4 7 5 6 1 5 x x x x m z     (28) ) ( 2 5 7 4 6 1 6 x x x x aM z sr     (29)
Then, using the notations (24) to (29), the dynamics of the errors 3 z and 4 z , initially described by ( 22)-( 23), can be rewritten as follows:

J z J x f J T J z c J z c z L ref / / / / ) ( ~5 3 3 3 3 3 3           (30) 6 4 4 4 z z c z     (31)
where

J J J   , L L L T T T   and f f f   (32)
Step 2. The second design step consists in choosing the actual control signals, 2 u and 3 u , so that all errors ( 3 z , 4 z , 5 z , 6 z ) converge to zero. To this end, we should make (?) how these errors depend on the actual control signals ( 2u , 3 u ). We start focusing on 5 z ; it follows from (28) that:

) ( 4 7 4 7 5 6 5 6 1 5 x x x x x x x x m z             (33) 
Assume that the parameters J , L T and f are constant or slowly time-varying and using (5a-e), (32) and (24), one gets from (33): 

) ( / ) ( 3 6 2 7 2 1 5 3 2 5 u x u x x mm J z f J c z                               3 3 3 3 3 3 3 ) ( ) ( ) ( x f T z c J x J f J T z c J J f J c L ref L ref      (34) with   ) ( ) ( ) )( ( ) (
x x mbpx x x x x mpx x x x x a m f J f J c z c ref ref                    (35)
Similarly, it follows from (29) that 6 z undergoes the following differential equation:

) ( 2 5 7 5 7 4 6 4 6 1 6 x x x x x x x x aM z sr             (36)
Using (5a-e) and (25), it follows from (36): 

) ( 2
                   ) ( 2 ) ( ) ( 2 ) )( ( 2
         (38)
To analyze the error system, composed of equations (30-31), ( 34) and (37-38), let us consider the following augmented Lyapunov function candidate: ) is:

J f J T J J z z z z V L /
J T T J f f J J J z z z z z z z z V L L / / / 6 6 5 5 4 4 3 3 4                (40)
Using (30), ( 34) and (37) in (40) and adding 

z c z c z c z c V       J z f / 2 5  J z z / 5 3    2 5 3 3 3 3 5 3 3 3 ) )(( ( ) ( ~z c z c f J c z z z c J J J ref ref               ) ( ~3 5 3 f J c z z T J T L L                 2 5 3 3 5 3 3 ) ( ~z f J c x z x z f J f    ) ( 2 3 7 2 6 1 2 2 4 6 6 6 u x u x m x aM z z c z sr                             3 3 3 3 6 2 7 2 1 5 3 5 2 5 ) ( ) ( ) ( x f T z c J u x u x x m z c c z L ref      (41)
This suggests the following parameter adaptation laws : 32) and (42), the expressions of J ˆ, L T ˆand f ˆ can be calculated with the following equations:

L T L T     ~ , J J     ~ and f f     ~ (42) erehw ) )( ( ) ( 3 3 3 5 3 3 3 2 5 3 ref ref J z c f J c z z c z z c             (43a) 5 3 3 ) ( z f J c z L T     (43b) 2 5 3 3 5 3 3 ) ( z f J c x z x z f      (43c) from (
J J    ˆ , L T L T    ˆ , f f    ˆ (44)
Substituting the parameter adaptation laws (42) to 

1 z z J z J f z c z c z c z c V           ) ( 2 3 7 2 6 1 2 6 6 4 2 6 u x u x m x aM z c z z sr           3 3 3 3 6 2 7 2 1 5 3 5 2 5 ) ( ) ( ) ( x z c u x u x x m z c c z f T ref J L                (45) 
where 5 c and 6 c are new positive real design parameters. Equation (45) suggests that the control signals 3 2 , u u must be chosen so that the two quantities between curly brackets (on the right side of (45) are set to zero. Letting these quantities equal to zero and solving the resulting second-order linear equation system with respect to ( 3 2 , u u ), gives the following control law: 

                                 2 6 6 4
        (48a)
By using the following inequality: As the right side of (49) is a negative definite function of the state vector ( 3 z , 4 z , 5 z , 6 z ), the closedloop system is globally asymptotically stable [START_REF] Khalil | Nonlinear systems[END_REF]. The result thus established is more precisely formulated in the following proposition: Proposition 4 (Speed regulation). Consider the closed-loop system composed of the induction machine, described by model [START_REF] Ortega | On Speed Control of Induction Motors[END_REF], and the nonlinear controller defined by the control law (46). Then, one has the following properties:

1) The closed-loop error system undergoes, in the ( 3 z , 4 z , 5 z , 6 z ) coordinates, the following equations: 

         (51e)     5 3 3 3 5 3 3 3 3 5 3 5 ) ( ) ( ) )( ( ) , , , , ( ~z x f J c J f J T f J c z c z c f J c J J J f J T J J z z L ref def L             (51f) 2)
The above linear system is globally asymptotically stable with respect to the Lyapunov function 4 V .

Consequently, the errors ( 3 z , 4 z , 5 z , 6 z ) vanish exponentially fast, whatever the initial conditions  Remark 1. Note that the exponential nature of stability guarantees stability robustness with respect to modelling and measurements errors [START_REF] Khalil | Nonlinear systems[END_REF].

PFC Achievement

In the following proposition, it is shown that, for a specific class of reference signals, including periodic signals, the control objectives are achieved (in the mean) with an accuracy that depends, among others, on the network frequency e  . The following notations are needed to formulate results:

  T k z z Z 2 1 1  ;   T z z z z Z 6 5 4 3 2  ,   T L J f J T J J / / /   (52a) C E a / 2 0  ; 2 2 1 / E C d c a  ; C E a / 2 2  ; 2 3 / E d a  ; e   / 1  (52b) 7 7 2 ) 3 , 4 ( ) 4 , 3 ( 1              IR A A A (52c)               d a a c A 1 0 1 1 0 0 0 0 0 ;                      6 5 4 3 2 0 1 0 0 ) / ( 0 0 1 0 0 0 / 1 0 c J f c c J c A (52d) ) 4 , 3 ( O , ) 3 , 4 ( O null matrices in 4 3 R and 3 4 R , respectively.     7 1 2 0 0 0 0 0 0 ) cos( ) 2 cos( 0 ) , ( IR t z a t k a t Z f T e e      (52e)   7 3 0 0 0 0 / 1 0 IR a C g T    (52f)   7 2 1 0 0 0 0 / 1 0 IR E C d h T   (52g) T Z Z Z h ] 0 ) , ( 0 ) , ( 0 0 0 [ ) , ( 2 5 2 3 2 2       (52h)
Proposition 5. Consider the system including the AC/DC/AC power converters and the induction motor, connected in tandem as shown in Fig. 1. For control design purpose, the system is represented by its average model (6a-e). The system is set in closed-loop with the adaptive controller defined by the control laws [START_REF] Traoré | Sensorless Induction Motor: High Order Sliding Mode Controller and Adaptive Interconnected Observer[END_REF]18,46) and the parameter adaptive law (44), where all design parameters (i.e. 1) The resulting closed-loop system undergoes the state-space equation: 

) , ( ) , ( ) , ( 2 2 1 2       Z h y h t Z g t Z f Z A Z ref    (53)

Simulation Protocol

The nonlinear adaptive controller, developed in Section 3, including the control laws [START_REF] Traoré | Sensorless Induction Motor: High Order Sliding Mode Controller and Adaptive Interconnected Observer[END_REF]18,46) and the parameter adaptive law (42-44), is now evaluated by simulation. The simulated system is given the following characteristics, corresponding to a real-life experimental set-up available in the GIPSA Lab (Grenoble, France):

. Supply network: Fig. 4 shows the changing inertia moment J and viscous friction coefficient f . The variations are 100% of the corresponding nominal values, approaching the physically allowed limits. The nonlinear controller developed in Section 3 will be applied.

) cos( . 2 ) ( t E t v e e

Control performances in absence of model uncertainties

The controller performances are illustrated by Figs 3 and 5 to 8. Fig. 6 shows that the DC-link voltage It is seen that the current amplitude changes whenever the speed reference or load torque vary (Fig. 2). However, the current frequency is insensitive to these changes. Specifically, the current remains (almost) always in phase or in opposed phase with the supply net voltage complying with the PFC requirement. This is further demonstrated by Fig. 5 which shows that the ratio k takes a constant value after transient periods following the changes in speed reference and load torque. The ratio k is negative whenever the network gets back some energy. This confirms Proposition 5 (part 2) and Remark 2c. Figs 2 and8 show that the motor speed and the rotor flux norm match well their respective references (no ripples) despite the variation of mechanical parameters (load torque L T , moment of inertia J and viscous friction coefficient f ). This confirms the result of Proposition 4 and Remark 2a. For both controlled variables ) , (

, the tracking quality is quite satisfactory at high speed as well as at low speed. The response time, after each change in speed reference and load torque, is less than s 0.1 . In this respect, let us note that the global convergence nature of the tracking results in Propositions 4 and 5 guarantee that all transients remain of finite duration, whatever the variable initial conditions and the unknown parameter jumps. Nevertheless, it is recommended to use any available prior knowledge to improve the choice of initial conditions in control laws and in parameter adaptive laws.

Control performances in presence of errors on model nominal parameters

The robustness of the proposed control to modeling errors is now illustrated by considering errors on the nominal values of some parameters. The parameters 

CONCLUSION

The problem of controlling associations including AC/DC rectifier, DC/AC inverter and induction motor has been addressed. The system dynamics have been described by the averaged seventh order nonlinear state-space model (6a-g). Based on such a model, the multi-loops nonlinear adaptive controller defined by [START_REF] Traoré | Sensorless Induction Motor: High Order Sliding Mode Controller and Adaptive Interconnected Observer[END_REF]18,42,43,44,46) have been confirmed by a simulation study which further showed additional features of the proposed controller, e.g. its weak sensitivity to electrical model parameters, its supremacy over conventional regulators. To the authors' knowledge, it is the first time that a so complete formal control design and analysis framework is developed for induction motors and associated power converters.

APPENDIX : Proof of proposition 5

Proof. Part 1. Substituting the right sides of (46) to 2 u and 3 u in (13) leads to:

C t Z t x / ) , ( ) , ( 2     (55)
where we have used (52a-g). Substituting the right side of (55) to ), it follows that the system (53) is periodically time-varying. Therefore, the averaging theory turns out to be a suitable framework to analyze its stability (see e.g. [START_REF] Khalil | Nonlinear systems[END_REF]). 

                                  0 ) cos( 2 ) 2 cos( 0 / 1 0 ) , ( 1 2 2 2 1 1 1 t z E C t k C E E C d y C t Z Z A Z e e ref
    N y t y ref ref / 2 *   ,     N t ref ref / 2 *     . ( 57b 
)
Also, it is easily seen that

) ( / ) ( / ) ( ) ( t Z dt t dZ d dW W           with e   / 1 
. Then, it follows from (53) and using (57b), that the state vector W undergoes the following state equation:

  ) , ( / 2 ) , , ( ) , , ( 2 2 
* 1 2 1 1       W h N y h W g W f W A W ref            (58a) with ) , ( ) , , ( 1    W f W f  , ) , ( ) , , ( 2 2 1      W W  (58b) 
It readily follows from (52e) that:

    T w a k a W f 0 0 0 0 0 ) cos( ) 2 cos( 0 ) , , ( 1 2 0 1       (58c)
where the following notations are adopted in coherence with (52a):

  T T T W W W 2 1  ,   T w w w W 2 1 1  ,   T w w w w W 6 5 4 3 2  (59)
According to the system averaging theory, one gets stability results regarding the system of interest (58a-b) by analyzing the averaged system defined by:

) , ( ) ( ) ( 2 2 2 1 1      W h W g W f W A W      where 7 IR W  (60a) with        N d W f N 2 1 W f       2 0 1 0 1 , , lim , (60b) 
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Note that the last term on the right side of (58a) has not been accounted for in (60a) because its average value is null, due to the periodicity (with period  2 ) of * ref y . From (58c), one has:

    T W f 0 0 0 0 0 0 0 1  (61)
In view of (61) the average system (60a) simplifies to:

) , ( ) ( 2 2 2 1     W h W g W A W     (62)
where the following notations are used in coherence with (59) and (60a):

  T T T W W W 2 1  ,   T w w w W 2 1 1  ,   T w w w w W 6 5 4 3 2  (63)
In view of (52f), the vector g assumes the following partition:

  T T T g g 4 1 0  with   T a C g 3 1 / 1 0   ,   T 0 0 0 0 0 4  (64)
This together with (52d) implies that (60a) can be decomposed in the following two state equations: A is in turn Hurwitz. Its characteristic polynomial is:

) ( 2 1 1 1 1 1 W g W A W       (65a) ) , ( 2 
2 2 2 2    W h W A W   ( 
  2 1 2 1 2 1 3 1 ) ( ) ( det c c d c c d d c A I            (68)
Applying for instance the well known Routh's algebraic criteria, it follows that all zeros of the polynomial (68) have negative real parts if the coefficients ( A is Hurwitz, implying that the autonomous part of the linear system (65a) is globally exponentially stable. Then, one gets from (66) that the solution of the nonautonomous system (65a) satisfies: . Again, the exponential feature of the convergence is due to the linearity of (65a). Combining (66) and (69), it follows that the state vector 
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 1 Fig.1. AC/DC/AC drive circuit with three-level inverter

  network voltage (with known constants e E  , ) and s is the switch position function taking values in the discrete set { 1 , 1 

L

  are the self-inductances. sr M denotes the mutual inductance between the stator and rotor windings.

  α-and β-axes (Park's transformation) of the three phase duty ratio system

  (i) Speed regulation: the machine speed  must track, as closely as possible, a given reference signal ref  , despite the parametric uncertainties (concerning the load torque L T , rotor inertia J and friction coefficient f ). (ii) PFC requirement: the rectifier input current e i must be sinusoidal and in phase or opposed phase with the AC supply voltage e v .As there are three control inputs at hand, namely 1 u , 2 u and 3 u , two more control objectives are added:(iii) Controlling the continuous voltage dc v making it track a given reference signal

.

  It can be easily checked that the time-derivative 1

  a given reference value dcref v . As mentioned above, dcref v is generally (but not mandatory) set to the nominal value of the stator voltage amplitude. The first step in designing such a tuning law is to establish the relation between the ratio k (control input) and the output voltage 2

1 .

 1 The power absorbed by the AC/DC rectifier is given by the well known expression On the other hand, the power released by the rectifier (toward the load including the capacity and the inverter) is given by

( 2 )

 2 of the squared DC-link voltage dc v x  is chosen to be constant (i.e. 0  ref y ), it is given the nominal value of stator voltage amplitude. Then, it follows from (12) that the tracking error

  ref

  virtual control signals. If these were the actual control signals, the error system (22)-(23) could be globally asymptotically stabilized



  positive design parameters and J ˆ, L T ˆand f ˆ are the estimates of J , L T and f respectively. Indeed, considering the Lyapunov function: This would prove the global asymptotic stability of the system (22)-(25). As the quantities are not the actual control signals, they cannot be let equal to 1  and 1

  time-derivative along the trajectory of the state vector ( 3 z , 4 z , 5 z , 6 z

  vanishes in practice because of the machine remnant flux. Substituting the control law (46) to ( 3 2 , u u ) on the right side of (45) yields:

  nominal value. Then, one has the following properties:

Remarks 2 . 5 (.

 25 positive integer N), and suppose them to be time derivable (up to second order for ref ) with bounded derivatives. Then, there exists a positive real *  such that, a) The motor speed and the rotor flux norm both converge to their respective references as a result of Proposition 4.b) Using Proposition 1 and the fact that the tuning parameter and its time derivative are available, we get that the error to zero. The importance of Proposition 5 (part 2) lies (partly) in the fact that the (time varying) parameter k does converge to a fixed value (up to a harmonic error that depends on e  ). This demonstrates that the PFC requirement is actually fulfilled with an accuracy that depends on e  . The larger e  , the more accurate the PFC quality. It will be seen in the next simulation study that the usual value Part 2) also demonstrates that the tracking objective is achieved (in the mean) for the DCThat is, these signals must vary slower than the network voltage.d) The fact that the tracking error the existence of output ripples. Proposition 5 (Part 2) ensures that the effect of ripples is not significant if e  is sufficiently large. It will be observed through simulations that the value

10 .

 10 phase 220V/50Hz . AC/DC/AC converters: Induction machine: it is a 7.5KW motor whose characteristics are summarized in TableI. The indicated values of design parameters using a 'try-and-error' search method and proved to be suitable.TABLE I. NUMERICAL VALUES OF CONSIDERED MOTOR CHARACTERISTICS is described by Figs. 2 to 4 which show that the reference signals and machineload are profiled so that the machine is enforced to operate, successively, both at high and low speeds and in motor and generator modes.The DC-link voltage reference is set to the constant value flux norm is set to its nominal value (1Wb ).

  and quickly settles down after each change in the speed reference or the load torque. As expected by Proposition 5 and commented on in Remark 2c, the DC link voltage dc v is subject to small amplitude ripples oscillating at the supply network frequency e  . The resulting input current e i is illustrated by Fig 7.

MFig. 2 . 3 .Fig. 4 .Fig. 5 .Fig. 6 .Fig. 7 .Fig. 8 .Fig. 9 .

 23456789 Fig. 2. Applied load torque Fig. 3. Rotor speed Ω (rd/s) . Upper: reference and measured speed; lower: speed error control.

  has been designed and analyzed using tools from the Lyapunov stability and averaging theory. It was formally established that the proposed controller achieves the objectives it has been designed for, i.e. (i) an almost unitary power factor; (ii) a tight regulation of DC-link voltage (v dc ); (iii) a satisfactory rotor speed reference tracking over a wide range of mechanical parameter variations; (iv) a tight regulation of the rotor flux norm. These results

Part 2 .

 2 notations (52b-g) have been used. Putting together (56) and (51) in a global state space equation one gets (53) and proves Part 1. As dcref v , and ref  as well as their derivatives are constant or periodic (with period e N  

  positive which is actually the case. Hence, the matrix 1

2 

 2 exponentially stable equilibrium of the average system (62). Now, invoking the averaging theory (e.g. Theorem 10.4 in[START_REF] Khalil | Nonlinear systems[END_REF]), we conclude that there exists a positive real constants *  such that, applies to the differential equation (56) using the relation  , it depends continuously on  and: establishes Part 2-a of Proposition 5.To prove Part 2-b, let us obtain more insight on the equilibrium * W . In coherence with (52a), this is decomposed as follows: is readily checked using (52d) and (64) that: from (52b), (71b), (72), (74) and (75) that: with (76a-b), establishes Part 2-b and completes the proof of Proposition 5  TableII. Main notations : inverse of supply net frequency i.e.