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Abstract— The problem of modeling and controlling vehicle longitudinal motion is addressed for 

front wheel propelled vehicles. The chassis dynamics are modeled using relevant fundamental laws 

taking into account aerodynamic effects and road slop variation. The longitudinal slip, resulting from 

tire deformation, is captured through Kiencke‟s model. A highly nonlinear model is thus obtained and 

based upon in vehicle longitudinal motion simulation. A simpler, but nevertheless accurate, version of 

that model proves to be useful in vehicle longitudinal control. For security and comfort purpose, the 

vehicle speed must be tightly regulated, both in acceleration and deceleration modes, despite 

unpredictable changes in aerodynamics efforts and road slop. To this end, a nonlinear controller is 

developed using the Lyapunov design technique and formally shown to meet its objectives i.e. perfect 

chassis and wheel speed regulation. 

 

Keywords – vehicle longitudinal control, longitudinal slip, tire Kiencke‟s model, speed control, 

Lyapunov stability. 

 

1. INTRODUCTION 

Vehicle longitudinal motion control aims at ensuring passenger safety and comfort. It is an important 

aspect in dynamic collaborative driving i.e. when multiple vehicles should coordinate to share road 

efficiently while maintaining safety. In this respect, several works have been devoted to what is 

commonly referred to adaptive cruise control that consists in maintaining a specified headway between 

vehicles (Ioannou and Chien, 1993; Moon et al., 2009). Different control techniques have been used in 

these works including linear and adaptive control (You et al., 2009), genetic fuzzy control (Poursamad 

and Montazeri, 2008), sliding mode control (Liang et al., 2003; Nouveliere and Mammar, 2007), and 

scheduling gain control involving PIDs (Ren et al., 2008). However, most previous works on 

longitudinal control were based on simple models neglecting important nonlinear aspects of the 

vehicle such as rolling resistance, aerodynamics effects and road load. In some studies, the controller 

performances were not formally analyzed (Ren et al., 2008). In (Yamakawa et al., 2007), longitudinal 

vehicle control has been studied focusing on torque management for independent wheel drive. It is 

worth noticing that in all previous studies on longitudinal vehicle control, the control design has been 

based on simple models not accounting for tire-road interaction.  
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In the present study, the problem of longitudinal vehicle control is revisited, for front wheel propelled 

vehicles, focusing on speed regulation. The aim is to design a controller that is able to tightly regulate 

the chassis and wheel velocities, in both acceleration and deceleration driving modes, despite changing 

and uncertain driving conditions. This problem has not been dealt with previously. A further 

originality of the present paper is that the control design relies upon a more complete model that 

accounts for most vehicle nonlinear dynamics including tire-road interaction. That is, the study 

includes two major contributions. First, a suitable control model is developed for the vehicle 

longitudinal behavior. In this respect, recall that a convenient model is one that is sufficiently accurate 

but remains simple enough to be utilizable in control design. To meet the accuracy requirement, the 

model must account not only for aerodynamic phenomena but also, and especially, for tire-road 

friction. Modeling the tire/road contact is a quite complex issue involving multiple aspects relevant to 

tire characteristics (e.g. structure, pressure) and to environmental factors (e.g. road load, temperature). 

Several tire models have been proposed in the literature e.g.  Guo‟s model (Guo and Ren, 2000), 

Pacejka‟s model (Pacejka and Besselink , 1997), Dugoff‟s model (Dugoff and Segel, 1970), Gim‟s 

model (Gim and Nikravesh, 1990), Kiencke‟s model (Kiencke and Nielsen, 2004). In the present work, 

Kiencke‟s model is retained because it proves to be a good compromise between accuracy and 

simplicity. The overall vehicle modeling is carried out according to the bicycle model principle. In 

addition to tire equations, the model includes chassis dynamics equations (obtained from fundamental 

dynamics and aerodynamics laws) and incorporates relevant practical prior knowledge e.g. the tire 

longitudinal slip is physically limited. The overall vehicle model turns out to be a combination of two 

nonlinear state-space representations describing, respectively, the acceleration and deceleration 

longitudinal driving modes. Its high complexity makes it hardly utilizable for control design but, due 

to its high accuracy, it proves to be quite suitable for simulator building. This model development is 

one major achievement of the present study. The second contribution is the design of a nonlinear 

controller that ensures global stabilization and longitudinal speed regulation during 

acceleration/deceleration driving modes. This is carried out using the Lyapunov design technique 

(Khalil, 2002), based on a simpler (but still accurate) version of the above simulation-oriented model. 

It is formally proved that the developed controller actually achieves the stability and regulation 

objectives it was designed to. Furthermore, it is observed through numerical simulations that the 

controller is quite robust with respect to uncertainties on environmental characteristics. 

The paper is organized as follows: Section II is devoted to modeling the acceleration/deceleration 

vehicle longitudinal behavior; the obtained model is used in Section III to design a controller and to 

analyze the resulting closed-loop system; the controller performances are illustrated in Section IV by 

numerical simulations. A conclusion and reference list end the paper.  
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2. MODELLING OF CHASSIS LONGITUDINAL MOTION 

Except for aerodynamic forces, all external efforts acting on a vehicle are generated at the wheel-road 

contact. The understanding and modeling of the forces and torques developed at wheel-road contact is 

essential for studying properly the vehicle dynamics. These are discussed in the forthcoming 

subsections. In this respect, recall that the vehicle motion is composed of two types of displacements: 

translations along the zyx ,,  axes and rotations around these same axes (Fig. 1). 

2.1. Kiencke’s Tire Modeling 

The tire is a main component of the wheel-road contact as it ensures three important functions 

(Kiencke and Nielsen, 2004): (i) bearing the vertical load and absorbing road deformations; (ii) 

producing longitudinal acceleration efforts and contributing to vehicle braking; (iii) producing the 

required transversal efforts that help the vehicle turning. 

The efforts generated at the wheel-road contact include longitudinal (acceleration/deceleration) forces, 

lateral guiding forces and self alignment torque. The effect of these efforts on the vehicle behaviour is 

determined by the tire-road adhesion. For small load variations, the longitudinal coefficient of friction 

is characterized by the following ratio: 

 
v

tx

F

F
 (1)  

where txF  denotes the longitudinal effort and vF  the vertical load. The ratio  is called longitudinal 

adhesion or friction coefficient. The value of this coefficient depends on the tire slip resulting from the 

deformation of the tire in contact with the road (Kiencke and Nielsen, 2004). The longitudinal slip is 

characterized by the coefficient   defined as follows: 

. in acceleration mode, i.e. WV VV , one has:  
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. in deceleration mode, i.e. WV VV , one has:  

 11
V

Weff

V

W

V

r

V

V
 (3) 

where effr  denotes the effective wheel radius, 
W

 designates the wheel angular velocity, wV


 is the 

speed of the tire-road contact, 
vV


 is the linear velocity of the wheel centre (Fig. 2). A similar 

deformation occurs when the wheel presents a slip angle  i.e. the resulting lateral slip produces a 

lateral force tyF . 

 Modeling the efforts at the wheel-road contact has been given a great deal of interest over the last 

years. In this respect, several tire models have been developed with quite different properties, e.g. 

(Guo and Ren, 2000; Pacejka and Besselink , 1997; Dugoff and Segel, 1990; Gim and Nikravesh, 

1990; Kiencke and Nielsen, 2004). For control design use, the most suitable tire model is one that 

presents the best accuracy/simplicity compromise. From this viewpoint, Kiencke‟s model turns out to 

be a quite satisfactory choice (Kiencke and Nielsen, 2004). Indeed, this model is sufficiently accurate 

as it accounts for the main features such as the vertical load vF , slip angle , slip coefficient . On 

the other hand, it has already proved to be useful in designing simple estimators for state variables like 

slip angle and lateral efforts (You et al., 2009). In the present paper, this model will prove to be useful 

in control design. 

2.2. Kiencke’s Model 

This was developed in (Kiencke and Nielsen, 2004) using the Burckhardt‟s extended model to 

compute the friction coefficient . Accordingly, the latter is a function of the combined 

longitudinal/lateral slip coefficient  and the forces acting on the tire. Fig. 3 gives a schematic 

representation of Kiencke‟s wheel model where: 
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The other parameters and variables contained in equations (4) to (7) have the following meanings: 

321 ,, CCC : parameters depending on the road state. 

4C  : coefficient depending on the maximal driving speed. 

5C  : coefficient depending on the wheel allowed maximal load. 

: global (longitudinal/lateral) slip. 

y :  lateral slip. 

GV  : speed of the vehicle centre of gravity. 

VF : vertical load. 

In Kiencke‟s model, the longitudinal and lateral efforts are respectively described by (8)-(9): 

 )sin()cos( yt
v

tx C
F

F  (8)  

 )sin()cos(yt
v

ty C
F

F  (9) 

where C t  denotes a weighting coefficient taking values in the interval 95.09.0 . In longitudinal 

motion, the following simplifications are used: 

(i) The tire behaviour is independent of the vehicle maximal speed. That is, the term in 4C  is 

neglected in equation (4). 

(ii) The tire model depends linearly on the maximal load. Then, the term in 5C is neglected in (4). 

(iii) The vehicle moves along a straight line. That is, the slip angle  is null. 

Using these remarks, equations (4) to (9) simplify to: 

 321 )exp(1 CCC ,   , 0y  (10) 

   and 0y  (11) 

 vtx FF  (12) 

 0tyF  (13) 

Fig. 3. Kiencke‟s wheel model 

Fv 

 

 

Ftx 

Fty 

 



 

 

6 

2.3. Rolling Resistance and Aerodynamic Resistance 

It is obvious that tire deformation causes mechanical losses. Radial deformations are caused by the 

vertical load. Fig. 4 shows that the vertical force distribution (along the deformation area) is not 

uniform. The resulting force moves from the central point I  to a point located at a distance max,rrd  (Fig 

4). This is called vertical load maximal trail and is defined as follows:  

 effrrrr rd max,  (14) 

When the wheel starts moving, a torque is generated provided that 0max,rrd . To bring back the 

vertical load strength to the central point I , a compensating torque rrM  must be applied (by the 

driving motor) on the wheel. This is called rolling resistance torque and is given by: 

 effrrvrrvrr rFdFM max,  (15) 

2.4. Aerodynamic Resistance 

Aerodynamic resistance has naturally an impact on energy consumption onboard. Fluid mechanics 

laws are resorted to explain air flow around a moving vehicle. Accordingly, vehicle forms are 

continuously reinvented to improve aerodynamic performances (Power and Nicastri, 2000). 

Aerodynamic efforts come in direct interaction with the vehicle, producing various forces (drag, lift 

and lateral) which in turn generate torques (yaw, roll and pitch). The aerodynamic drag force is 

significant when the vehicle moves at grand speed. The aerodynamic lift effort increases the rolling 

resistance (because the surface of tire-road contact grows up) improving tire steerability. On the other 

hand, the aerodynamic lift force decreases the vehicle adhesion which reduces its stability and security 

(Milliken and Milliken, 1995). In presence of front-wind, the aerodynamic resistance is represented by 

two forces: the aerodynamic drag force aexF  and the aerodynamic lift force aezF . These are defined as 

follows: 
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with: 

 : air density depending on atmosphere pressure and ambient temperature. 

Cx  :  aerodynamic drag coefficient. 

Cz  :  aerodynamic lift coefficient. 

S   :  frontal projection area vehicle.  

VV :  vehicle speed. 

Va  :  wind speed (positive in presence of front-wind, negative in presence of rear-wind). 

2.5. Modeling of a Wheel Submitted to Driving Couple  

Fig. 5 shows a one-wheel vehicle with mass 
vM . The wheel is driven by a couple mM . Let J  denotes 

the inertia resulting from the wheel, the transmission shaft and the driving motor. Invoking the 

dynamic fundamental principle, one gets the following equation:  

 
rrefft

W
m MrF

dt

d
JM  (18) 

where equation (15) has been used to account for the rolling resistance. Using the relation WeffW rV , 

one gets: 

 rreffvefftm

eff

w rFrFM
J

r
V  (19) 

Equation (19) together with (1), (2), (3) and (10) describe the one-wheel vehicle behavior. This is 

further illustrated by the schematic representation of Fig. 6. 

2.6. Model of Two-Wheel Vehicle with One Driving Wheel 

Longitudinal and transversal behaviors can be assumed to be decoupled when the steering angle is 

small. Then, we make use of the vehicle symmetry to perform a projection (of all forces) on the 

longitudinal axis reducing thus the four-wheel model into a (two-wheel). Fig. 7 illustrates the forces 

involved in a bicycle model. The involved notations are described in Table I. Now, the focus will be 

made on the bicycle model considering that only one wheel is submitted to a motor torque mM . For 

vehicle stability purpose, the front wheel is driving. The distribution of the vehicle load over the tires 

is computed applying the two dynamic fundamental laws. Doing so, one gets the following equations: 

 vvaexvtf VMFgMF )sin(  (20) 

 0)cos( aezvvrvf FgMFF  (21) 

 0)( hFFlFlF trtfrvrfvf  (22) 

Solving equations (21) and (22) for Fvf  and Fvr  yields: 
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Fig. 5. One-wheel vehicle model Fig. 6. Schematic representation of a one-wheel 

vehicle submitted to a driving couple 
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where 
rf ll

h
 and 

rf

f

ll

l
. From equation (20) it is easily seen that the vehicle speed 

undergoes the following equation: 

 )sin(
1

aexvtf

v

v FgMF
M

V  (25) 

TABLE  I.  NOTATIONS OF VEHICLE LONGITUDINAL MODEL. 

lf : Distance between CoG and the front wheel base (m) 

lr : Distance between CoG and the rear wheel base  (m) 

l : Distance between the bases of the two wheels (m) 

h : Height of the gravity centre (m) 

Faex : Aerodynamic drag force (N) 

Faez : Aerodynamic carrying force (N) 

g : Gravity acceleration (m.s
-2

) 

Mv : Vehicle mass (kg) 

Ftf, Ftr : Front and rear wheel drive force (N) 

Fvf, Fvr  : Load on the front and rear wheel (N) 

θ : Road slop (rad) 
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Fig. 7. The forces acting on a bicycle type vehicle 
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2.7. State-Space Representation of Vehicle Longitudinal Behavior  

The equations obtained so far are now combined together to build-up a state-space representation of 

the vehicle longitudinal acceleration/deceleration behavior. The vehicle longitudinal dynamics are 

characterized by two state variables, i.e. vehicle (chassis) speed 
vV  and front-wheel speed wV . As the 

slip coefficient depends on the current driving mode (acceleration or deceleration), the vehicle is 

characterized by two state-space representations. Each representation describes the vehicle in the 

corresponding operation mode. 

2.7.1. State-Space Representation in Deceleration Mode vw VV  

Combining (3), (10), (11), (13) and (15)-(18), one obtains the following state-space representation:  
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where the various parameters are defined in Table II. A more compact representation of (26a-b) is 

obtained introducing the notations: mMu ,  wVx1 , vVx2  and: 
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With the above notations, the state-space representation (26a-b) is given the following usual compact 

form: 
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TABLE II. DEFINITION OF THE MODEL PARAMETERS 

Vehicle parameters in deceleration Vehicle parameters in acceleration 
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2.7.2. State-Space Representation in Acceleration Mode wv VV   

Using (2), (10), (11), (13) and (15)-(18), one gets the following state-space representation: 
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where the various parameters are defined in Table II. Let us introduce the notations: 
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where 1, xu and 2x  are as in (27a-b). With these notations, the state-space representation (30a-b) is 

given the following more compact form: 
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2.8 Control- and Simulation-Oriented Models for Two-Wheel Vehicle With Single Driving Wheel 

2.8.1 Control-Oriented Models  

2.8.1.1 Control-Oriented Model Accounting For Tire Dynamics 

Combining the mode-dependent state space representations (28) and (31), one gets a single model 

representing the vehicle in all operation modes i.e. 

),(

),(),(

2122

21121

*

11

xxgx

xxguxxx




 (32) 

with: 

 ),(),(1),(),(),( 21

'

12121121211 xxfxxxxfxxxxg  (33a) 

 ),(),(1),(),(),( 21

'

22121221212 xxfxxxxfxxxxg  (33b) 

 
'

12112121

*

1 ),(1),(),( xxxxxx       (33c) 

 
2

)(1
),( 21

21

xxsign
xx  (33d) 



 

 

12 

In addition to vehicle aerodynamics, this model does account for tire-road contact effect. Furthermore, 

it will prove to be useful in control design (Section III).  

2.8.1.2 Control-Oriented Model Ignoring Tire Dynamics 

To better appreciate the benefit of accounting of tire-road contact, a comparison will be performed in 

Section IV between the controller obtained from (32)-(33) and the one obtained from a simplified 

model neglecting tire-road contact. Specifically, the simplified model is obtained letting 0  (tire 

sliding negligence) which immediately implies that wv VV  (i.e. 21 xx ). Ignoring also the rolling 

resistance rr , one gets invoking the dynamic fundamentals principles for translation and rotation: 

 efftfm
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r
V  (34)
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where aexF is defined by (16). It is readily seen from (34)-(35) that the vehicle speed undergoes the 

following equation: 

 
2

2

2

2
)(

2

1
sin avx

vveff

veff

m

veff

eff

v VVSC
M

g
MrJ

Mr
M

MrJ

r
V  (36) 

where the different parameters are defined in Table V. Introduce the following notations: 

 

veff

eff

MrJ

r
2

 (37a) 

 
2

22

2

2 )(
2

1
sin)( ax

vveff

veff
VxSC

M
g

MrJ

Mr
xf  (37b) 

Then, equation (36) can be given by the following more compact form where mMu  and vVx2 : 

 )( 22 xfux  (38) 

The first-order equation (38) is a simplified version of the second-order model (32)-(33). As already 

mentioned, both models will be based upon in control design and the obtained controllers will be 

compared later in Section IV. 

2.8.2 Simulation Model 

Obvious physical considerations show that in real-life longitudinal motions, the vehicle and wheel 

speeds are always quite close to each other. On the other hand, there is no guarantee that the model 

(32)-(33) ensures always that 21 xx . In the next lines, the model will be slightly modified so that  

21 xx  becomes a structural property of it. Doing so, one also will discard any risk of singularity in 

(27a-b) or (30a-b) by ensuring that 0),( 21 xx  and 0),( 21

' xx , with: 
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3221

exp),(

exp),(

x

x

x

x
xx

x

x

x

x
xx

   (39) 

Indeed, it is readily seen that the functions  and '  are continuous and: 

 
0exp),(

0exp),(
'

4
'

3
'

2
'

21

'

43221

xx

xx
       if 21 xx  

The continuity of  and '  then guarantees the existence of 0h
 and 10 l

, such that: 

 
0),(inf

0),(inf

21

'

11

21
11

2

1

2

1

xx

xx

h

l

x

x

x

x

 (40) 

As a matter of fact, the size of h  and l  depends on the parameters '' ,,, ii  )4,3,2(i . The 

above result, shows that equations (32)-(33) are representative of the vehicle longitudinal behavior as 

long as the state vector ),( 21 xx  stays in the following validity domain: 

 hlv
x

x
IRxxD 11:),(

2

12

21  (41) 

A more realistic vehicle longitudinal model is one that structurally enforces the state variables ),( 21 xx  

to stay always in the above domain. To this end, introduce the new variable 
2

1

x

x
x  and its time-

derivative 2

2

1

2

1
x

x

x
x

x
x  . Then, equation (32) can be rewritten in term of the couple ),( 2xx  as 

follows: 

 
),(

),,(

222

2

xxgx

uxxhx




 (42) 

with:  

 ),(),(
1

),,( 2221

*

1

2

2 xxxgxxgu
x

uxxh  (43) 

It is readily seen from (42) that: 

 )0(),,()(
0

2 xduxxhtx
t

 (44) 

Then, the prior knowledge (41) is accounted for taking the saturated version of (44) i.e.: 

 ))(()( tzsattx  (45) 

with 
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 )0(),,()(
0

2 xduxxhtz
tdef

 (46) 

where (.)sat  denotes the saturation function defined by: 

 

hh

hl

ll

zif

zifz

zif

zsat

11

11

11

)(  (47) 

It is readily seen from (46) that the auxiliary variable )(tz  undergoes the differential equation: 

 ),,()( 2 uxxhtz   and   )0()0( xz  (48) 

 Then, it follows from (45) that, see Fig. 8. 

 ),,()( 2 uxxhzrx  (49) 

where  

 )()( zsat
dz

d
zr  (50) 

It is easily checked using (47) that (.)r  is the unit rectangular function defined by: 

 

h

hl

l

zif

zif

zif

zr

10

111

10

)(  (51) 

Putting the second equation in (42) together with (48)-(49), one gets the new model: 

 

),(

),,()(

),,()(

222

2

2

xxgx

uxxhrx

uxxhtz







      with )0()0( xz    and  21 xxx  (52) 

As it accounts for the prior knowledge (47), the new model (52) turns out to be more accurate than the 

models (32)-(33) and (38). However, model (52) is too complex to be used for control design, due e.g. 

to the nonsmooth nature of the function )(zr  defined by (51). Therefore, that model can (and presently 

will) only be used to build up simulators of the vehicle longitudinal motion. Model (32)-(33) is a quite 

satisfactory compromise between model (38) (simpler but less accurate) and model (52) (more 

accurate but more complex). 

 

Example 1. To illustrate previous and forthcoming results, the example of a Citroën-2CV car, with the 

characteristics of Table VI, will be considered throughout in the rest of the paper. Using Table II and 

Table VI, one gets the numerical values of the parameters in the functions  and '  defined by (39), 

see Table III.  

It is readily seen, by simple checking, that conditions (40a) are fulfilled. Furthermore, it is seen from 

Fig. 9a that 0),( 21 xx  if 1 0.93
2

1

x

x
. On the other hand, Fig. 9b shows that 0),(' 21 xx   
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Fig. 8. Synoptic scheme of the simulation vehicle model (52) 

 

      

Figs. 9.a. ),(
21

xx vs 21
/ xx  Fig. 9.b. ),('

21
xx vs 1

/
2

xx  

TABLE III. VALUES OF THE PARAMETERS IN (34) FOR THE CITROËN-2CV CAR 

Deceleration Acceleration 

 : -23.99 '  : 23.99 

2  : 1.36002 '

2  : 1.15202 

3  : -0.104 '

3  : 0.104 

4  : -6714265556.98732 '

4  : -9.76223532472411 10
-12

 

 

whenever 10
1

2

x

x
 i.e. 

2

11
x

x
. In the light of these observations, it is seen that the validity 

domain is .93.0
2

1

x

x
 That is, 07.0

1l
 and 

1
h . On the other hand, the tire cannot assume 

(in acceleration as well as in deceleration mode) a sliding larger than %10max  i.e.  max . 

Then, one gets from (2) and (3) that 11.19.0
2

1

x

x
 which gives  1.0

2l
 and 11.0

2h . 

Letting 07.0,min
21 lll  and 11.0,min

21 hhh , one gets that  11.193.0
2

1

x

x
. The 

),,(
2

uxxh  .  
(.)sat  

)0(x  

z  

x  

),(
22

xxg  .  
2x  

1
x  

2
x  

u  
 

(a) (b) 
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resulting bounding on the sliding  turn out to be  hl  with 07.0ll  and 

1.0
1 h

h
h    

3. VEHICLE LONGITUDINAL REGULATORS DESIGN 

3.1. Reference Trajectory Generation 

We seek a speed controller for the vehicle moving in longitudinal acceleration/deceleration modes. 

The regulator design is based on the vehicle model (32) and the control objective is to enforce the 

vehicle chassis and wheel speeds, wVx1  and vVx2 , to track their reference trajectories, denoted *

wV  

and *

vV , respectively. The latter are required to be time-differentiable. This requirement that can 

always be complied with by pre-filtering given (non-differentiable) speed setpoints: 

 
d

w

r

w

d

v

r

v

V
sT

V

V
sT

V

 
1

1

 
1

1

*

*

 (53a) 

with )0(*

wV 0)0(*

vV , where the filter time constant 
rT  is freely chosen by the user and d

wV , d

vV  are 

positive speed setpoints. The above references cannot both be freely chosen because they are linked by 

(32).  As a matter of fact, the desired reference of vehicle speed d

vV  is first chosen by the user. Then, 

the wheel reference d

wV  is let to be of the form: 

 
d

v

d

w VV )1( *   (53b) 

where *  is a constant (representing the sliding) that is uniquely obtained from (32) letting there 

d

vVx2
, d

vVx )1( *

1
 and setting 02x . Doing so, one gets 0,)1( *

2

d

v

d

v VVg , due to (32). 

Then (33b) yields: 

 0,)1(,)1(1,)1(,)1( *'

2

**

2

* d

v

d

v

d

v

d

v

d

v

d

v

d

v

d

v VVfVVVVfVV   (53c) 

This is an algebraic equation that must be solved to get the adequate value of *  for any fixed d

vV . 

Recall that 1,1,)1( * d

v

d

v VV . Then, it is readily checked that the desired speeds  

d

v

d

v

d

w

d

v VVVV )1(,, *  will be in the validity domain vD  if *  belongs to the interval 

h

h
l

1
, . 

Example 2. Table IV shows the values of the parameter * , obtained by solving (53c), for different 

values of 
d

vV  in both acceleration and deceleration modes. It is readily observed that *  belongs to the  
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TABLE IV.  VALUE OF PARAMETER 
* (%) IN DIFFERENT OPERATING CONDITIONS  

(ALL SPEEDS ARE IN km/h) 

                  d

vV  Va = 0, θ = 0° Va = 10, θ =0° Va= 0, θ = 5° 

I 65 0.1300 0.0980 0.7280 

II 60 -6.6500 -6.6520 -6.6525 

I:  Acceleration,  II: Deceleration 

interval 
h

h
l

1
, . In Example 1 we got 07.0l  and 11.0h . Hence, the above interval for *  

turns out to be %10%,7 . 

3.2. Speed Control Law Design 

As the control objective is to enforce the vehicle speeds ( wV , vV ) to track their reference trajectories  

( *

wV , *

vV ), let us introduce the following tracking errors: 

 
*

22

*

11

v

def
w

def

Vxz

Vxz
       (54) 

From (32) it readily follows that the errors undergo the following equations: 

 
*

2122

*

21121

*

11

,

,),(

v

w

Vxxgz

Vxxguxxz




 (55) 

Let us consider the following positive definite Lyapunov function candidate: 

 221121 zczc)z,z(V  (56) 

where 21,cc  are any positive design parameters. Derive ))(),(( 21 tztzV  with respect to time yields: 

 222111 )()( zzsignczzsigncV   

            *

21222

*

21121

*

111 ,)(,),()( vw VxxgzsigncVxxguxxzsignc 
 

       
*

212212

*

211121

*

111 ),()()(),(),()( vw VxxgzsignzsigncVxxgcuxxczsign   (57) 

where equations (44) have been used in the second equality. Equation (46) suggests the following 

control law: 

 
*

2122121

*

2111

21

*

11

),()()()(),(
),(

1
vw VxxgzsignzsignczsignVcVxxgc

xxc
u   (58) 

with  0c  is a new design parameter. Indeed, substituting the right side of (58) to u  in (57) yields 

VcV  which in turn implies: 
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tce)0(V)t(V  (59) 

Equation (48) holds for any 0t  provided that (58) has been applied over the interval ),0[ t . On the 

other hand, substituting (58) in (32) yields the closed-loop system representation in the ),( 21 xx  

coordinates:  

),(

)),()()((

2122

1

*

212221

*

1
1

xxgx

c

VcVxxgzsignczsignVc
x vw






 (60a) 

Note that the derivatives *

wV  and *

vV  in (58) can be obtained using (53a). Specifically: 

r

v

d

v
v

r

w

d

w
w

T

VV
V

T

VV
V

*
*

*
*





   (60b) 

Theorem 1 (Main result). Consider the control system, illustrated by Fig. 10, consisting of the state-

space model (32) in closed-loop with the regulator defined by the control law (58). Let the regulator 

parameters be chosen as follows: 
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1

* )0(
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)0(
1)1(1
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l
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V
 (61a) 

 h

vw Vc

V

Vc

V
1

)0(
1/

)0(
11

*

2

*

1

*  (61b) 

for some 10 , arbitrarily chosen. Then, one has the following properties: 

1) The domain vD  defined by (41) is an invariant set of the closed-loop system (60a-b). 

2) Whatever the initial condition vDxx ))0(),0(( 21 , one has: 

a) all signals of the closed-loop system remain bounded. 

b) the tracking errors ))(),(( 21 tztz  vanish asymptotically. 

Proof. Part 1. First, note that the control law (58) is well defined (i.e. involves no singularity) as long 

as vDtxtx ))(),(( 21  because, by definition of vD , no singularity of 211 , xxg  and 212 , xxg  can 

occurs therein. Furthermore, it is readily seen from (33c-d) that '

1121

*

1 ,),( xx  i.e. ),( 21

*

1 xx   

 

*

v
V

 

 

Fig. 10. Theoretical control system analyzed in Theorem 1. It include the 

vehicle longitudinal model (32) in closed-loop with the regulator (58) 
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v
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never vanishes. Now, let us show that vD  is an invariant set of the closed-loop system (49a-b). To this 

end, suppose that  vDxx ))0(),0(( 21 . As the right sides of (60a-b) are piecewise continuous functions 

of ),( 21 xx , there exist a 0  such that, for all )0(t , one has vDtxtx ))(),(( 21  which in view of 

(41) means that: 

hl
x

x
11

2

1 ,   for all )0[t                                                   (62) 

hl
t tx

tx
1,1

)(

)(
lim

2

1                                                                 (63) 

On the other hand, one gets from (59) that )0()( VtV , for all )0[t , which together with (56) 

yields: 
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 ,          for all )0[t  

This in turn gives: 
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or, equivalently: 
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Using (53b), it follows from (64) that, for all ),0[t : 
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which, together with (61a-b), gives hl
tx

tx
1

)(

)(
1

2

1
, for all )0[t . But, this clearly 

contradicts (63) because 10 . So, vD  is actually an invariant set of the system (60a-b). 

Part 2. From Part 1, it follows that if vDxx ))0(),0(( 21  then vDtxtx ))(),(( 21 , for all 0t . Then, 

equation (58)-(59) hold for all 0t . Equation (59) implies that )(tV  is bounded and, consequently, so 

are  )(1 tx  and )(2 tx , due to (54) and (56). Furthermore, since the right side of (58) is a piecewise 
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function of ),( 21 xx  and involves no singularity (because vDtxtx ))(),(( 21 ), it follows that the control 

signal )(tu  is also bounded proving Part 2a. Part 2b is a direct consequence of (59). This completes the 

proof of Theorem 3.1   

Remarks 1. 1) Theorem 3.1 ensures that the closed-loop system is asymptotically stable (in the 

),( 21 zz -coordinates) with an attraction region containing the whole validity domain vD . 

2) A crucial step in the regulator development was to find out a suitable Lyapunov function. In 

particular, quadratic like functions turned out to be helpless, due to the particular structure of the 

controlled system.  

3) Inequalities in (61a-b) can easily be fulfilled letting 
h

h*
l

1
 and 21,cc  be sufficiently 

large.  

4) Theorem 1 shows that the regulator (58) performs well when applied to the control design model 

(32). The question is whether such a good performance is preserved when the regulator is applied to 

the more accurate model (52), see (Figs. 12a). This question is investigated by simulation in Section 

IV. 

3.3. Control Law Design Neglecting  Tire Dynamics 

Presently, the simplified control design model (38) is based upon. The control objective is to enforce 

the vehicle speed vV to follow the reference trajectory *

vV . Introduce the control error: 

 
*

2 v

def

Vxz    (65) 

From (41) it is follows that this error undergoes the following equation: 

 
*

2 )( vVxfuz   (66) 

Consider the Lyapunov function candidate: 

 
2

)(
2z

zV  (67) 

Using (66)-(67), one gets the time-derivative of )(zV  with respect to time: 

 
*

2)( vVxfuzV   (68) 

This suggests the following control law: 

z
c

Vxfu v
2

)(
1 *

2
  (69) 

with  0c  is a design parameter. Indeed, substituting (67) in (68) gives cVV  which shows that 

V is exponentially vanishing. Hence, the control objective (i.e. 0z ) is ensured if the control law 
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(69) is applied to the simplified model (38). The question is whether such a good performance is 

preserved when the control law (69) is applied to the more realistic model (52) (Fig. 12b). This 

question is investigated in Section IV. 

3.4 Further Discussion on Practical Implementation 

First, notice that the control action generated by a vehicle longitudinal controller (like (58)) constitutes 

the torque reference signal for the engine torque regulator (not discussed in this study). Accordingly, 

the longitudinal speed regulator and the engine torque regulator constitute together a more global 

cascade controller (Fig. 11). In cascade control jargon, the torque regulator is referred to „inner‟ or 

„slave‟ while the speed regulator is called „outer‟ or „master‟. For the global cascade controller to 

perform well the torque regulator must be designed so that the inner loop is much more rapid than the 

outer loop. The previous remarks are independent of the engine technological nature (thermal, electric 

or hybrid). 

Recall also that the analytical design of the (outer) longitudinal speed regulator (58) (developed in 

Section III) relies on the longitudinal vehicle model (32)-(33). The numerical values of the involved 

parameters depend on the particular vehicle under study (for instance, Table VI shows those of a 

Citroën-2CV). They should normally be provided by the vehicle manufacturer; otherwise they must be 

determined using model identification methods. 

The controller design parameters ),,,( 21 rTccc  must be given suitable numerical values before online 

running of the control algorithm. As shown by simulation (Section IV), suitable values can simply be 

selected following the usual „try-an-error‟ search method. 

The practical application of the longitudinal speed regulator necessitates the numerical implementation 

of the control law (58) and speed measurements ( wVx1  and vVx2 ). As the controlled system have 

relatively slow dynamics (due to its mechanical nature) a sampling frequency of 100 Hz would be 

convenient for data acquisition. Following the usual practice, the conditioning of data acquisition is 

made better if the signals are properly processed before sampling. Online pre-processing operations 

include signal filtering, amplification, modulation, demodulation etc. Given the simplicity of involved 

online algebraic operations (in control law and signal processing), the small number of online 

input/output measurements and the relatively low data-acquisition frequency, the required computation 

resources are relatively modest. A low-cost DSP and any one of today‟s microprocessors or 

programmable logic controllers (PLC) would be sufficient for real-time implementation of the control 

algorithm. The major numerical implementation tasks are described by Table V. 
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TABLE V.  CONTROLLER IMPLEMENTATION ALGORITHM 

Step #0# Choice of design parameter and sampling time  

Step #1# Acquisition of parameters and states variables )(1 kx  and )(2 kx  

Step #2# Generate the reference trajectories )(* kVv  and )(* kVw  

Step #3# Compute the control law )(ku  

Step #4# Apply the control value to the engine 

Step #5# Set 1kk and Go to step #1# 

4. SIMULATION 

The performances of the sophisticated controller (58), obtained from model (32), will be compared 

using numerical simulations, to those of the simpler controller (69), obtained from the simpler and less 

accurate model (38). Both controllers are applied to the most accurate (simulation-oriented) vehicle 

longitudinal model (52), that not only account for tire dynamics but also for the validity domain (41) 

so that the model operation is singularity-free. That is, the simulation study will be performed, with 

Matlab-Simulink, according to the experimental setups illustrated by Figs 12a and 12b, respectively. 

The characteristics of the vehicle are those of a Citroën-2CV of Table VI. 

 

  

Fig. 12a. Vehicle longitudinal control involving the 

simulation-oriented model (52) in closed-loop with the 

sophisticated speed regulator (58) 

Fig. 12a. Vehicle longitudinal control involving the 

simulation-oriented model (52) in closed-loop with the 

simpler speed regulator (69) 
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Fig. 11. Global cascade controller for vehicle longitudinal speed control. The grey part refers to the 

(outer) speed control loop dealt with in the present study. 
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TABLE VI. NUMERICAL CHARACTERISTICS OF THE CITROËN-2CV CAR (FROM CHAIBET, 2006) 

   AD     :   Asphalt Dry, CW : Cobblestone Wet AD CW 

C1 : Primary  tire parameter 1.2801 0.5 

C2 : Primary  tire parameter 23.99 30 

C3 : Primary  tire parameter 0.52 0.2 

Mv : Chassis mass 560 kg 

J : Wheel inertia 1000  kg m
2
 

reff : Effective wheel radius 0.28 m 

rr : Rolling resistance coefficient 0.025 

 : Related height of the center of gravity 0.2 

 : Related position of center of gravity 0.43 

Kv : Load correction factor 0.55 

 : Density of air 1.202  kg/m
3
 

Cx : Aerodynamic drag coefficient 0.5 

Cz : Aerodynamic lift coefficient 0.259 

S : Frontal area vehicle  0.8 m
2
 

 

As mentioned previously, there is no simple way to find the best choice for the design parameters 

i.e. rTccc ,,, 21 . Following the usual practice, suitable numerical values are selected using the heuristic 

„try-an-error‟ search method. Accordingly, the next values have been obtained: 

. the model reference time constant in (53a) is set to sTr 1 , 

. the design parameters 21,, ccc  for the controller (58) are given the values 1.0c , 601c , 22c , 

. the best choice of the design parameter c  in the controller (69) turned out to be 2c . 

4.1. Control Performances in Easy Driving Conditions 

Presently, the control performances of both controllers are illustrated in ideal driving conditions 

characterized by dry and flat road and weak front wind. Specifically, the driving conditions are defined 

by the model parameters 0 ,  hkmVa /10 , )52.0,89.23,2801.1(),,( 321 CCC . 

Furthermore, it is supposed that all above values are perfectly known to the designer and used in the 

controller design. Figs. 13a-e show the control system responses obtained with both controllers in 

these easy driving conditions. For both, the speed responses, vV  and wV , converge to their respective 

references (with settling time less than 1.75s) and present no overshoot in the acceleration mode (Figs. 

13a-b). But, as expected, the performances of the sophisticated controller (58) are clearly better than 
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those of (69). Indeed, the former is much more speedier, develops a smaller control effort (Fig. 13c-d) 

and ensures a weaker sliding (Fig. 13e). 

4.2. Control Performances in Hard Driving Conditions 

Presently, the driving conditions are much harder compared to the previous subsection. That is, the 

road is given the profile of Fig. 14 showing an ascendant stage followed immediately by a descent 

stage. Analytically, the varying road slop is defined as follows: 

2

21

1

12

1
max

0

0

))2cos(1(
2

1
0

)(

ttfor

tttfor

ttfor

tt

tt
t  (70) 

with 10max , stst 12,8 21 . Furthermore, the road is Asphalt Dry, characterized by: 

  )0.52 23.99, ,2801.1(),,( 321 CCC  

Fig. 15a-b show the vehicle and wheel velocities obtained with both controllers. It is seen that the 

deviation (between wheel and chassis velocities) gets larger when the vehicle passes over the road 

bump, between st 81  and st 122 . However, the deviation is much larger with the simpler controller 

(69) than with the sophisticated one (58). This fact is better illustrated by Fig. 16 that show the 

behavior of sliding is better with controller (58). 

Fig. 17 shows the wheel torque developed by both controllers. Clearly, the regulator (69) develops a 

huge torque (on the wheel) during the ascendant stage. In the descendant stage, the developed torque 

decays drastically taking small values. As a matter of fact, such behavior is practically unacceptable 

because it is harmful for (person and vehicle) safety and is costly from an energetic viewpoint. Clearly, 

the regulator (58) is better. The supremacy of (58) over (69) is now quantified considering the average 

torque and frictional work done by the front tires. These are respectively defined as follows: 

dtuTA
0

1
 (71) 

0

1
dtVFD wtfA  (72) 

where u is the torque applied to the wheels, tfF is the component of the frictional force projected onto 

the tangential direction of the contact surface, wV  is the speed of contact tire-road and  is the entire 

simulation time interval. Fig. 18a shows the variation of the average torque and frictional work with 

the maximum slop max . The comparison between the two controllers is dealt with considering two 

road states i.e.: 

   - Asphalt Dry  )0.52 23.99, ,2801.1(),,( 321 CCC  
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- Cobblestone Wet )0.2  30,  ,5.0(),,( 321 CCC .  

The figure indicates that, in all driving conditions, the average torque of the vehicle being driven by 

the regulator (58) is much smaller than with the regulator (69). This confirms that energy consumption 

is lower with (58) and safety is better. From Fig.18b it is seen that tire friction activity is much weaker 

when the vehicle is driven with the regulator (58), especially when the vehicle is going through a bump 

by cobblestone wet road condition. Then, a high tire friction activity is involved with the controller 

(69) which means that the tires are then subject high pressure. 

 

 

Fig 13a. Closed-loop chassis speed responses. Solid:  reference speed *

v
V . Dashed: vehicle speed response 

v
V obtained 

with regulator (58). Dotted: vehicle speed response 
v

V  obtained with regulator (69) 

 

Fig 13b. Wheel speed responses. Solid: reference d

w
V . Dashed: speed response 

w
V with regulator (58). Dotted: speed 

response 
w

V with regulator (69) 
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Fig 13c. Control signal u . Solid: control signal with regulator (58). Dashed: control signal with regulator (69) 

 

Fig 13d. Traction force 
tf

F . Solid: 
tf

F with regulator (58). Dashed: 
tf

F with regulator (69) 

 
Fig 13e. Sliding ; solid: Sliding (58); dashed: Sliding (69) 

 



 

 

27 

 

Fig. 14. Road profile considered in Subsection 4.2.1 

 

Fig. 15a. Vehicle speed closed-loop response. Solid: true vehicle speed response 
v

V obtained with regulator (58). Dotted: 

vehicle speed response 
v

V  obtained with regulator (69) 

 

Fig. 15b. Wheel speed closed-loop responses. Solid: true wheel speed v
V obtained with regulator (58). Dotted: wheel speed 

v
V  obtained with regulator (69) 

 

Fig. 16. Sliding  responses. Solid: sliding obtained with (58). Dashed: sliding obtained with regulator (69) 
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Fig. 17. Control signal u . Solid: control signal with regulator (58). Dashed: control signal with regulator (69) 

 

Fig. 18a. Average torque when going through the bump 

 

Fig. 18b. Frictional effort done by the tire 

5. CONCLUSION 

The problem of vehicle longitudinal control is addressed, both in acceleration and deceleration modes, 

based on the two new models defined by (32) and (52). The originality of these models lies in the fact 

that they explicitly accounts for the longitudinal slip (resulting from tire deformation) using Kiencke‟s 
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model. Furthermore, the model (52) also accounts for real-life considerations that physically limit the 

longitudinal slip value. Consequently, (52) turns out to be quite suitable for simulating the vehicle 

longitudinal behavior. The control design is based on the slightly simpler model (32) which ignores the 

slip limitation but still accounts for the tire longitudinal slip. It is shown that a speed controller can 

actually be obtained from that model using a Lyapunov type design technique. It is formally shown 

that the obtained controller, defined by (58), does meet its performances i.e. stability and perfect speed 

reference. It is also checked by simulation that the controller (58) is much better than the simpler one 

defined by (69) and ignoring longitudinal slip. The supremacy of (58) is especially appreciated in hard 

driving conditions i.e. crossing rampant and wet roads. In all simulated experiments, the vehicle 

longitudinal motion is represented by the most accurate and highly nonlinear model (52). 
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