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Adaptive approximate Bayesian computation for complex models

Maxime Lenormand,1 Franck jabot,1 and Guillaume Deffuant1

1IRSTEA, LISC, 24 avenue des Landais, 63172 AUBIERE, France

We propose a new approximate Bayesian computation (ABC) algorithm that aims at minimizing
the number of model runs for reaching a given quality of the posterior approximation. This algorithm
automatically determines its sequence of tolerance levels and makes use of an easily interpretable
stopping criterion. Moreover, it avoids the problem of particle duplication found when using a
MCMC kernel. When applied to a toy example and to a complex social model, our algorithm is 2
to 8 times faster than the three main sequential ABC algorithms currently available.

Approximate Bayesian computation (ABC) tech-
niques appear particularly relevant for calibrating
stochastic models because they are easy to imple-
ment and applicable to any model. They generate
a sample of model parameter values (θi)i=1,..,N (of-
ten also called particles) from the prior distribution
π(θ) and select the θi values leading to model out-
puts x ∼ f(x|θi) satisfying a proximity criterion with
the target data y (ρ(x, y) ≤ ε, ρ expressing a dis-
tance, ε being a tolerance level). The selected sample
of parameter values approximates the posterior distri-
bution of parameters, leading to model outputs with
the expected quality of approximation. However, in
practise, running these techniques is very demanding
computationally because sampling the whole space of
parameters requires a number of simulations which
grows exponentially with the number of parameters to
identify. This tends to limit the application of these
techniques to easily computable models [1]. In this
paper, our goal is minimizing the number of model
runs for reaching a given quality of posterior approxi-
mation, and thus to make the approach applicable to
a larger set of models.

ABC is the subject of intense scientific researches
and several improved versions of the original scheme
are available, such as using local regressions to im-
prove parameter inference [2, 3], automatically select-
ing informative summary statistics [4, 5], coupling to
Markov chain Monte Carlo [6, 7] or improving se-
quentially the posterior distributions with sequential
Monte Carlo methods [8–10]. This last class of meth-
ods approximates progressively the posterior, using

sequential samples S(t) = (θ
(t)
i )i=1,..,N derived from

sample S(t−1), and using a decreasing set of tolerance
levels {ε1, ..., εT }. This strategy focuses the sampling
effort in parts of the parameter space of high like-
lihood, avoiding to spend much computing time in
systematically sampling the whole parameter space.

The first sequential method applied to ABC was
proposed by [8] with the ABC-PRC (Partial Rejec-
tion Control). This method is based on a theoretical
work of [11] to ABC. However, in [10] the authors
have shown that this method leads to a bias in the
approximation of the posterior. In [9, 10] the authors
proposed a new algorithm, called Population Monte
Carlo ABC in [10] and hereafter called PMC. This
algorithm, corrects the bias by assigning to each par-
ticle a weight corresponding to the inverse of its im-
portance in the sample. It is particularly interesting

in our perspective because it provides with a rigor-
ous framework to the sequential sample idea, which
seems a good way for minimizing the number of runs.
In this approach, the problem is then defining the se-
quence of tolerance levels {ε1, ..., εT }. In [12] and [13]
the authors solve partly this problem by deriving the
tolerance level at a given step from the previously se-
lected sample. However, a difficulty remains: when
to stop? If the final tolerance level εT is too large,
the final posterior will be of bad quality. Inversely, a
too small εT leads to a posterior that could have been
obtained with less model runs.

In this paper, we propose a modification of the pop-
ulation Monte Carlo ABC algorithm proposed in [10]
that we call adaptive population Monte Carlo ABC
(hereafter called APMC). This new algorithm deter-
mines by itself the sequence of tolerance levels as in
[12] and [13], and it also provides a stopping crite-
rion. Furthermore, our approach avoids the problem
of duplications of particles due to the MCMC ker-
nel used in [12] and [13]. We prove that the com-
putation of the weights associated to the particles in
this algorithm lead to the intended posterior distri-
bution and we also prove that the algorithm stops
whatever the chosen value of the stopping parameter.
We show that our algorithm, applied to a toy exam-
ple and to an individual-based social model, requires
significantly less simulations to reach a given quality
level of the posterior distribution than the popula-
tion Monte Carlo ABC algorithm of [10] (hereafter
called PMC), the replenishment SMC ABC algorithm
of [12] (hereafter called RSMC) and the adaptive SMC
ABC algorithm of [13] (hereafter called SMC). Our
new algorithm has been implemented in the R pack-
age ’EasyABC’ [14].

Sequential Monte-Carlo methods in approximate
Bayesian computation

In this section we present the three main sequential
ABC algorithms currently available and their limita-
tions. We present the Population Monte-Carlo ABC
proposed in [10] (hereafter called PMC), the Replen-
ishment Sequential Monte-Carlo ABC proposed in [12]
and the Sequential Monte-Carlo ABC proposed in
[13]. These algorithms are detailed in Appendix A.
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The PMC algorithm

This method consists in generating a sample S(t) =

(θ
(t)
i )i=1,..,N at each iteration of the algorithm, 1 ≤

t ≤ T . Each particle of the sample S(t) satisfying
the predefined tolerance level εt where ε1 ≥ εt ≥ εT .

We say that a parameter value θ
(t)
i , satisfies the tol-

erance level εt, if when running the model we get

x ∼ f(x|θ(t)
i ), such that its distance ρ

(t)
i = ρ(x, y)

to the target data y, is below εt. At step t the sam-
ple S(t) is derived from sample S(t−1) using a particle
filter methodology. The first sample S1 is generated
using a regular ABC step. At step t a new parti-

cle θ
(t)
i is generated using a Markov transition ker-

nel Kt, θ
(t)
i ∼ Kt(θ|θ∗), until θ

(t)
i satisfies εt where

θ∗ is randomly draw from S(t−1) with probability

(w
(t−1)
i )i=1,..,N . The weight w

(t−1)
i is proportional

to the inverse of its importance in the sample S(t−1)

(Eq. 2). The kernel function Kt is a Gaussian kernel
with a variance equal to twice the weighted empirical
variance of the set S(t−1) [10]. The algorithm stops
when the sample S(T ) is generated i.e the target εT is
reached. See Algorithm 2 for details.

Weights correcting the kernel sampling bias

As pointed out by [10], the newly generated parti-

cles θ
(t)
i in a sequential procedure are no more drawn

from the prior distribution but from a specific prob-

ability density d
(t)
i that depends on the particles se-

lected at the previous step and on the chosen kernel.
This introduces a bias in the procedure. This bias
should be corrected by attributing a weight equal to

π(θ
(t)
i )/d

(t)
i to each newly generated particle θ

(t)
i .

The density of probability d
(t)
i to generate particle

θ
(t)
i at step t is given by the sum of the probabilities to

reach θ
(t)
i from one of the N particles of the previous

step times their respective weights:

d
(t)
i ∝

N∑
j=1

w
(t−1)
j σ−1

t−1ϕ
(
σ−1
t−1(θ

(t)
i − θ

(t−1)
j )

)
(1)

where ϕ(x) = 1√
2π
e−

x2

2 is the kernel function.

This yields the expression of the weight w
(t)
i to be

attributed to the newly drawn particle θ
(t)
i :

w
(t)
i ∝

π(θ
(t)
i )∑N

j=1 w
(t−1)
j σ−1

t−1ϕ
(
σ−1
t−1(θ

(t)
i − θ

(t−1)
j )

) (2)

Limitations of the PMC algorithm

The major problem in the PMC algorithm is to
define the decreasing sequence of tolerance levels

{ε1, ..., εT } to get close to an optimal gain in com-
puting time. If the decrease in tolerance values is too
sharp or too shallow, the benefits of the importance
sampling procedure has good chance to be lower than
what could be possible. In the following, we will in-
deed demonstrate that our algorithm leads to a se-
quence of tolerance levels which clearly outperforms
an arbitrary choice for the sequence of tolerance lev-
els.

The RSMC and the SMC algorithms

In [12] and [13] the authors proposed two methods
to determine ”on-line” the sequence of tolerance lev-
els. The main idea is to define the εt value with the
previous sample S(t−1). In the RSMC algorithm of
[12], εt is defined as a quantile of the ρ(x, y) values
of the previous sample S(t−1) (see Algorithm 3 for de-
tails). In the SMC algorithm of [13], εt is computed so
that the effective sample size of the particles is reduced
by a constant factor at each time step (see Algorithm
4 for details).

A second difference between the PMC and the
RSMC/SMC algorithms concerns the proposal dis-
tribution. The RSMC and the SMC algorithms use
a MCMC kernel to move the particles. At step t,

a new particle θ
(t)
i is generated using a MCMC ker-

nel θ
(t)
i ∼ Kt(θ|θ∗) where θ∗ is randomly draw from

S(t−1) with probability (w
(t−1)
i )i=1,..,N . This weight

(w
(t)
i )i=1,..,N is equal to 1 if the particle θ

(t)
i satisfies εt,

and to 0 otherwise. The jump is accepted with prob-
ability, pacc, based on the Metropolis-Hastings ratio
(Eq. 3).

1 ∧ π(θ
(t)
i )Kt(θ

∗|θ(t)
i )

π(θ∗)Kt(θ
(t)
i |θ∗)

1ρ(x,y)≤εt (3)

where x ∧ y means the minimum of x and y.

Limitations of the RSMC and the SMC algorithms

The MCMC kernel used in [12] and [13] to sample

new values θ
(t)
j has a significant drawback in our view:

it can lead to particle duplications. Indeed, each time
the MCMC jumps from a particle to a new one which
is not accepted, the initial particle is kept in the new
sample of particles. When this occurs several times
with the same initial particle, this particle appears
several times in the new sample. The number of such
”duplicated” particles can grow and strongly deterio-
rate the quality of the posterior, as illustrated below.
To solve this problem, [12] proposed to perform R
MCMC jump trials instead of one. R evolves during
the course of the algorithm (Eq. 4) since its value is
chosen such that there is a probability of 1 − c that
the particle gets moved at least once where c = 0.01 in
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[12]. To circumvent the problem of particle duplica-
tions [13] proposed to resample the parameter values
when too many are duplicated. In [13] the authors also
proposed to run the model M times for each particle,
in order to decrease the variance of the acceptance ra-
tio of the MCMC jump. However, all these solutions
increase the number of model runs, going against the
initial benefit of using sequential samples.

R =
log(c)

log(1− pacc)
(4)

Adaptive population Monte-Carlo approximate
Bayesian computation

Overview of the APMC algorithm

The APMC algorithm follows the main principles
of the sequential ABC, and defines on-line the toler-
ance level at each step like in [15], [12] and [13]. For
each tolerance level εt, it generates a sample S(t) of
particles and computes their associated weights. This
weighted sample approximates the posterior distribu-
tion, with an increasing approximation quality as εt
decreases. Suppose the APMC reached step t − 1,
with a sample S(t−1) of Nα = bαNc particles and

their associated weights (θ
(t−1)
i , w

(t−1)
i )i=1,..,Nα , the

main features of the APMC are (see Algorithm 5 for
details):

• the algorithm generates N − Nα parti-

cles (θ
(t−1)
j )j=Nα+1,..,N where θ

(t−1)
j ∼

N (θ∗j , σ
2
(t−1)), the seed θ∗j is randomly drawn

from the weighted set (θ
(t−1)
i , w

(t−1)
i )i=1,..,Nα

and the variance σ2
(t−1) of the Gaussian kernel

N (θ∗j , σ
2
(t−1)) is twice the empirical variance

of the weighted set (θ
(t−1)
i , w

(t−1)
i )i=1,..,Nα ,

following [10].

• the weights w
(t−1)
j of the new particles

(θ
(t−1)
j )j=Nα+1,..,N are computed so that these

new particles can be combined with the sample
S(t−1) of the previous step without causing a
bias in the posterior distribution. These weights
are given by Eq. 6 (see below).

• the algorithm concatenates the Nα previous par-

ticles (θ
(t−1)
i )i=1,..,Nα with the N − Nα new

particles (θ
(t−1)
j )j=Nα+1,..,N , together with their

associated weights and distances to the data.

This constitutes a new set noted S
(t)
temp =

(θ
(t)
i , w

(t)
i , ρ

(t)
i )i=1,..,N .

• the next tolerance level εt is determined as the

first α−quantile of the (ρ
(t)
i )i=1,..,N .

• the new sample S(t) = (θ
(t)
i , w

(t)
i )i=1,..,Nα is then

constituted from the Nα particles of S
(t)
temp sat-

isfying the tolerance level εt.

• if the proportion pacc of particles satisfying
the tolerance level εt−1 among the N − Nα
newly generated particles is below a chosen value
paccmin , the algorithm stops, and its result is

(θ
(t)
i )i=1,..,Nα with their associated weights.

Note that in our algorithm, to get a number Nα of
retained particles for the next step, the choice of εt is
heavily constrained: it has to be at least equal to the

first α−quantile of the (ρ
(t)
i )i=1,..,N and smaller than

the immediately superior (ρ
(t)
i ) value. We chose to fix

it to the first α−quantile for simplicity. This choice
also ensures that the tolerance level decreases from
one iteration to the next: in the worst case where
pacc = 0 (no newly simulated particles accepted),
εt = εt−1. Our algorithm does not use a MCMC
kernel and avoids duplicating particles. It requires
a reweighting step in O(N2

α) instead of O(Nα) in [12],
but in our perspective, this computational cost is sup-
posed negligible compared with the cost of running the
model.

Weights correcting the kernel sampling bias

For the APMC algorithm the density of probability

d
(t)
i to generate particle θ

(t)
i at step t is:

d
(t)
i =

Nα∑
j=1

w
(t−1)
j∑Nα

k=1 w
(t−1)
k

σ−1
t−1ϕ

(
σ−1
t−1(θ

(t)
i − θ

(t−1)
j )

)
(5)

where ϕ(x) = 1√
2π
e−

x2

2 is the kernel function.

This yields the expression of the weight w
(t)
i to be

attributed to the newly drawn particle θ
(t)
i :

w
(t)
i =

π(θ
(t)
i )∑Nα

j=1

(
w

(t−1)
j /

∑Nα
k=1 w

(t−1)
k

)
σ−1
t−1ϕ

(
σ−1
t−1(θ

(t)
i − θ

(t−1)
j )

)
(6)

This formula differs from the scheme of [10] where
the weights need only to be proportional to Eq. 6
at each step. Since we want to concatenate parti-
cles obtained at different steps of the algorithm (while
[10] generate the sample at step t from scratch), we
need the scaling of weights to be consistent across the
different steps of the algorithm. Using the weight
of Eq. 6 guarantees the correction of the sam-
pling bias throughout the APMC procedure and en-

sures that the Nα weighted particles θ
(t)
i produced

at the t-th iteration follow the posterior distribution
π (θ|ρ(x, y) < εt).
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Figure 1: Number of distinct particles in a sample of N = 5000 particles during the course of the SMC and RSMC
algorithms applied to the toy example; In all three panels we plot the results obtained for 50 executions of the algorithm.
(a) SMC with α = 0.9 and M = 1; (b) SMC with α = 0.99 and M = 1; (c) RSMC with α = 0.5. In all three panels, the
tolerance target is equal to 0.001.

The stopping criterion

We stop the algorithm when the proportion of ”ac-
cepted” particles (Eq. 7) among the N − Nα new
particles is below a predetermined threshold paccmin .
This choice of stopping rule ensures that additional
simulations would only marginally change the poste-
rior distribution. Note that this stopping criterion
will be achieved even if paccmin = 0, this ensures that
the algorithm converges. We present a formal proof
of this assertion in Appendix B.

pacc(t) =
1

N −Nα

N∑
k=Nα+1

1
ρ
(t−1)
k <εt−1

(7)

Experiments on a toy example

We consider four algorithms: APMC, PMC, the
SMC and the RSMC. Their implementations in R
[16] are available [21]. We compare them on the toy
example studied in [8] where π(θ) = U[−10,10] and

f(x|θ) ∼ 1
2φ
(
θ, 1

100

)
+ 1

2φ (θ, 1) where φ
(
µ, σ2

)
is

the normal density of mean µ and variance σ2. In
this example, we consider that y = 0 is observed, so
that the posterior density of interest is proportional
to
(
φ
(
0, 1

100

)
+ φ (0, 1)

)
π(θ).

We structure the comparisons on two indicators:
the number of simulations performed during the ap-
plication of the algorithms, and the L2 distance be-
tween the exact posterior density and the histogram
of particle values obtained with the algorithms. This
L2 distance is computed on the 300-tuple obtained by
dividing the support [−10, 10] into 300 equally-sized
bins. We choose the L2 distance to compare the sam-
ple to the true posterior because it is a well-known
accuracy measure easy to compute and a good indi-
cator to compare different methods.

We choose N = 5000 particles and a target toler-
ance level equal to 0.01. For the PMC algorithm we
use a decreasing sequence of tolerance levels from ε1 =
2 down to ε11 = 0.01. For the SMC algorithm, we use
3 different values for α: {0.9, 0.95, 0.99} and M = 1 as
in [13]. For the RSMC algorithm we use α = 0.5 as in
[12]. To explore our algorithm, we test 9 different val-
ues for α: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and
4 different values for paccmin : {0.01, 0.05, 0.1, 0.2}. In
each case, we perform 50 times the algorithm, and
compute the average and standard deviation of the
two indicators: the total number of simulations and
the L2 distance between the exact posterior density
and the histogram of particle values. We used as
kernel transition a normal distribution parameterized
with twice the weighted variance of the previous sam-
ple, as in [10].

We report below the effects of varying α and paccmin
on the performance of our algorithm, and compare it
with the PMC, SMC and RSMC algorithms.

Particle duplication in SMC and RSMC

The number of distinct particles decreases during
the course of the SMC algorithm whatever the value of
α, as shown on Fig. 1a-b. The oscillations of the num-
ber of distinct particles are caused by the resampling
step in the SMC algorithm (see [13]), but they are not
sufficient to counterbalance the overall decrease. This
decrease deteriorates the posterior approximation as
shown on Fig. 2. For the RSMC algorithm, the ini-
tial oscillation of the number of particles is due to the
initial value of R, initially set to 1, but which quickly
evolves towards a value ensuring a relatively constant
number of distinct particles. This number of distinct
particles is maintained at a reasonably high level (Fig.
1c), but this has a cost in terms of the number of re-
quired model runs (see Fig. 2). Note that the APMC
and the PMC algorithms keep N distinct particles.
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Figure 2: Posterior quality (L2) versus computing cost (number of simulations) averaged over 50 replicates. Vertical
and horizontal bars represent the standard deviations among replicates. Algorithm parameters used for APMC: α in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and paccmin in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for paccmin = 0.01, orange
triangles for paccmin = 0.05, green squares for paccmin = 0.1, and purple diamonds for paccmin = 0.2. PMC: red plain
triangles for a sequence of tolerance levels from ε1 = 2 down to ε11 = 0.01. SMC: grey plain square for α in {0.9, 0.95, 0.99}
(from left to right), M = 1 and a ε target equal to 0.01. RSMC: brown plain diamond for α = 0.5 and a ε target equal
to 0.01. Results obtained with a standard rejection-based ABC algorithm are depicted with black plain circles.
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Figure 3: (a) Boxplot of the criterion “squared L2 distance times the number of simulations” for the different ABC
algorithms. APMC: for α in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and paccmin = 0.01; SMC: for α in {0.9, 0.95, 0.99},
M = 1 and a ε target equal to 0.01; RSMC: for α = 0.5 and a ε target equal to 0.01; ABC: for a ε target equal to 0.01;
PMC: for a sequence of tolerance levels from ε1 = 2 to ε11 = 0.01. (b) Criterion “squared L2 distance times the number
of simulations” in the APMC algorithm for the different values of α and paccmin . Each cell depicts the average of the
criterion over the 50 performed replicates of the APMC.

Influence of parameters on APMC

The values of α and paccmin have an impact on
the studied indicators. We find that smaller α and
paccmin improve the quality of the approximation
(smaller L2 distance), and increase the total num-
ber of model runs, with paccmin having the largest
effect (Fig. 2). With a large α, the tolerance levels
decrease slowly and there are numerous steps before
the algorithm stops. In this toy example, our sim-

ulations show that all explored sets of (α , paccmin)
such that paccmin < 0.1 give good results for the crite-
rion Number of simulations × L2

2 (Fig. 3b). Large α
provide slightly better results for small paccmin while
small α provide slightly better results for large paccmin
(Fig. 3b). On this toy example it appears that inter-
mediate values of α and paccmin (0.3 ≤ α ≤ 0.7 and
0.01 ≤ paccmin ≤ 0.05), present a good compromise
between number of model runs and the quality of the
posterior approximation.
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Table 1: SimVillages parameter descriptions

Parameters Description Range

θ1 Average number of children per woman [0, 4]

θ2 Probability to accept a new residence for a household [0, 1]

θ3 Probability to make couple for two individuals [0, 1]

θ4 Probability to split for a couple in a year [0, 0.5]

Table 2: Summary statistic descriptions

Summary statistic Description Measure of discrepancy

S1 Number of inhabitants in 1999 L1 distance

S2 Age distribution in 1999 χ2 distance

S3 Household type distribution in 1999 χ2 distance

S4 Net migration in 1999 L1 distance

S5 Number of inhabitants in 2006 L1 distance

S6 Age distribution in 2006 χ2 distance

S7 Household type distribution in 2006 χ2 distance

S8 Net migration in 2006 L1 distance

Comparing performances

Whatever the value of α and paccmin , the APMC
algorithm always yields better results than the other
three algorithms. It requires between 2 and 8 times
less simulations to reach a given posterior quality
L2 (Fig. 2). Furthermore, good approximate poste-
rior distributions are very quickly obtained (Fig. 2).
The compromise between simulation speed and con-
vergence level can also be illustrated using the crite-
rion Number of simulations × L2

2 [17]. This criterion
is smaller for the APMC algorithm (Fig. 3a).

Application to the model SimVillages

In this section, we check if our algorithm still per-
forms better than the PMC, the RSMC and the SMC
when applied to an individual-based social model
developed during the European project PRIMA[22].
The aim of the model is to simulate the effect of a
scenario of job creation (or destruction) on the evolu-
tion of the population and activities in a network of
municipalities.

Model and data

The model simulates the dynamics of virtual indi-
viduals living in 7 interconnected villages in a rural
area of Auvergne (a region of Central France). A
single run of the model SimVillages with seven rural
municipalities takes about 1.4 seconds on a desktop

machine (PC Intel 2.83 GHz). The dynamics include
demographic change (aging, marriage, divorce, births
and deaths), activity change (change of jobs, unem-
ployment, inactivity, retirement), and movings from
one municipality to another or outside of the set. The
model also includes a dynamics of creation / destruc-
tion of jobs of proximity services, derived from the size
of the local population. More details on the model can
be found in [18]. The individuals (about 3000) are
initially generated using the 1990 census data of the
National Institute of Statistics and Economic Studies
(INSEE), some of them are given a job type and a
location for this job (in a municipality of the set or
outside), they are organised in households living in a
municipality of the set. The model dynamics is mostly
data driven, but four parameters cannot be directly
derived from the available data. They are noted θp
for 1 ≤ p ≤ 4, described in Table 1.

We use our algorithm to identify the distribution of
the four parameters for which the simulations, initial-
ized with the 1990 census data, satisfy matching crite-
ria with the data of the 1999 and 2006 census. The set
of summary statistics {Sm}1≤m≤M and the associated
discrepancy measure used ρm are described in Table 2.
We note Sm the simulated summary statistics and S

′

m

the observed statistics. The eight summary statistics
are normalized (variance equalization) and they are
combined using the infinity norm (Eq. 8):

‖(ρm(Sm, S
′

m))1≤m≤M‖∞ = sup
1≤m≤M

ρm(Sm, S
′

m)

(8)
We first generate a sample of length N from the prior
U[a,b], where [a, b] is available for each parameter in
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Figure 4: Contour plot of the bivariate joint densities of θi and θj obtained with our algorithm, and with α = 0.5 and
paccmin = 0.01; (a) θ1 and θ2; (b) θ1 and θ3; (c) θ1 and θ4; (d) θ2 and θ3; (e) θ2 and θ4; (f) θ3 and θ4.

Table 1, with a Latin hypercube [19] and we select
the best Nα particles. To move the particles, we use
as kernel transition a multivariate normal distribu-
tion parameterized with twice the weighted variance-
covariance matrix of the previous sample [20].

As in the section , we perform a parameter study
and compare APMC with its three competitors. For
APMC, α varies in ({0.3, 0.5, 0.7}) and paccmin in
({0.01, 0.05, 0.1, 0.2}), and we set Nα = 5000 parti-
cles. For the PMC, SMC and RSMC we also set
N = 5000 particles and a tolerance level target
equal to 1.4. The tolerance value ε = 1.4 corre-
sponds to the average final tolerance value we ob-
tain with APMC for paccmin = 0.01. Note that oth-
erwise this final tolerance is difficult to set properly
and a worse choice for this value would have lead
to worse performances of these algorithms. For the
PMC algorithm, we use the decreasing sequence of
tolerance levels {3, 2.5, 2, 1.7, 1.4}. For the SMC algo-
rithm, we use 3 different values for the couple (α,M):
{(0.9, 1), (0.99, 1) , (0.9, 15)}. For the RSMC algo-
rithm we use α = 0.5, as in [12]. For each algorithm
and parameter setting, we perform 5 replicates.

We approximated posterior density (unknown in
this case) with the original rejection-based ABC algo-
rithm, starting with N = 10, 000, 000, selecting 7890
particles below the tolerance level ε = 1.4.

To compute the L2 distance between posterior den-
sities, we divided each parameter support into 4
equally sized bins, leading to a grid of 44 = 256 cells,
and we computed on this grid the sum of the squared
differences between histogram values.

Study of APMC result

APMC yields a unimodal approximate posterior
distribution for the model SimVillages (Fig. 4). Inter-
estingly, parameters θ1 and θ4 are slightly correlated
(Fig. 4c). This is logical since they have contradictory
effects on the number of children in the population.
What is less straightforward is that we are able to
partly tease apart these two effects with the available
census data, since we get a peak in the approximate
posterior distribution instead of a ridge.

Influence of parameters on APMC

As for the toy example, we find that the intermedi-
ate values of (α, paccmin) that we used lead to similar
results (Fig. 5c). In practice, we therefore recom-
mend to use α = 0.5 and paccmin between 0.01 and
0.05 depending on the wished level of convergence.

Comparing performances

APMC requires between 2 and 7 times less simula-
tions to reach a given posterior quality than the other
algorithms L2 (Fig. 5a). Again, the gain in simulation
number is progressive during the course of the algo-
rithm. The Number of simulations × L2

2 criterion is
again smaller for the APMC algorithm (Fig. 5b).
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Figure 5: (a) Posterior quality (L2) versus computing cost (number of simulations) averaged over 5 replicates. Vertical
and horizontal bars represent the standard deviations among replicates. Algorithm parameters used for APMC: α
in {0.3, 0.5, 0.7} and paccmin in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for paccmin = 0.01, orange triangles for
paccmin = 0.05, green squares for paccmin = 0.1, and purple diamonds for paccmin = 0.2. PMC: red plain triangles for
a sequence of tolerance levels from ε1 = 3 to ε5 = 1.4. SMC: grey plain square for (α,M) in {(0.9, 1), (0.99, 1)}, grey
star for (α,M) = (0.9, 15) and a ε target equal to 1.4. RSMC: brown plain diamond for α = 0.5 and a ε target equal to
1.4. Results obtained with a standard rejection-based ABC algorithm are depicted with black plain circles. (b) Boxplot
of the criterion “squared L2 distance times the number of simulations” for the different algorithms. APMC: for α in
{0.3, 0.5, 0.7} and paccmin = 0.01; SMC: for (α,M) in {(0.9, 1), (0.99, 1), (0.9, 15)} and a ε target equal to 0.01; RSMC:
for α = 0.5 and a ε target equal to 0.01; ABC: for a ε target equal to 1.4; PMC: for a sequence of tolerance levels from
ε1 = 3 to ε5 = 1.4. (c) Criterion “squared L2 distance times the number of simulations” in the APMC algorithm for the
different values of α and paccmin . Each cell depicts the average of the criterion over the 5 performed replicates of the
APMC.

Discussion

The good performances of APMC should of course
be confirmed on other examples. Nevertheless we ar-
gue that they are due to the main assets of our ap-
proach:

• We choose an appropriate reweighting process
instead of a MCMC kernel, which corrects the
sampling bias without duplicating particles;

• We define an easy to interpret stopping crite-
rion that automatically defines the number of
sequential steps.

Therefore, we can have some confidence in the good
performances of APMC on other examples.

In the future, it would be interesting to evaluate this
algorithm on models involving a larger number of pa-
rameters and/or multi-modal posterior distributions.
Moreover, APMC could benefit from other improve-

ments, in particular by performing a semi-automatic
selection of informative summary statistics after the
first ABC step [4, 5] and by using local regressions for
post-processing the final posterior distribution [2, 3].
We did not perform such combinations in the present
contribution, so that our algorithm is directly com-
parable with the three other sequential algorithms we
looked at. However, they would be straightforward,
because the different improvements concern different
steps of the ABC procedure.
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Appendix A: Description of the algorithms

Algorithm 1: Likelihood-free rejection sampler (ABC)

Given N the number of particles
for i = 1 to N do

repeat
Generate θ∗ ∼ π(θ)
Simulate x ∼ f(x|θ∗)

until ρ(S(x), S(y)) < ε
Set θi = θ∗

end for

Algorithm 2: Population Monte Carlo Approximate Bayesian Computation (PMC)

Given N the number of particles and a decreasing sequence of tolerance level ε1 ≥ ... ≥ εT ,
For t = 1,
for i = 1 N do

repeat

Simulate θ
(1)
i ∼ π(θ) and x ∼ f(x|θ(1)i )

until ρ(S(x), S(y)) < ε1

Set w
(1)
i =

1

N
end for
Take σ2

2 as twice the weighted empirical variance of (θ
(1)
i )1≤i≤N

for t = 2 to T do
for i = 1 to N do

repeat

Sample θ∗i from θ
(t−1)
j with probabilities w

(t−1)
j

Generate θ
(t)
i |θ

∗
i ∼ N (θ∗i , σ

2
t ) and x ∼ f(x|θ(t)i )

until ρ(S(x), S(y)) < εt

Set w
(t)
i ∝

π(θ
(t)
i )∑N

j=1 w
(t−1)
j σ−1

t ϕ(σ−1
t (θ

(t)
i − θ

(t−1)
j ))

end for
Take σ2

t+1 as twice the weighted empirical variance of (θ
(t)
i )1≤i≤N

end for

Where ϕ(x) =
1√
2π
e−

x2

2
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Algorithm 3: Sequential Monte Carlo Approximate Bayesian Computation Replenishment (RSMC)

Given N , ε1, εT , c, α ∈ [0, 1] and Nα = bαNc,
for i = 1 to N do

repeat
Simulate θi ∼ π(θ) and x ∼ f(x|θi)
ρi = ρ(S(x), S(y))

until ρi ≤ ε1
end for
Sort (θi, ρi) by ρi
Set εMAX = ρN
while εMAX > εT do

Remove the Nα particles with largest ρ
Set εNEXT = ρN−Nα
Set iacc = 0
Compute the parameters of the proposal MCMC q(·, ·) with the N −Nα particles.
for j = 1 to Nα do

Simulate θN−Nα+j ∼ (θi)1≤i≤N−Nα
for k = 1 R do

Generate θ∗ ∼ q(θ∗, θN−Nα+j) et x∗ ∼ f(x∗|θ∗)
Generate u < U[0,1]
if u ≤ 1 ∧ π(θ∗)q(θN−Nα+j , θ

∗)

π(θN−Nα+j)q(θ∗, θN−Nα+j)
1ρ(S(x∗),S(y))≤εNEXT then

Set θN−Nα+j = θ∗

Set ρN−Nα+j = ρ(S(x∗), S(y))
iacc ← iacc + 1

end if
end for

end for

Set pacc =
iacc
RNα

Set R =
log(c)

log(1− pacc)
end while
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Algorithm 4: Adaptive Sequential Monte Carlo Approximate Bayesian Computation (SMC)

Given N , M , α ∈ [0, 1], ε0 =∞, ε and NT ,
For t = 0,
for i = 1 to N do

Simulate θ
(0)
i ∼ π(θ)

for k = 1 M do
Simulate X

(0)

(i,k) ∼ f(·|θ(0)i )

end for

Set W
(0)
i =

1

N
end for

We have ESS((W
(0)
i ), ε0) = N where ESS((W

(0)
i ), ε0) =

(∑N
i=1(W

(0)
i )2

)−1

Set t = 1
while εt−1 > ε do

Determine εt resolving ESS((W
(t)
i ), εt) = αESS((W

(t−1)
i ), εt−1) where W

(t)
i ∝ W

(t−1)
i

∑M
k=1 1Aεt−1,y

(X
(t−1)

(i,k) )∑M
k=1 1Aεt−1,y

(X
(t−1)

(i,k) )
et

Aε,y = {x| ρ(S(x), S(y)) < ε}
if εt < ε then
εn = ε

end if
if ESS((W

(t)
i ), εt) < NT then

for i = 1 to N do
Simulate (θ

(t−1)

(i) , X
(t−1)

(i,1:M)) in (θ
(t−1)

(j) , X
(t−1)

(j,1:M)) with probabilities W
(t)
j , 1 ≤ j ≤ N

Set W
(t)
i = 1

N
end for

end if
for t = 1 to N do

if W
(t)
j > 0 then

Generate θ∗ ∼ K(θ∗|θ(t−1)

(i) )

for k = 1 to M do
Simulate X(∗,k) ∼ f(·|θ∗)

end for
Generate u < U[0,1]

if u ≤ 1 ∧
∑M
k=1 1Aεt,y (X(∗,k))π(θ∗)Kt(θ

(t−1)

(i) |θ∗)∑M
k=1 1Aεt,y (X

(t−1)

(i,k) )π(θ
(t−1)

(i) )Kt(θ∗|θ(t−1)

(i) )
then

Set (θ
(t)

(i) , X
(t)

(i,1:M)) = (θ∗, X(∗,1:M))

else
Set (θ

(t)

(i) , X
(t)

(i,1:M)) = (θ
(t−1)

(i) , X
(t−1)

(i,1:M))

end if
end if

end for
end while
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Algorithm 5: Adaptive Population Monte Carlo Approximate Bayesian Computation

Given N , Nα = bαNc the number of particles to keep at each iteration among the N particles (α ∈ [0, 1]) and paccmin
the minimal acceptance rate.
for t = 1 do

for i = 1 to N do
Simulate θ

(0)
i ∼ π(θ) and x ∼ f(x|θ(0)i )

Set ρ
(0)
i = ρ(S(x), S(y))

Set w
(0)
i = 1

end for
Let ε1 = Qρ(0)(α) the first α-quantile of ρ(0) where ρ(0) =

{
ρ
(0)
i

}
1≤i≤N

Let
{

(θ
(1)
i , w

(1)
i , ρ

(1)
i )
}

=
{

(θ
(0)
i , w

(0)
i , ρ

(0)
i )|ρ(0)i ≤ ε1, 1 ≤ i ≤ N

}
Take σ2

1 as twice the weighted empirical variance of {(θ(1)i , w
(1)
i )}1≤i≤Nα

Set pacc = 1
t← t+ 1

end for
while pacc > paccmin do

for i = Nα + 1 to N do

Pick θ∗i from θ
(t−1)
j with probability

w
(t−1)
j∑Nα

k=1
w

(t−1)
k

, 1 ≤ j ≤ Nα

Generate θ
(t−1)
i |θ∗i ∼ N (θ∗i , σ

2
(t−1)) and x ∼ f(x|θ(t−1)

i )

Set ρ
(t−1)
i = ρ(S(x), S(y))

Set w
(t−1)
i =

π(θ
(t−1)
i )∑Nα

j=1(w
(t−1)
j /

∑Nα
k=1 w

(t−1)
k )σ−1

t−1ϕ(σ−1
t−1(θ

(t−1)
i − θ(t−1)

j ))
end for
Set pacc = 1

N−Nα

∑N
k=Nα+1 1ρ(t−1)

i <εt−1

Let εt = Qρ(t−1)(α) where ρ(t−1) =
{
ρ
(t−1)
i

}
1≤i≤N

Let
{

(θ
(t)
i , w

(t)
i , ρ

(t)
i )
}

=
{

(θ
(t−1)
i , w

(t−1)
i , ρ

(t−1)
i )|ρ(t−1)

i ≤ εt, 1 ≤ i ≤ N
}

Take σ2
t as twice the weighted empirical variance of {(θ(t)i , w

(t)
i )}1≤i≤Nα

t← t+ 1
end while
Where ∀u ∈ [0, 1] and X = {x1, ..., xn}, QX(u) = inf{x ∈ X|FX(x) ≥ u} and FX(x) = 1

n

∑n
k=1 1xk≤x.

Where ϕ(x) = 1√
2π
e−

x2

2
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Appendix B: Proof that the algorithm stops

We know that there exists ε∞ > 0 such that εt −→
t→+∞

ε∞ because, by construction of the algorithm (εt) is a

positive decreasing sequence and it is bounded by 0.
For each θ ∈ Θ, we consider the distance (ρ(x, y)|θ) as a random variable ρ(θ). Let fρ(θ) be the probability
density function of ρ(θ).
The probability P[ρ(θ) ≥ εt] that the drawn distance associated to parameter θ is higher than the current
tolerance εt satisfies:

P[ρ(θ) ≥ εt] = 1− P[(ρ(θ) < εt]

= 1−
∫ εt
ε∞
fρ(θ)(x)dx

We define:

Pmax = sup
θ∈Θ

{
sup
x∈R+

{
fρ(θ)(x)

}}
We have:

P[ρ(θ) ≥ εt] ≥ 1− Pmax(εt − ε∞)

The N−Nα particles are independent and identically distributed from πt+1 the density defined by the algorithm,
hence the probability P[pacc(t+ 1) = 0] that no particle is accepted at step t+ 1 is such that:

P[pacc(t+ 1) = 0] ≥ (1− Pmax(εt − ε∞))
N−Nα

If Pmax < +∞, because εt − ε∞ −→
t→+∞

0, we have:

P[pacc(t+ 1) = 0] −→
t→+∞

1

We can conclude that pacc(t) converges in probability towards 0 if Pmax < +∞. This ensures that the algorithm
stops, whatever the chosen value of paccmin .
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