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Abstract Approximate Bayesian computation (ABC)

is a family of computational techniques in Bayesian

statistics. These techniques allow to fit a model to data

without relying on the computation of the model likeli-

hood. They instead require to simulate a large number

of times the model to be fitted. A number of refine-

ments to the original rejection-based ABC scheme have

been proposed, including the sequential improvement

of posterior distributions. This technique allows to de-

crease the number of model simulations required, but

it still presents several shortcomings which are particu-

larly problematic for costly to simulate complex models.

We here provide a new algorithm to perform adaptive

approximate Bayesian computation, and we compare

its performance with the ones of three competing algo-

rithms. We show that our new algorithm largely out-

competes previous approaches on both a toy example

and a complex social model.
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1 Introduction

Approximate Bayesian computation is a family of com-

putational techniques in Bayesian statistics. These tech-

niques allow to fit a model to data without relying on

the computation of the model likelihood (Beaumont

et al., 2002). Namely, if the model produces the obser-

vation x ∼ f(x|θ) and π(θ) is the prior distribution on

the parameter θ, the ABC algorithm consists in jointly

simulating θi ∼ π(θi) and x ∼ f(x|θi) and in accepting

the simulated θi if, and only if, ρ(x, y) < ε where ρ is

a distance measure between the observed data (y) and

the simulated one (x), and ε > 0 is called a tolerance

level. The tolerance level thus represents the level of

accuracy in the likelihood approximation. Indeed, the

outputs {θi}1≤i≤N are distributed with density propor-

tional to π(θ)prθ{ρ(x, y) < ε}, where prθ{z} represents

the probability distribution of z for a given parame-

ter θ. This density approximates the model posterior

distribution π(θ)prθ{f(x|θ) = y}. ABC techniques re-

quire the model to be simulated a very large number of

times. They hence have been mainly applied to mod-

els which can be quickly simulated (Beaumont, 2010).

This approach could potentially be very broadly use-

ful for agent-based models where the trajectory of each

individual is represented. In such models, it is still diffi-

cult to use ABC techniques because of computing time

limitations. Approaches to reduce and control this cru-

cial limiting factor are thus required to apply ABC ap-

proaches to such complex models.

A number of improvements to the original ABC

scheme have been proposed to speed it up. They in-

clude the use of local regressions to improve parameter

inference (Beaumont et al., 2002; Blum and François,

2010), the coupling to Markov chain Monte Carlo to

explore the parameter space (Marjoram et al., 2003)
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and the sequential improvement of posterior distribu-

tions inspired by sequential Monte Carlo methods (Sis-

son et al., 2007; Toni et al., 2009; Beaumont et al.,

2009). This last class of methods consist in performing

the ABC simulations in several steps and in using the

simulations of the previous step to build better param-

eter proposals for the next step. This strategy avoids

the areas of low likelihood in the parameter space, by

focusing the computing effort in the zones of high like-

lihood. Beaumont et al. (2009) proposed such an al-

gorithm called Population Monte Carlo ABC (hereafer

called PMC) which corrects previous bias in SMC-ABC

implementations.

This algorithm presents two shortcomings which are

particularly problematic for costly to simulate complex

models. First, the sequence of tolerance levels {ε1, ..., εT }
has to be provided to the ABC algorithm. In prac-

tice, this implies to do preliminary simulations of the

model, a step which is computationally costly for com-

plex models. This problem has been solved by Drovandi

and Pettitt (2011) and Del Moral et al. (2012) who pro-

posed an on-line construction of the tolerance level, by

examining the distance ρ(x, y) of the previously per-

formed simulations. A second shortcoming of the PMC

algorithm is that it lacks a criterion to decide whether it

has converged. The final tolerance level εT may be too

large for the ABC approach to satisfactorily approxi-

mate the posterior distribution of the model. Inversely,

a larger εT may be sufficient to obtain a good approx-

imation of the posterior distribution, hence sparing a

number of model simulations. An efficient choice of the

tolerance level is particularly difficult, since this choice

is case-dependent.

The approaches of Drovandi and Pettitt (2011) and

Del Moral et al. (2012) use a MCMC kernel to build

the parameter proposal at each algorithm step. Conse-

quently, each retained particle (that is, a set of param-

eters used in a model simulation) of the previous step

can be duplicated, if the MCMC jump in the parame-

ter space is not accepted. This duplication of particles

is potentially problematic, in that it decreases the ef-

fective number of particles compared to the total num-

ber of particles. This decreased number of particles can

lead to a decreased quality of the posterior distribu-

tion, as we shall see below. To solve this issue, Drovandi

and Pettitt (2011) proposed to perform R MCMC jump

trials instead of a unique trial, while Del Moral et al.

(2012) proposed to resample the particles when the ef-

fective number of particles falls below a threshold. Del

Moral et al. (2012) also proposed to simulate M times

the model for each particle, in order to decrease the

variance of the acceptance ratio of the MCMC jump.

This can also decrease the rate of particle duplication.

These solutions present the drawback of being poten-

tially costly in terms of numbers of simulations.

In this contribution, we present a modification of the

PMC algorithm that we call adaptive population Monte

Carlo ABC (hereafter called APMC). In this new algo-

rithm, the sequence of tolerance levels is determined by

the algorithm itself as in Drovandi and Pettitt (2011)

and Del Moral et al. (2012), and a stopping criterion

is provided. Furthermore, contrary to the algorithms

of Drovandi and Pettitt (2011) and Del Moral et al.

(2012), our approach avoids the problem of particle

duplications. We compare our new algorithm with the

PMC algorithm of Beaumont et al. (2009), the replen-

ishment SMC ABC algorithm of Drovandi and Pettitt

(2011) (hereafter called RSMC) and the adaptive SMC

ABC algorithm of Del Moral et al. (2012) (hereafter

called SMC). This comparison of the four algorithms is

performed both with a toy example and with a com-

plex individual-based social model, the PRIMA model.

Based on these two applications, we show that our ap-

proach outperforms the three other algorithms, in that

it requires considerably less simulations to reach a given

quality level of the posterior distribution.

2 Adaptive population Monte-Carlo

approximate Bayesian computation

To solve the shortcomings of the PMC algorithm of

Beaumont et al. (2009) and the problem of the dupli-

cation of particles of the approaches of Drovandi and

Pettitt (2011) and Del Moral et al. (2012), we propose

a modified PMC algorithm, making use of several ideas

proposed by Drovandi and Pettitt (2011) and Del Moral

et al. (2012). This new algorithm is presented in Box 1.

INSERT THE BOX HERE

Our new algorithm differs from the PMC algorithm

of Beaumont et al. (2009) in four ways. First, the num-

ber of simulations N −Nα performed at each time step

is controlled, whereas the algorithm of Beaumont et al.

(2009) goes on until N particles satisfying the tolerance

are simulated. Second, the sequence of tolerance values

is determined by the algorithm as the α−quantile of the

distances of the N particles to the data at each time

step. This automatically generated sequence of toler-

ance values will be shown below to be more efficient

than a sequence determined a priori. Third, the Nα
closest to data particles are retained in the following

step, in order to make the best use of every costly sim-

ulations. Fourth, we define a stopping criterion which

evaluates whether the ensemble of N particles has suf-

ficiently changed during the last step. To do this, we
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define the proportion pacc of the last step simulations

which satisfy the previous tolerance. If this proportion

is below an arbitrary value paccmin , our algorithm stops.

Our algorithm is also different from the one of

Drovandi and Pettitt (2011) and Del Moral et al. (2012)

in that it does not use a MCMC kernel. Hence, it does

not present the drawback of potentially obtaining du-

plicated particles, but it requires a reweighting step

in O(N2) instead of O(N) as in Drovandi and Pet-

titt (2011). Since our goal is to apply our algorithm

to complex models, the reweighting step has a negligi-

ble computing cost, so that this drawback is negligible

in our case.

3 Comparison of the algorithms with a toy

example

The code of the different algorithms used in this appli-

cation are available at 1.

We consider the toy example studied in Sisson et al.

(2007) where π(θ) = U[−10,10] and f(x|θ) ∼ 1
2φ

(
θ, 1

100

)
+

1
2φ (θ, 1) where φ

(
µ, σ2

)
is the normal density of mean

µ and variance σ2. In this example, we consider that

y = 0 is observed, so that the posterior density of in-

terest is proportional to
(
φ
(
0, 1

100

)
+ φ (0, 1)

)
π(θ).

To compare our algorithm to the PMC, SMC and

RSMC algorithms, we use two indicators: the number

of simulations performed during the application of the

algorithms, and the L2 distance between the exact pos-

terior density and the histogram of particle values ob-

tained with the algorithms. This L2 distance is com-

puted on the 300-tuple obtained by dividing the sup-

port [−10, 10] into 300 equally-sized bins.

In order to compare our algorithm to the PMC,

the SMC and the RSMC algorithm we use an ensem-

ble of N = 5000 particles and a tolerance level target

equal to 0.01. For the PMC algorithm we use a de-

creasing sequence of tolerance level values from ε1 = 2

down to ε11 = 0.01. For the SMC algorithm, we use 3

different values for α: {0.9, 0.95, 0.99} and M = 1 as

in Del Moral et al. (2012). For the RSMC algorithm

we use α = 0.5 as in Drovandi and Pettitt (2011).

In our modified algorithm, we also use an ensemble

of Nα = 5000 particles. We use 9 different values for

α: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and 4 different

values for paccmin : {0.01, 0.05, 0.1, 0.2}. In each case, we

perform 50 times the algorithm, and compute the av-

erage and standard deviation of the two indicators: the

total number of simulations and the L2 distance be-

tween the exact posterior density and the histogram

1 http://motive.cemagref.fr/people/maxime.lenormand/

script_r_toyex

of particle values. We used as kernel transition a nor-

mal distribution parameterized with twice the weighted

variance of the previous sample, as in Beaumont et al.

(2009).

We report below the effects of varying α and paccmin
on the performance of our algorithm, and compare it

with the PMC, SMC and RSMC algorithms.

3.1 The problem of particle duplication

The number of distinct particles progressively decreases

during the course of the SMC algorithm whatever the

value of α used (Fig. 1a-b), although a larger α value

enables to slow down the decrease in the number of dis-

tinct particles (Fig. 1b). The waves are caused by the

resampling step in the SMC algorithm (see Del Moral

et al. (2012)), but they are not sufficient to counter-

balance the overall decrease in the number of distinct

particles. This decrease in the number of distinct parti-

cles decreases the posterior quality obtained with such

approaches compared to methods not based on MCMC

kernels, as we will see below (Fig. 2). For the RSMC al-

gorithm, the number of distinct particles is maintained

at a reasonably high level (Fig. 1c), but this has a cost

in terms of the number of required simulations, as we

will see below (Fig. 2). Note that the APMC and the

PMC algorithms do not lead to particle duplications.

3.2 Comparison of algorithms

Whatever the value of α and paccmin used, the APMC

algorithm always give better results than the other three
algorithms, in that it requires between 2 and 8 times less

simulations to reach a given posterior quality L2 (Fig.

2). Furthermore, the gain in simulation number is pro-

gressive during the course of the algorithm so that good

approximate posterior distributions are very quickly ob-

tained (Fig. 2). The compromise between simulation

speed and convergence level can also be illustrated using

the criterion Number of simulations × L2
2 (Glynn and

Whitt, 1992). This criterion is smaller for the APMC

algorithm (Fig. 3a).

3.3 Algorithm parameter study

The value of α and paccmin influence the values of the

two indicators studied. We find that smaller α and

paccmin values lead to a decrease in the L2 distance, and

to an increase in the total number of simulations per-

formed during the course of the algorithm, with paccmin
having the largest effect (Fig. 2). The value of paccmin

http://motive.cemagref.fr/people/maxime.lenormand/script_r_toyex
http://motive.cemagref.fr/people/maxime.lenormand/script_r_toyex
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reflects the level of convergence desired. Lower paccmin
values improve the convergence of the algorithm, but

with a simulation cost. The value of α has an influence

on the rate of decrease of the tolerance. Larger α values

induce a smaller number of simulations and a slower de-

crease in tolerance at each step. But this induces an in-

creased number of steps to reach the desired paccmin . In

this toy example, our simulations show that all explored

sets of (α , paccmin) such that paccmin < 0.1 give good

results for the criterion Number of simulations × L2
2

(Fig. 3b). Large α values provide slightly better results

for small paccmin values while small α values provide

slightly better results for larger paccmin values (Fig. 3b).

We therefore recommend based on this toy example to

use intermediate values of α and paccmin (0.3 ≤ α ≤ 0.7

and 0.01 ≤ paccmin ≤ 0.05), because such intermediate

values present a good compromise between simulation

speed and convergence levels.

4 Application to the PRIMA model

In this section, we will illustrate the applicability of

our algorithm to complex models, and evaluate whether

our algorithm still performs better than the PMC, the

RSMC and the SMC approach with such a complex

model. We will use an individual-based social model

developed during the European project PRIMA2. The

aim of the model is to simulate the effect of a scenario

of job creation (or destruction) on the evolution of the

population and activities in a network of municipalities.

4.1 Model and data

The model simulates the dynamics of virtual individu-

als living in 7 interconnected villages in a rural area of

Auvergne (a region of Central France). The dynamics

include demographic change (aging, marriage, divorce,

births and deaths), activity change (change of jobs, un-

employment, inactivity, retirement), and movings from

one municipality to another or outside of the set. The

model also includes a dynamics of creation / destruc-

tion of jobs of proximity services, derived from the size

of the local population. More details on the model can

be found in Huet and Deffuant (2011). The individu-

als (about 3000) are initially generated using the 1990

census data of the National Institute of Statistics and

Economic Studies (INSEE), those who work are given

a job type and a location for this job (in a municipality

of the set or outside), they are organised in households

2 PRototypical policy Impacts on Multifunctional Activi-
ties in rural municipalities - EU 7th Framework Research Pro-
gramme; 2008-2011; https://prima.cemagref.fr/the-project

living in a municipality of the set. The model dynamics

is mostly data driven, but four parameters have to be

estimated because they cannot be directly derived from

the available data. They are noted θp for 1 ≤ p ≤ 4, and

described in Table 1.

A single run of the PRIMA model with seven ru-

ral municipalities takes about 1.4 seconds on a desktop

machine (PC Intel 2.83 GHz). We use our algorithm

to identify the distribution of the four parameter val-

ues for which the simulations, initialized with the 1990

census data, satisfy matching criteria with the data of

the 1999 and 2006 census. The set of summary statis-

tics {Sm}1≤m≤M and the associated discrepancy mea-

sure used ρm are described in Table 2. We note Sm
the simulated summary statistics and S

′

m the observed

statistics. The eight summary statistics are normalized

(variance equalization) and they are combined using the

infinity norm (Eq. 1):

‖(ρm(Sm, S
′

m))1≤m≤M‖∞ = sup
1≤m≤M

ρm(Sm, S
′

m) (1)

We first generate a sample of length N from the prior

U[a,b], where [a, b] is available for each parameter in Ta-

ble 1, with a Latin hypercube (Carnell, 2009) and we

select the best Nα particles. To move the particles, we

use as kernel transition a multivariate normal distribu-

tion parameterized with twice the weighted variance-

covariance matrix of the previous sample (Filippi et al.,

2011).

As in the section 3, we perform a parameter study

and a comparison between our algorithm, the PMC,

the SMC and the RSMC algorithm. For our algorithm,

we use different values of α ({0.3, 0.5, 0.7}) and paccmin
({0.01, 0.05, 0.1, 0.2}), and a sample of Nα = 5000 par-

ticles. For the PMC, SMC and RSMC we use an en-

semble of N = 5000 particles and a tolerance level

target equal to 1.4. The tolerance value ε = 1.4 cor-

responds to the average final tolerance value we obtain

with our algorithm with paccmin = 0.01. For the PMC

algorithm, we use the decreasing sequence of tolerance

levels {3, 2.5, 2, 1.7, 1.4}. For the SMC algorithm, we use

3 different values for the couple (α,M): {(0.9, 1), (0.99, 1)

, (0.9, 15)}. For the RSMC algorithm we use α = 0.5,

as in Drovandi and Pettitt (2011). For each algorithm

and algorithm parameter values, we perform 5 inference

replicates.

Note that in this complex model, we do not know

the true posterior density. We approximated this true

density with the estimated posterior density obtained

with the original rejection-based ABC algorithm. This

estimated posterior density is represented by 7890 par-

ticles below the tolerance level ε = 1.4. It required

about 10,000,000 simulations with the original ABC al-

gorithm.
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To compute the L2 distance between posterior den-

sities, we divided each parameter support into 4 equally

sized bins, leading to a grid of 44 = 256 cells, and we

computed on this grid the sum of the squared differ-

ences between histogram values.

4.2 PRIMA model fit

Our algorithm leads to a unimodal approximate pos-

terior distribution for the PRIMA model (Fig. 4). In-

terestingly, parameters θ1 and θ4 are slightly correlated

(Fig. 4c). This is logical since they have contradictory

effects on the number of child in the population. What

is less straightforward is that we are able to partly tease

apart these two effects with the census data available,

since we get a peak in the approximate posterior distri-

bution instead of a ridge.

4.3 Comparison of algorithms

Our algorithm again outperforms the three other algo-

rithms, by requiring between 2 and 7 times less simula-

tions to reach a given posterior quality L2 (Fig. 5a).

Again, the gain in simulation number is progressive

during the course of the algorithm. The Number of

simulations × L2
2 criterion is again smaller for the

APMC algorithm (Fig. 5b).

4.4 Algorithm parameter study

As for the toy example, we find that the intermediate

values of (α, paccmin) that we used lead to similar results

(Fig. 5c). In practice, we therefore recommend to use

α = 0.5 and paccmin between 0.01 and 0.05 depending

on the wished level of convergence.

5 Discussion

In this paper we proposed an adaptive approximate

Bayesian computation scheme for complex models. This

algorithm is a modified version of the population Monte-

Carlo algorithm proposed by (Beaumont et al., 2009).

We have modified this algorithm to circumvent some

limitations in the application of the PMC for complex

models. In this modified algorithm, the sequence of tol-

erance levels is determined by the algorithm itself as

in Drovandi and Pettitt (2011) and Del Moral et al.

(2012). So we no longer need to predetermine the de-

creasing sequence of tolerance level, which was a source

of inefficiency in the previous algorithm. This algorithm

further enables us to control the number of simulations

at each iteration, this number being parameterized by

α.

We have also developed a stopping criterion param-

eterized with paccmin and reflecting the level of conver-

gence of the algorithm. The intuitive basis of this stop-

ping criterion is that we consider that the algorithm has

converged when there is not a large enough modifica-

tion of the particles between two iterations. Indeed we

stop the algorithm when the proportion of ”accepted”

new particles is too low. Our modified algorithm is in-

spired by the algorithm proposed by Drovandi and Pet-

titt (2011) but we do not use a MCMC kernel. Conse-

quently, particles are guaranteed to move at each it-

eration, thus avoiding the problem of particle duplica-

tion. We have applied our algorithm to a toy example

and to a complex social model. In both cases, our al-

gorithm was 2 to 7 times quicker than the three other

algorithms.

Our new algorithm requires to fix two algorithm

variables α and paccmin . We recommend to use α = 0.5

and paccmin between 0.01 and 0.05 depending on the

wished level of convergence.

Our adaptive algorithm has been shown to perform

well on a complex model involving four parameters and

a unimodal posterior distribution. It would be interest-

ing to further evaluate this algorithm on models involv-

ing a larger number of parameters and/or multi-modal

posterior distributions.

6 Tables

7 Figures
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Adaptive ABC for complex models algorithm

Given α the proportion of particles to keep at each iteration, paccmin the minimal accep-
tance rate, and N the initial number of particles,
1. Initialization:

Set Nα = bαNc
For i = 1, ..., N ,

Simulate θ(0)i ∼ π(θ) and x ∼ f(x|θ(0)i )

Set ρ(0)i = ρ(x, y)

Set w(0)
i = 1

Let ε1 = Qρ(0)(α) the first α-quantile of ρ(0) where ρ(0) =
{
ρ
(0)
i

}
1≤i≤N

Let
{

(θ(1)i , w
(1)
i , ρ

(1)
i )

}
=

{
(θ(0)i , w

(0)
i , ρ

(0)
i )|ρ(0)i ≤ ε1, 1 ≤ i ≤ N

}
Take σ2

1 as twice the weighted empirical variance of {(θ(1)i , w
(1)
i )}1≤i≤Nα

Set pacc = 1
Set t = 2

2. While pacc > paccmin
For i = Nα + 1, ..., N ,

Pick θ∗i from θ
(t−1)
j with probability

w
(t−1)

j∑Nα
k=1

w
(t−1)

k

, 1 ≤ j ≤ Nα

Generate θ(t−1)
i |θ∗i ∼ N (θ∗i , σ

2
(t−1)

) and x ∼ f(x|θ(t−1)
i )

Set ρ(t−1)
i = ρ(x, y)

Set w(t−1)
i =

π(θ(t−1)
i )∑Nα

j=1(w(t−1)
j /

∑Nα
k=1 w

(t−1)
k )σ−1

t−1ϕ(σ−1
t−1(θ(t−1)

i − θ(t−1)
j ))

Set pacc = 1
N−Nα

∑N
k=Nα+1 1ρ(t−1)

i ≤εt−1

Let εt = Qρ(t−1)(α) where ρ(t−1) =
{
ρ
(t−1)
i

}
1≤i≤N

Let
{

(θ(t)i , w
(t)
i , ρ

(t)
i )

}
=

{
(θ(t−1)
i , w

(t−1)
i , ρ

(t−1)
i )|ρ(t−1)

i ≤ εt, 1 ≤ i ≤ N
}

Take σ2
t as twice the weighted empirical variance of {(θ(t)i , w

(t)
i )}1≤i≤Nα

Set t=t+1
Where ∀u ∈ [0, 1] and X = {x1, ..., xn}, QX(u) = inf{x ∈ X|FX(x) ≥ u} and
FX(x) = 1

n

∑n
k=1 1xk≤x.

Where ϕ(x) = 1√
2π
e−

x2

2

Box 1: Adaptive ABC for complex models algorithm.

Table 1 PRIMA parameter descriptions

Parameters Description Range

θ1 Average number of children per woman [0, 4]
θ2 Probability to accept a new residence for a household [0, 1]
θ3 Probability to make couple for two individuals [0, 1]
θ4 Probability to split for a couple in a year [0, 0.5]

Table 2 Summary statistic descriptions

Summary statistic Description Measure of discrepancy

S1 Number of inhabitants in 1999 L1 distance
S2 Age distribution in 1999 χ2 distance
S3 Household type distribution in 1999 χ2 distance
S4 Net migration in 1999 L1 distance
S5 Number of inhabitants in 2006 L1 distance
S6 Age distribution in 2006 χ2 distance
S7 Household type distribution in 2006 χ2 distance
S8 Net migration in 2006 L1 distance
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Fig. 1 Number of distinct particles in a sample of N = 5000 particles during the course of the SMC and RSMC algorithms
applied to the toy example. (a) SMC with α = 0.9 and M = 1; (b) SMC with α = 0.99 and M = 1; (c) RSMC with α = 0.5.
In all three panels, the tolerance target is equal to 0.001.
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Fig. 2 Posterior quality (L2) versus computing cost (number of simulations) averaged over 50 replicates. Vertical
and horizontal bars represent the standard deviations among replicates. Algorithm parameters used for APMC: α in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and paccmin in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for paccmin = 0.01, orange trian-
gles for paccmin = 0.05, green squares for paccmin = 0.1, and purple diamonds for paccmin = 0.2. PMC: red plain triangles for
a sequence of tolerance levels from ε1 = 2 down to ε11 = 0.01. SMC: grey plain square for α in {0.9, 0.95, 0.99} (from left to
right), M = 1 and a ε target equal to 0.01. RSMC: brown plain diamond for α = 0.5 and a ε target equal to 0.01. Results
obtained with a standard rejection-based ABC algorithm are depicted with black plain circles.
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Fig. 3 (a) Boxplot of the criterion “squared L2 distance times the number of simulations” for the different ABC algorithms.
APMC: for α in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and paccmin = 0.01; SMC: for α in {0.9, 0.95, 0.99}, M = 1 and a ε target
equal to 0.01; RSMC: for α = 0.5 and a ε target equal to 0.01; ABC: for a ε target equal to 0.01; PMC: for a sequence
of tolerance levels from ε1 = 2 to ε11 = 0.01. (b) Criterion “squared L2 distance times the number of simulations” in the
APMC algorithm for the different values of α and paccmin . Each cell depicts the average of the criterion over the 50 performed
replicates of the APMC.
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Fig. 4 Contour plot of the bivariate joint densities of θi and θj obtained with our algorithm, and with α = 0.5 and paccmin =
0.01; (a) θ1 and θ2; (b) θ1 and θ3; (c) θ1 and θ4; (d) θ2 and θ3; (e) θ2 and θ4; (f) θ3 and θ4.
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Fig. 5 (a) Posterior quality (L2) versus computing cost (number of simulations) averaged over 5 replicates. Vertical and
horizontal bars represent the standard deviations among replicates. Algorithm parameters used for APMC: α in {0.3, 0.5, 0.7}
and paccmin in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for paccmin = 0.01, orange triangles for paccmin = 0.05, green squares
for paccmin = 0.1, and purple diamonds for paccmin = 0.2. PMC: red plain triangles for a sequence of tolerance levels from
ε1 = 3 to ε5 = 1.4. SMC: grey plain square for (α,M) in {(0.9, 1), (0.99, 1)}, grey star for (α,M) = (0.9, 15) and a ε target
equal to 1.4. RSMC: brown plain diamond for α = 0.5 and a ε target equal to 1.4. Results obtained with a standard rejection-
based ABC algorithm are depicted with black plain circles. (b) Boxplot of the criterion “squared L2 distance times the
number of simulations” for the different algorithms. APMC: for α in {0.3, 0.5, 0.7} and paccmin = 0.01; SMC: for (α,M) in
{(0.9, 1), (0.99, 1), (0.9, 15)} and a ε target equal to 0.01; RSMC: for α = 0.5 and a ε target equal to 0.01; ABC: for a ε target
equal to 1.4; PMC: for a sequence of tolerance levels from ε1 = 3 to ε5 = 1.4. (c) Criterion “squared L2 distance times the
number of simulations” in the APMC algorithm for the different values of α and paccmin . Each cell depicts the average of the
criterion over the 5 performed replicates of the APMC.
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