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Abstract Approximate Bayesian computation (ABC)
is a family of computational techniques in Bayesian

statistics. These techniques allow to fit a model to data
without relying on the computation of the model likeli-
hood. They instead require to simulate a large number

of times the model to be fitted. A number of refine-

ments to the original rejection-based ABC scheme have
been proposed, including the sequential improvement
of posterior distributions. This technique allows to de-

crease the number of model simulations required, but

it still presents several shortcomings which are particu-
larly problematic for costly to simulate complex models.

We here provide a new algorithm to perform adaptive
approximate Bayesian computation, which is shown to
perform better on both a toy example and a complex

social model.
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1 Introduction

Approximate Bayesian computation is a family of com-

putational techniques in Bayesian statistics. These tech-
niques allow to fit a model to data without relying on
the computation of the model likelihood (Beaumont

et al., 2002). Namely, if the model produces the obser-
vation x ∼ f(x|θ) and π(θ) is the prior distribution on

the parameter θ, the ABC algorithm consists in jointly
simulating θi ∼ π(θi) and x ∼ f(x|θi) and in accepting

the simulated θi if, and only if, ρ(x, y) < ǫ where ρ is a
distance measure between the observed data (y) and the
simulated one (x), and ǫ > 0 is called the tolerance. The

outputs {θi}1≤i≤N are thus distributed with density
proportional to π(θ)prθ{ρ(x, y) < ǫ}, where prθ{z} rep-
resents the probability distribution of z for a given pa-

rameter θ. This density approximates the model poste-

rior distribution π(θ)prθ{f(x|θ) = y}. ABC techniques
require the model to be simulated a very large number
of times. They hence have been mainly applied to mod-

els which can be quickly simulated (Beaumont, 2010).

For many complex agent-based models, it is still diffi-
cult to use ABC techniques because of computing time

limitations. Approaches to reduce and control this cru-
cial limiting factor are thus required to apply ABC ap-
proaches to such complex models.

A number of improvements to the original ABC

scheme have been proposed to speed it up. They in-
clude the use of local regressions to improve parameter
inference (Beaumont et al., 2002; Blum and François,
2010), the coupling to Markov chain Monte Carlo to

explore the parameter space (ABC-MCMC, Marjoram
et al., 2003) and the sequential improvement of pos-
terior distributions inspired by sequential Monte Carlo

methods (ABC-SMC, Sisson et al., 2007; Toni et al.,

2009; Beaumont et al., 2009). This last class of meth-



2 Maxime Lenormand, Franck Jabot and Guillaume Deffuant

ods consist in performing the ABC simulations in sev-
eral steps and in using the simulations of the previous
step to build better parameter proposals for the next
step. This strategy avoids the areas of low likelihood in

the parameter space, by focusing the computing effort
in the zones of high likelihood. Beaumont et al. (2009)
proposed such an algorithm called Population Monte

Carlo ABC (PMC-ABC) which corrects previous bias
in SMC-ABC implementations. This algorithm is pre-
sented in Appendix A.

This algorithm presents two shortcomings which are

particularly problematic for costly to simulate complex
models. First, the sequence of tolerance levels {ǫ1, ..., ǫT }
has to be provided to the ABC algorithm. In practice,

this implies to do preliminary simulations of the model,
a step which is computationnally costly for complex
models. Furthermore, a badly chosen sequence of tol-
erance levels may inflate the number of simulations re-

quired to reach a given precision as we will see below. A

second shortcoming of the PMC-ABC algorithm is that
it lacks a criterion to decide whether it has converged.

The final tolerance level ǫT may be too large for the
ABC approach to satisfactorily approximate the pos-

terior distribution of the model. Inversely, a larger ǫT
may be sufficient to obtain a good approximation of the

posterior distribution, hence sparing a number of model

simulations.

In this contribution, we present a modification of

the PMC-ABC algorithm, where the sequence of tol-

erance levels is determined by the algorithm itself, and

where a stopping criterion is provided. We compare this

new algorithm to the PMC-ABC algorithm with a toy

example. Finally, we apply our new algorithm to a com-

plex individual-based social model, the PRIMA model.

2 Modified population Monte-Carlo

approximate Bayesian computation

To solve the shortcomings of the PMC-ABC algorithm
of Beaumont et al. (2009), we propose a modified algo-
rithm, making use of several ideas proposed by Drovandi

and Pettitt (2011). This new algorithm is presented in

the box 1.

INSERT THE BOX HERE

Our new algorithm differs from the PMC-ABC al-
gorithm of Beaumont et al. (2009) in four ways. First,

the number of simulations N − Nα performed at each
time step is controlled, whereas the algorithm of Beau-

mont et al. (2009) goes on until N particles satisfy-

ing the tolerance are simulated. Second, the sequence

of tolerance values is determined by the algorithm as

the α−quantile of the distances of the N particles to

the data at each time step. This automatically gener-

ated sequence of tolerance values will be shown below
to be more efficient than a sequence determined a pri-

ori. Third, the Nα closest to data particles are retained
in the following step, in order to make the best use of

every costly simulations. Fourth, we define a stopping

criterion which evaluates whether the ensemble of N

particles has sufficiently changed during the last step.

To do this, we define the proportion pacc of the last step
simulations which satisfy the previous tolerance. If this

proportion is below an arbitrary value paccmin
, our algo-

rithm stops. Our algorithm is also different from the one

of Drovandi and Pettitt (2011) in that it does not use

a MCMC kernel. Hence, it does not present the draw-

back of potentially obtaining duplicated particles, but

requires a reweighting step in O(N2) instead of O(N)
as in Drovandi and Pettitt (2011). Since our goal is to

apply our algorithm to complex models, the reweight-
ing step has a negliglible computing cost, making our
algorithm more appropriate in this case.

3 Comparison of our modified algorithm to the

original PMC-ABC algorithm with a toy

example

We consider the toy example studied in Sisson et al.
(2007) where π(θ) = U[−10,10] and f(x|θ) ∼ 1

2φ
(

θ, 1
100

)

+
1
2φ (θ, 1) where φ

(

µ, σ2
)

is the normal density of mean
µ and variance σ2. In this example, we consider that

y = 0 is observed, so that the posterior density of in-

terest is proportional to
(

φ
(

0, 1
100

)

+ φ (0, 1)
)

π(θ)

To compare our algorithm to the PMC-ABC one,
we use two indicators: the number of simulations per-

formed during the application of the algorithms, and
the L2 distance between the exact posterior density

and the histogram of particle values obtained with the
algorithms. This L2 distance is computed on the 300-

tuple obtained by dividing the support [−10, 10] into
300 equally-sized bins.

We use an ensemble of N = 5000 particles for the

PMC-ABC algorithm and a decreasing sequence of tol-
erance values from ǫ1 = 2 down to ǫ11 = 0.01. In

our modified algorithm, we also use an ensemble of

Nα = 5000 particles. We use 9 different values for

α: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and 4 different
values for paccmin

: {0.01, 0.05, 0.1, 0.2}. In each case, we
perform 50 times the algorithm, and compute the av-

erage and standard deviation of the two indicators: the
total number of simulations and the L2 distance be-

tween the exact posterior density and the histogram of

particle values. We report below the effects of varying α

and paccmin
on the performance of our algorithm, and
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compare it with the original PMC-ABC algorithm of
Beaumont et al. (2009).

3.1 Algorithm parameter study

The value of α and paccmin
have great influences on

the two indicators studied. We find that smaller α and

paccmin
values lead to a decrease in the L2 distance, and

to an increase in the total number of simulations per-

formed during the course of the algorithm, with paccmin

having the largest effect (Fig. 1). The value of paccmin

reflects the level of convergence desired. Lower paccmin

values improve the convergence of the algorithm, but

with a simulation cost. The value of α has an influence

on the rate of decrease of the tolerance. Larger α val-
ues induce a smaller number of simulations and a slower

decrease in tolerance at each step. But this induces an

increased number of steps to reach the desired paccmin
.

In this toy example, our simulations show that there is

no optimal set of (α , paccmin
) which would decrease the

number of simulations required to reach a given level of

convergence L2. Indeed, we can observe that all investi-
gated couples are almost on the same decreasing curve,

except for the large value paccmin
= 0.2 which leads to

slightly larger L2 values for the same number of simula-

tions (Fig. 1). However, this toy example suggests that

intermediate values of α and paccmin
(0.3 ≤ α ≤ 0.7

and 0.01 ≤ paccmin
≤ 0.05) offer the advantage of lead-

ing quickly to good convergence levels (see Fig. 2 for

a visualization of the good match of the approximate

posterior distributions).

3.2 Comparison with the original PMC-ABC

algorithm

To compare the L2 distances obtained with our mod-
ified algorithm and with the original PMC-ABC algo-

rithm, we performed a Student’s T-test for each α value
and paccmin

= 0.01 . Variance equality and normality

of the L2 distances were verified (data not shown). For

all the α values, our modified algorithm performed as

well as the original PMC-ABC algorithm in terms of L2

distance to the true posterior density (Table 1). But to
get to the same result quality, our modified algorithm

uses between 2 and 4 times less simulations, depending
on the value of α (Table 1). Furthermore, this gain in

simulation number is progressive during the course of

the algorithm so that good approximate posterior dis-

tributions are very quickly obtained (Fig. 1).

4 Application to the PRIMA model

In this section, we will illustrate the applicability of our

algorithm to complex models, and evaluate whether our

algorithm still performs better than the original PMC-
ABC approach with such a complex model. We will
use an individual-based social model developed during

the European project PRIMA1. The aim of the model
is to simulate the effect of a scenario of job creation

(or destruction) on the evolution of the population and

activities in a network of municipalities.

4.1 Model and data

The model simulates the dynamics of virtual individu-
als living in 7 interconnected villages in a rural area of

Auvergne (a region of Central France). The dynamics

include demographic change (aging, marriage, divorce,
births and deaths), activity change (change of jobs, un-

employment, inactivity, retirement), and movings from
one municipality to another or outside of the set. The
model also includes a dynamics of creation / destruc-
tion of jobs of proximity services, derived from the size

of the local population. More details on the model can
be found in Huet and Deffuant, (2011)2. The individu-
als (about 3000) are initially generated using the 1990

census data of the National Institute of Statistics and
Economic Studies (INSEE), those who work are given

a job type and a location for this job (in a munipality
of the set or outside), they are organised in households

living in a municipality of the set. The model dynamics
is mostly data driven, but four parameters have to be
estimated because they cannot be directly derived from

the available data. They are noted θp for 1 ≤ p ≤ 4, and
described in Table 2.

A single run of the PRIMA model with seven ru-
ral municipalities takes about 1.4 seconds on a desktop

machine (PC Intel 2.83 GHz). A run of 1,000,000 simu-

lations, as is customary in standard ABC studies, would

then cost around 20 days of computing time. We use our
algorithm to identify the distribution of the four param-
eter values for which the simulations, intialized with

the 1990 census data, satisfy matching criteria with the
data of the 1999 and 2006 census. The set of summary
statistics {Sm}1≤m≤M and the associated discrepancy

measure used ρm are described in Table 3. We note Sm

the simulated summary statistics and S
′

m the observed

1 PRototypical policy Impacts on Multifunctional Activi-
ties in rural municipalities - EU 7th Framework Research Pro-
gramme; 2008-2011; https://prima.cemagref.fr/the-project
2 Huet, S., Deffuant, G.: Common framework for the mi-

crosimulation model in prima project. Technical report,
Cemagref LISC (2011)
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statistics. The eight summary statistics are normalized
using the standard score, and they are combined using
the infinity norm (Eq. 1):

‖(ρm(Sm, S
′

m))1≤m≤M‖
∞

= sup
1≤m≤M

ρm(Sm, S
′

m) (1)

At the first step we generate a sample of length N from

the prior U[a,b], where [a, b] is available for each parame-
ter in Table 2, with a latin hypercube (Rob Carnell ¡car-

nellr@battelle.org¿ (2009). lhs: Latin Hypercube Sam-
ples. R package version 0.5.) and we select the best Nα

particles. To move the particles, we use as kernel tran-

sition a multivariate normal distribution parametrized
with twice the variance-covariance matrix of the previ-
ous sample (Filippi et al., 2011).3.

As in the section 3, we perform a parameter study

and a comparison between our algorithm and the PMC-
ABC algorithm. For our algorithm, we use different val-
ues of α ({0.3, 0.5, 0.7}) and paccmin

({0.01, 0.05, 0.1, 0.2}),
and a sample of Nα = 5000 particles. For the PMC-

ABC algorithm we use an ensemble of N = 5000 par-
ticles and the decreasing sequence of tolerance values

{0.5, 0,−0.5,−1,−1.5,−1.7}. The tolerance value ǫ =

−1.5 corresponds to the one we obtain with our algo-
rithm with paccmin

= 0.01. We added the lower value

ǫ = −1.7 in the sequence of tolerances to evaluate the

effect of using a slightly lower final tolerance on the

number of simulations performed and on the L2 dis-
tance. For each algorithm and algorithm parameter val-

ues, we perform 5 inference replicates.

Note that in this complex model, we do not know

the true posterior density. We approximated this true

density by the average of 20 approximate posterior den-

sity; 3 × 5 = 15 approximate posterior densities com-
puted with our algorithm for α = {0.3, 0.5, 0.7} and
paccmin

= 0.01; 5 approximate posterior densities com-

puted with the PMC-ABC algorithm for a final toler-
ance threshold equal to −1.5. Thus, what we call in

the following the L2 distance is the distance to this av-

eraged approximate posterior density. In order to show
that there is not a significant difference between the ap-
proximated posterior densities obtained in the 4 cases,

we have performed 4 ANOVAs. First, we chose a cluster
of 5 densities for reference (for example, the 5 approx-
imated posterior densities obtained with the 5 repli-
cates of our algorithm with α = 0.5). Second, for each

of the three remaining groups (α = 0.3, α = 0.7 and

the PMC-ABC algorithm) we compute the 25 L2 dis-
tance between the 5 posterior densities of that group

and the reference group. Third, we perform an ANOVA

3 Filippi, S., Barnes, C., Stumpf, M. P. H.: On optimal ker-
nel in ABC-SMC (2011) http://arxiv.org/PS_cache/arxiv/

pdf/1106/1106.6280v2.pdf

in order to compare the 3 samples. We repeat this pro-
cess with the 4 reference clusters. For the 4 ANOVAs,
there was no statistically significant differences between
group means at the 0.05 level.

To compute the L2 distance between posterior den-

sities, we divided each parameter support into 4 equally
sized bins, leading to a grid of 44 = 256 cells, and we
computed on this grid the sum of the absolute differ-

ences between histogram values.

4.2 PRIMA model fit

Our algorithm leads to a unimodal approximate poste-

rior distribution for the PRIMA model (Fig. 3). Inter-

estingly, parameters θ3 and θ4 are correlated (Fig. 3f).
This is logical since they have contradictory effects on

the number of couples in the population. What is less

straightforward is that we are able to partly tease apart

these two effects with the census data available, since

we get a peak in the approximate posterior distribution

instead of a ridge.

4.3 Algorithm parameter study

In this section, we study the influence of α and paccmin

on the algorithm results. As for the toy example, we

have plotted on (Fig. 4) the L2 distance against the

number of simulations for different values of α and

paccmin
. Again, there is no optimal choice for the couple

(α, paccmin
). Larger α values lead to a slower decrease

of the tolerance threshold and of the acceptance rate

(Fig. 5). Inversely, the number of step increases with

increasing α values. To illustrate the influence of α on
the posterior density, we plotted on Fig. 6, the aver-

age estimated posterior density of the parameter θ1 for
the 3 different α values, we obtained almost the same
density in each case.

It is important to note that in Fig. 6, the standard

deviation among replicates is very small. All replicates
of the algorithm thus converge to the same approximate
posterior density.

4.4 Comparison with the original PMC-ABC

algorithm

In the case where for the PMC-ABC algorithm we choose

a final tolerance threshold of −1.5 (the one obtained
with our algorithm and paccmin

= 0.01), we obtain sim-

ilar L2 distances with both algorithms but with 3 times
less simulations on average for our algorithm compared

http://arxiv.org/PS_cache/arxiv/pdf/1106/1106.6280v2.pdf
http://arxiv.org/PS_cache/arxiv/pdf/1106/1106.6280v2.pdf
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to the original PMC-ABC approach (Fig. 4). A sec-
ond advantage of our algorithm is to automatically con-
trol the tolerance level. To illustrate this, imagine that
an operator had used a larger final tolerance threshold

equal to −1 with the original PMC-ABC procedure.
This would have lead to a relatively bad level of con-

vergence (Fig. 4). More problematically, imagine that

an operator had used a slightly smaller final tolerance

threshold equal to −1.7, then he would have had to wait

a very long time so that the algorithm stops. Indeed,

we stopped the PMC-ABC algorithm after 3, 000, 000

simulations, and it still had not reached this tolerance

level.

Note that we also plotted on Fig.4 the results ob-

tained with the original ABC algorithm. In this case,

we note that the PMC-ABC algorithm improves sig-

nificantly the results obtained with the original ABC

algorithm but much less than our algorithm.

5 Discussion

In this paper we proposed an adaptive approximate
Bayesian computation for complex models. This algo-
rithm is a modified version of the population Monte-

Carlo algorithm proposed by (Beaumont et al., 2009).

We have modified this algorithm to circumvent some
limitations in the application of the PMC-ABC for com-
plex models. In this modified algorithm, the sequence

of tolerance levels is determined by the algorithm itself.
So we no longer need to predetermine the decreasing se-
quence of tolerance threshold, which was a source of in-

efficiency in the previous algorithm, as illustrated with

the PRIMA model. This algorithm further enables us
to control the number of simulations at each iteration,
this number being parametrized by α.

We have also developed a stopping criterion parame-

trized with paccmin
and reflecting the level of conver-

gence of the algorithm. The intuitive basis of this stop-

ping criterion is that we consider that the algorithm has
converged when there is not a large enough modifica-
tion of the particles between two iterations. Indeed we

stop the algorithm when the proportion of ”accepted”
new particles is too low. Our modified algorithm is in-
spired by the algorithm proposed by Drovandi and Pet-
titt (2011) but we do not use a MCMC kernel. Conse-

quently, particles are guaranteed to move at each itera-
tion, thus avoiding the problem of particle duplication.
We have applied our algorithm to a toy example and

to a complex social model. In both cases, our algorithm
was 2 to 4 times quicker than the original PMC-ABC
algorithm.

Our new algorithm requires to fix two algorithm

variables α and paccmin
. We have seen that there is not

an optimal value for this set, although intermediate val-

ues (0.3 ≤ α ≤ 0.7 and 0.01 ≤ paccmin
≤ 0.05) provide

an interesting trade-off between computational cost and
level of convergence.

Our adaptive algorithm has been shown to perform
well on a complex model involving four parameters and
a unimodal posterior distribution. It would be interest-
ing to further evaluate this algorithm on models involv-

ing a larger number of parameters and/or multi-modal
posterior distributions.

6 Tables

7 Figures
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Adaptive ABC for complex models algorithm

Given α the proportion of particles to keep at each iteration and paccmin
the minimal

acceptance rate,
1. Initialization:

Set Nα = ⌊αN⌋
For i = 1, ..., N ,

Simulate θ
(0)
i ∼ π(θ) and x ∼ f(x|θ(0)i )

Set ρ
(0)
i = ρ(x, y)

Set w
(0)
i = 1

Let ǫ1 = Qρ(0)(α) the first α-quantile of ρ(0) where ρ(0) =
{

ρ
(0)
i

}

1≤i≤N

Let
{

(θ(1)i , w
(1)
i , ρ

(1)
i )

}

=
{

(θ(0)i , w
(0)
i , ρ

(0)
i )|ρ(0)i ≤ ǫ1, 1 ≤ i ≤ N

}

Take σ2
1 as twice the weighted empirical variance of {(θ(1)i , w

(1)
i )}1≤i≤Nα

Set pacc = 1
Set t = 2

2. While pacc > paccmin

For i = Nα + 1, ..., N ,

Pick θ∗i from θ
(t−1)
j with probability w

(t−1)
j , 1 ≤ j ≤ Nα

Generate θ
(t−1)
i |θ∗i ∼ N (θ∗i , σ

2
(t−1)

) and x ∼ f(x|θ(t−1)
i )

Set ρ
(t−1)
i = ρ(x, y)

Set w
(t−1)
i ∝

Nα
∑

k=1

w
(t−1)
k

π(θ(t−1)
i )

∑Nα

j=1 w
(t−1)
j σ−1

t−1ϕ(σ
−1
t−1(θ

(t−1)
i − θ

(t−1)
j ))

Set pacc = 1
N−Nα

∑N
k=Nα+1 1ρ

(t−1)

i
≤ǫt−1

Let ǫt = Qρ(t−1)(α) where ρ(t−1) =
{

ρ
(t−1)
i

}

1≤i≤N

Let
{

(θ(t)i , w
(t)
i , ρ

(t)
i )

}

=
{

(θ(t−1)
i , w

(t−1)
i , ρ

(t−1)
i )|ρ(t−1)

i ≤ ǫt, 1 ≤ i ≤ N

}

Take σ2
t as twice the weighted empirical variance of {(θ(t)i , w

(t)
i )}1≤i≤Nα

Set t=t+1
Where ∀u ∈ [0, 1] and X = {x1, ..., xn}, QX(u) = inf{x ∈ X|FX(x) ≥ u} and
FX(x) = 1

n

∑n
k=1 1xk≤x.

Where ϕ(x) = 1√
2π

e−
x
2

2

Box 1: Adaptive ABC for complex models algorithm.

Table 1 Number of simulations, average L2 distance (standard deviation in brackets), p-value of the T-test for 50 replicates
for different values of N and paccmin

= 0.01.

ααα N Number of Simulations L2 distance T-test p-value

0.9 5555 240320 0.01641(0.00220) 0.12
0.8 6250 325000 0.01581(0.00190) 0.22
0.7 7142 362880 0.01608(0.00278) 0.31
0.6 8333 424958 0.01550(0.00208) 0.32
0.5 10000 450000 0.01565(0.00259) 0.21
0.4 12500 500000 0.01508(0.00203) 0.25
0.3 16666 529970 0.01520(0.00173) 0.56
0.2 25000 545000 0.01502(0.00228) 0.97
0.1 50000 545000 0.01513(0.00297) 0.12

For 50 runs of the PMC-ABC algorithm, we obtained in average 1022195.3 simulations (with a standard devitation of 23650.8)
and an average L2 distance equal to 0.01566 (with a standard devitation of 0.00189).
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Table 2 PRIMA parameter descriptions

Parameters Description Range

θ1 Average number of children per woman [0, 4]
θ2 Probability to accept a new residence for an household [0, 1]
θ3 Probability to make couple for two individuals [0, 1]
θ4 Probability to split for a couple in a year [0, 0.5]

Table 3 Summary statistic descriptions

Summary statistic Description Measure of discrepancy

S1 Number of inhabitants in 1999 L1 distance
S2 Age distribution in 1999 χ2 distance
S3 Household type distribution in 1999 χ2 distance
S4 Net migration in 1999 L1 distance
S5 Number of inhabitants in 2006 L1 distance
S6 Age distribution in 2006 χ2 distance
S7 Household type distribution in 2006 χ2 distance
S8 Net migration in 2006 L1 distance
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Fig. 1 Average L2 distance as a function of the average number of simulations over 50 replicates for α in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and paccmin

in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for paccmin
= 0.01, orange tri-

angles for paccmin
= 0.05, green squares for paccmin

= 0.1, and purple diamonds for paccmin
= 0.2. Results obtained with

the original PMC-ABC algorithm are depicted with red plain triangles for a sequence of tolerance thresholds from ǫ1 = 2 to
ǫ11 = 0.01. Results obtained with a standard ABC algorithm are depicted with black plain circles. Bars represent the standard
deviations among replicates.
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Fig. 2 Histograms of the samples obtained with the modified PMC-ABC algorithm for Nα = 5000 and α = 0.5. Columns
correspond to different values of paccmin

: (a) paccmin
= 0.01; (b) paccmin

= 0.05; (c) paccmin
= 0.1. The exact posterior density

is plotted as a full curve.
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Fig. 3 Contour plot of the bivariate joint densities of θi and θj obtained with our algorithm, and with α = 0.5 and paccmin
= 0.5;

(a) θ1 and θ2; (b) θ1 and θ3; (c) θ1 and θ4; (d) θ2 and θ3; (e) θ2 and θ4; (f) θ3 and θ4.
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Fig. 4 Average L2 distance as a function of the average number of simulations over 5 replicates for α in {0.3, 0.5, 0.7} and
paccmin

in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for paccmin
= 0.01, orange triangles for paccmin

= 0.05, green squares for
paccmin

= 0.1, and purple diamonds for paccmin
= 0.2. Results obtained with the original PMC-ABC algorithm are depicted

with red plain triangles for a sequence of tolerance thresholds from ǫ1 = 0.5 to ǫ5 = −1.5. Results obtained with a standard
ABC algorithm are depicted with black plain circles.
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Fig. 5 Evolution of the average acceptance rate (a) and of the average tolerance threshold (b) as a function of the number
of iterations for 5 replicates and paccmin

= 0.01. Results obtained for α = 0.3 are depicted with a blue solid line, for α = 0.5
with a red dashed line, and for α = 0.7 are depicted with a black dotted-dashed line. In each case, standard deviations are too
small to be seen.

1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

θ1

D
en

si
ty

Fig. 6 Average approximate posterior density of θ1 for 5 replicates of the algorithm for different values of α and paccmin
= 0.01,

and for the original PMC-ABC algorithm. Results obtained for α = 0.3 are depicted with a black solid line, for α = 0.5 with
a red dashed line, and for α = 0.7 are depicted with a blue dotted-dashed line. Results obtained with the original PMC-ABC
algorithm, with the same final tolerance threshold as with our algorithm are depicted with a green dotted line. In each case,
standard deviations are too small to be seen.
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8 Appendix A

PMC-ABC Algorithm

Given a decreasing sequence of tolerance levels ǫ1 ≥ ... ≥ ǫT ,
1. At iteration t = 1,

For i = 1, ..., N

Simulate θ
(1)
i ∼ π(θ) and x ∼ f(x|θ

(1)
i ) until ρ(x, y) < ǫ1

Set w
(1)
i =

1

N
Take σ2

2 as twice the weighted empirical variance of the θ
(1)
i ’s

2. At iteration 2 ≤ t ≤ T ,
For i = 1, ..., N , repeat

Pick θ∗i from θ
(t−1)
j with probability w

(t−1)
j

Generate θ
(t)
i |θ∗i ∼ N (θ∗i , σ

2
t ) and x ∼ f(x|θ

(t)
i ) until ρ(x, y) < ǫt

Set w
(t)
i ∝

π(θ
(t)
i )

∑N

j=1 w
(t−1)
j σ−1

t ϕ(σ−1
t (θ

(t)
i − θ

(t−1)
j ))

Take σ2
t+1 as twice the weighted empirical variance of the θ

(t)
i ’s

Where ϕ(x) = 1√
2π

e−
x
2

2
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