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Abstract—We propose a parametric model of the saturated
Permanent-Magnet Synchronous Motor (PMSM) together with
an estimation method of the magnetic parameters. The model
is based on an energy function which simply encompasses the
saturation effects. Injection of fast-varying pulsating voltages
and measurements of the resulting current ripples then permit
to identify the magnetic parameters by linear least squares.
Experimental results on a surface-mounted PMSM and an
interoir magnet PMSM illustrate the relevance of the approach.

Index Terms: Permanent magnet synchronous motor, mag-
netic circuit modeling, magnetic saturation, energy-based mod-
eling, cross-magnetization

I. I NTRODUCTION

Sensorless control of Permanent-Magnet Synchronous Mo-
tors (PMSM) at low velocity remains a challenging task.
Most of the existing control algorithms rely on the motor
saliency, both geometric and saturation-induced, for extracting
the rotor position from the current measurements through
high-frequency signal injection [1], [2]. However some mag-
netic saturation effects such as cross-coupling and permanent
magnet demagnetization can introduce large errors on the
rotor position estimation [3], [4]. These errors decrease the
performance of the controller. In some cases they may cancel
the rotor total saliency and lead to instability. It is thus
important to correctly model the magnetic saturation effects,
which is usually done through d-q magnetizing curves (flux
versus current). These curves are usually found either by finite
element analysis FEA or experimentally by integration of
the voltage equation [5], [6]. This provides a good way to
characterize the saturation effects and can be used to improve
the sensorless control of the PMSM [7], [8]. However the FEA
or the integration of the voltage equation methods are not so
easy to implement and do not provide an explicit model of the
saturated PMSM.

In this paper a simple parametric model of the saturated
PMSM is introduced (section II); it is based on an energy func-
tion [9], [10] which simply encompasses the saturation and
cross-magnetization effects. In section III a simple estimation

method of the magnetic parameters is proposed and rigorously
justified: fast-varying pulsating voltages are impressed to the
motor with rotor locked; they create current ripples from
which the magnetic parameters are estimated by linear least
squares. In section IV experimental results on two kinds of
motors (with surface-mounted and interior magnets) illustrate
the relevance of the approach.

II. A N ENERGY-BASED MODEL FOR THE SATURATED

PMSM

A. Energy-based model

The electrical subsystem of a two-axis PMSM expressed in
the synchronousd− q frame reads

dφd

dt
= ud −Rid +

dθ

dt
φq (1)

dφq

dt
= uq −Riq −

dθ

dt
(φd + φm), (2)

where φd, φm are the direct-axis flux linkages due to the
current excitation and to the permanent magnet, andφq is the
quadrature-axis flux linkage;ud, uq are the impressed voltages
and id, iq are the currents;θ is the rotor (electrical) position
andR is the stator resistance. The currents can be expressed
in function of the flux linkages thanks to a suitable energy
functionH(φd, φq) by

id = ∂1H(φd, φq) (3)

iq = ∂2H(φd, φq), (4)

where∂kH denotes the partial derivative w.r.t. thekth variable,
see [9], [10]; without loss of generalityH(0, 0) = 0.

For an unsaturated PMSM this energy function reads

Hl(φd, φq) =
1

2Ld

φ2

d +
1

2Lq

φ2

q

where Ld and Lq are the motor self-inductances, and we
recover the usual linear relations

id = ∂1H(φd, φq) =
φd

Ld

iq = ∂2H(φd, φq) =
φq

Lq

.
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Notice the expression forH should respect the symmetry
of the PMSM w.r.t the direct axis, i.e.

H(φd,−φq) = H(φd, φq), (5)

which is obviously the case forHl. Indeed, (1)-(2) is left
unchanged by the transformation

(φ′

d, u
′

d, i
′

d, φ
′

q, u
′

q, i
′

q, θ
′) := (φd, ud, id,−φq,−uq,−iq,−θ);

this implies

∂1H(φ′

d, φ
′

q) = ∂1H(φd, φq)

∂2H(φ′

d, φ
′

q) = −∂2H(φd, φq),

i.e.

∂1H(φd,−φq) = ∂1H(φd, φq)

∂2H(φd,−φq) = −∂2H(φd, φq).

Therefore
dH

dφd

(φd,−φq) = ∂1H(φd,−φq)

= ∂1H(φd, φq)

=
dH

dφd

(φd, φq)

dH

dφq

(φd,−φq) = −∂2H(φd,−φq)

= ∂2H(φd, φq)

=
dH

dφq

(φd, φq).

Integrating these relations yields

H(φd,−φq) = H(φd, φq) + cd(φq)

H(φd,−φq) = H(φd, φq) + cq(φd),

wherecd, cq are functions of only one variable. But this makes
sense only ifcd(φq) = cq(φd) = c with c constant. Since
H(0, 0) = 0, c = 0, which yields (5).

B. Parametric description of magnetic saturation

Magnetic saturation can be accounted for by considering
a more complicated magnetic energy functionH, havingHl

for quadratic part but including also higher-order terms. From
experiments saturation effects are well captured by considering
only third- and fourth-order terms, hence

H(φd, φq) = Hl(φd, φq)

+

3∑

i=0

α3−i,iφ
3−i
d φi

q +

4∑

i=0

α4−i,iφ
4−i
d φi

q.

This is a perturbative model where the higher-order terms ap-
pear as corrections of the dominant termHl. The9 coefficients
αij together withLd, Lq are motor dependent. But (5) implies
α2,1 = α0,3 = α3,1 = α1,3 = 0, so that the energy function
eventually reads

H(φd, φq) = Hl(φd, φq) + α3,0φ
3

d + α1,2φdφ
2

q

+ α4,0φ
4

d + α2,2φ
2

dφ
2

q + α0,4φ
4

q. (6)

(a) φd(id, iq = Constant)

(b) φq(id = Constant, iq)

Fig. 1. Flux-current magnetization curves (IPM)

From (3)-(4) and (6) the currents are then explicitly given by

id = ∂1H(φd, φq)

=
φd

Ld

+ 3α3,0φ
2

d + α1,2φ
2

q + 4α4,0φ
3

d + 2α2,2φdφ
2

q (7)

iq = ∂2H(φd, φq)

=
φq

Lq

+ 2α1,2φdφq + 2α2,2φ
2

dφq + 4α0,4φ
3

q, (8)

which are the flux-current magnetization curves. Fig. 1 shows
examples of these curves in the more familiar presentation of
fluxes w.r.t currents obtained by numerically inverting (3)-(4);
the motor is the IPM of section IV.

The model of the saturated PMSM is thus given by (1)-(2)
and (7)-(8). It is in state form withφd, φq as state variables.
The magnetic saturation effects are represented by the5
additional parametersα3,0, α1,2, α4,0, α2,2, α0,4.



C. Model withid, iq as state variables

The model of the saturated PMSM is often expressed with
id, iq as state variables, e.g. [5]. Starting with flux-current
magnetization curves in the form

φd = Φd(id, iq) (9)

φq = Φq(id, iq) (10)

and differentiating w.r.t time, (1)-(2) then becomes

Ldd(id, iq)
did

dt
+ Ldq(id, iq)

diq

dt
= ud −Rid +

dθ

dt
φq

Lqd(id, iq)
did

dt
+ Lqq(id, iq)

diq

dt
= uq −Riq −

dθ

dt
(φd + φm),

where
(
Ldd(id, iq) Ldq(id, iq)
Lqd(id, iq) Lqq(id, iq)

)
=

(
∂1Φd(id, iq) ∂2Φd(id, iq)
∂1Φq(id, iq) ∂2Φq(id, iq)

)
.

Though not always acknowledgedLdq andLqd should be
equal. Indeed, plugging (3)-(4) into (9)-(10) gives

φd = Φd

(
∂1H(φd, φq), ∂2H(φd, φq)

)

φq = Φq

(
∂1H(φd, φq), ∂2H(φd, φq)

)
.

Taking the total derivative of both sides of these equations
w.r.t. φd andφq then yields
(
1 0
0 1

)
=

(
Ldd∂11H+ Ldq∂12H Ldd∂21H+ Ldq∂22H
Lqd∂11H+ Lqq∂12H Lqd∂21H+ Lqq∂22H

)

=

(
Ldd Ldq

Lqd Lqq

)(
∂11H ∂21H
∂12H ∂22H

)
.

Since ∂12H = ∂21H the second matrix in the last line is
symmetric, hence the first; in other wordsLdq = Lqd.

To do that with the model of section II-B the nonlinear
equations (7)-(8) must be inverted. Rather than doing that
exactly, we take advantage of the fact the coefficientsαi,j are
experimentally small. At first order w.r.t. theαi,j we obviously
have φd = Ldid + O(|αi,j |) and φq = Lqiq + O(|αi,j |).
Plugging these expressions into (7)-(8) we easily find

φd = Ld

(
id − 3α3,0L

2

di
2

d − α1,2L
2

qi
2

q − 4α4,0L
3

di
3

d

− 2α2,2LdL
2

qidi
2

q

)
+O(|αi,j |

2
) (11)

φq = Lq

(
iq − 2α1,2LdLqidiq − 2α2,2L

2

dLqi
2

diq

− 4α0,4L
3

qi
3

q

)
+O(|αi,j |

2
). (12)

Finally,

Ldd(id, iq) = Ld

(
1− 6α3,0Ldid − 12α4,0L

2

di
2

d − 2α2,2L
2

qi
2

q

)

Ldq(id, iq) = Lqd(id, iq) = −2LdL
2

qiq(α1,2 + 2α2,2Ldid)

Lqq(id, iq) = Lq

(
1− 2α1,2Ldid − 2α2,2L

2

di
2

d − 12α0,4L
2

qi
2

q

)
.

III. A PROCEDURE FOR ESTIMATING THE MAGNETIC

PARAMETERS

A. Principle

To estimate the7 magnetic parameters in the model, we
propose a procedure which is rather easy to implement and

Fig. 2. Experimental illustration of equation (15): time response ofid

reliable. With the rotor locked in the positionθ = 0, we inject
fast-varying pulsating voltages

ud(t) = ūd + ũdf(Ωt) (13)

uq(t) = ūq + ũqf(Ωt), (14)

whereūd, ūq, ũd, ũq,Ω are constant andf is a periodic func-
tion with zero mean. The pulsationΩ is chosen large enough
w.r.t. the motor electric time constant. It can then be shown,
see section III-C, that after an initial transient

id(t) = īd + ĩdF (Ωt) +O( 1

Ω2 ) (15)

iq(t) = īq + ĩqF (Ωt) +O( 1

Ω2 ), (16)

where īd = ūd

R
, īq =

ūq

R
, ĩd, ĩq are constant andF is the

primitive of f with zero mean (F has clearly the same period
as f ); fig. 2 shows for instance the currentid obtained for
the SPM of section IV when starting fromid(0) = 0 and
applying a square signalud with Ω = 500Hz, ūd = 23V
and ũd = 30V . On the other hand using the saturation model
the amplitudes̃id, ĩq of the current ripples turn out to be

ĩd =
1

Ω

( ũd

Ld

+ 2α2,2Lq īq(2Ldīdũq + Lq īqũd)

+ 12α4,0L
2

dī
2

dũd + 6α3,0Ldīdũd + 2α1,2Lq īqũq

)
(17)

ĩq =
1

Ω

( ũq

Lq

+ 2α2,2Ld īd(2Lq īqũd + Ldīdũq)

+ 12α0,4L
2

q ī
2

qũq + 2α1,2(Ldīdũq + Lq īqũd)
)
. (18)

As ĩd, ĩq can easily be measured experimentally, these ex-
pressions provide a means to identify the magnetic param-
eters from experimental data obtained with various values
of ūd, ūq, ũd, ũq.

B. Estimation of the parameters

Since combinations of the magnetic parameters always
enter (17)-(18) linearly, they can be estimated by simple linear
least squares; moreover by suitably choosingūd, ūq, ũd, ũq,
the whole least squares problem for the7 parameters can be
split into several problems involving fewer parameters:



• with ūd = ūq = 0, henceīd = īq = 0, and ũd = 0
(resp.ũq = 0) equation (17) (resp. equation (18)) reads

Ld =
1

Ω

ũd

ĩd

(
resp. Lq =

1

Ω

ũq

ĩq

)
(19)

• with ūq = 0, hencēiq = 0, and ũq = 0, (17) reads

ĩd =
ũd

Ω

(
1

Ld

+ 6α3,0Ldīd + 12α4,0L
2

d ī
2

d

)
. (20)

Notice (18) reads̃iq = 0 hence provides no information
• with ūd = 0, hencēid := 0, and ũq = 0, (17)-(18) read

ĩd =
ũd

Ω

( 1

Ld

+ 2α2,2L
2

q ī
2

q

)
(21)

ĩq =
2ũd

Ω
α1,2Lq īq (22)

• with ūd = 0, hencēid := 0, and ũd = 0, (17)-(18) read

ĩd =
2ũq

Ω
α1,2Lq īq (23)

ĩq =
ũq

Ω

( 1

Lq

+ 12α0,4L
2

q ī
2

q

)
. (24)

Ld (resp.Lq) is then immediately determined from (19);
α3,0 andα4,0 are jointly estimated by least squares from (20);
α2,2, α1,2 andα0,4 are separately estimated by least squares
from respectively (21), (22)-(23) and (24).

C. Justification of section III-A

The assertions of section III-A can be rigorously justified
by a straightforward application of second-order averaging
of differential equations [11, p. 40]. Indeed the electrical
subsystem (1)-(2) with locked rotor (i.e.dθ

dt
= 0) and input

voltages (13)-(13) reads when settingτ = Ωt

dφd

dτ
=

1

Ω

(
ūd + ũdf(τ) −Rid(φd, φq)

)
(25)

dφq

dτ
=

1

Ω

(
ūq + ũqf(τ) −Riq(φd, φq)

)
. (26)

This system is in the so-called standard form for averaging,
with a right hand-side periodic inτ and 1

Ω
as a small

parameter. Therefore its solution is given by

φd(τ) = φ0

d(τ) +
ũd

Ω
F (τ) +O( 1

Ω2 ) (27)

φq(τ) = φ0

q(τ) +
ũq

Ω
F (τ) +O( 1

Ω2 ), (28)

where(φ0

d, φ
0
q) is the solution of the system

dφ0

d

dt
= ūd −Rid(φ

0

d, φ
0

q)

dφ0
q

dt
= ūq −Riq(φ

0

d, φ
0

q)

obtained by averaging the right-hand side of (25)-(26). After
an initial transient

(
φ0

d(τ), φ
0
q(τ)

)
asymptotically reaches the

constant value(φ̄d, φ̄q) determined bȳud = Rid(φ̄d, φ̄q) and
ūq = Riq(φ̄d, φ̄q).

Plugging (27)-(28) witht = τ
Ω

into (7)-(8), and expanding
along powers of1

Ω
then yields

id(t) = īd +
F (Ωt)

Ω

(
ũd

Ld

+ 6α3,0φ̄dũd + 2α1,2φ̄qũq

+ 12α4,0φ̄
2

dũd + 2α2,2(2φ̄dφ̄qũq + φ̄2

qũd)

)
+O( 1

Ω2 )

iq(t) = īq +
F (Ωt)

Ω

(
ũq

Lq

+ 2α1,2(φ̄dũq + φ̄qũd)

+ 2α2,2(2φ̄dφ̄qũd + φ̄2

dũq) + 12α0,4φ̄
2

q ũq

)
+O( 1

Ω2 ),

where īd = id(φ̄d, φ̄q) and īq = iq(φ̄d, φ̄q) There remains
to expressφ̄d, φ̄q in function of īd, īq. Rather than exactly
inverting the nonlinear equations (7)-(8), we take advantage
of the fact the coefficientsαi,j are experimentally small. At
first order w.r.t. theαi,j we haveφd = Ldid +O(|αi,j |) and
φq = Lqiq + O(|αi,j |). Using this in the previous equations
and neglectingO( 1

Ω2 ) and O(|αi,j |
2
) terms we eventually

find (15)-(18). Using directly (11)-(12) yields of course the
same result.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The methodology of section III is tested on an interior
magnet PMSM (IPM) and a surface-mounted PMSM (SPM)
with rated parameters listed below. The setup consists of an
industrial inverter with a400V DC bus and a4kHz PWM
switching frequency, 3 dSpace boards (DS1005 PPC Board,
DS2003 A/D Board, DS4002 Timing and Digital I/O Board)
and a host PC. The measurements were sampled also at4kHz.

IPM SPM
Pole pairs 6 2
Rated power 200 W 1200 W

Rated current 1.2 A 3.4 A

Rated speed 1800 rpm 400 rpm

Rated torque 1.06 N.m 29 N.m

Resistance 12.15 Ω 6.69 Ω

B. Experimental results

With the rotor locked in the positionθ = 0, a square wave
voltage with frequencyΩ = 500Hz and constant amplitude
ũd or ũq (30V for the IPM, 40V for the SPM) is applied
to the motor. But for the determination ofLd, Lq where
ūd = ūq = 0, several runs are performed with variousūd

(resp. ūq) such that̄id (resp. īq) ranges from−2A to +2A
with a 0.3A increment (IPM), or from−8A to 8A with a
0.5A increment (SPM). The estimated parameters are listed
below; the uncertainty in the estimation stems from a±10mA

uncertainty in the current measurements.



(a) IPM

(b) SPM

Fig. 3. Measured values (circles) and fitted curve (solid line) for (20).

IPM SPM
Ld (mH) 91.9± 5 155.4± 10
Lq (mH) 45.8± 1 58.6± 2
α3,0 (A.Wb−2) 7.70± 0.11 5.01± 0.11
α1,2 (A.Wb−2) 5.35± 0.61 4.83± 0.27
α4,0 (A.Wb−3) 19.42± 1.34 1.83± 0.28
α2,2 (A.Wb−3) 22.18± 2.80 8.76± 1.03
α0,4 (A.Wb−3) 6.62± 0.42 1.18± 0.17

The good agreement between the fitted curves and the
measurements is demonstrated for instance for (20) on Fig. 3
and for (22) on Fig. 4. Notice (20) illustrates saturation ona
single axis, while (22) illustrates cross-saturation.

C. Validation

The estimation procedure relies on (20)–(24), with either
īd 6= or , i.e. current vectors with angles0◦, 90◦, 180◦, 270◦.
To check the validity of the model tests were conducted with
current vectors with various angles and magnitudes on the

(a) IPM

(b) SPM

Fig. 4. Measured values (circles) and fitted curve (solid line) for (22).

whole operating (|i| =
√
i2d + i2q ranging from0A to 2A with a

0.3A increment for the IPM, and from0A to 5.5A with a0.5A
increment for the SPM). Fig. 5 shows for instance the results
for a 60◦ current angle; there is a good agreement between
the measured values and those predicted by the model.

As a kind of cross-validation we also examined the currents
time responses to large voltage steps. Fig. 6 shows the good
agreement between the measurements and the time response
obtained by simulating the model with the estimated parame-
ters; it also shows the differences with the simulated response
when the saturation effects are omitted. Fig. 7 shows the
good agreement also between the “measured” flux values (i.e.
obtained by integrating the measured currents and voltages)
and the flux values obtained by simulation.

V. CONCLUSION

A simple parametric magnetic saturation model for the
PMSM with a simple identification procedure based on high-



(a) Interior-magnet PMSM

(b) Surface mounted PMSM

Fig. 5. Measured values (circles) compared to model-predicted values (solid
line) for a 60◦ current angle.

frequency voltage injection have been introduced. Experimen-
tal tests on two kinds of PMSM (IPM and SPM) demonstrate
the relevance of the approach. This model can be fruitfully
used to design a sensorless control scheme at low velocity.
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