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Abstract

In this paper, we investigate the degrees of freedom (dof) of penalized `1 minimization (also
known as the Lasso) for linear regression models. We give a closed-form expression of the dof

of the Lasso response. Namely, we show that for any given Lasso regularization parameter λ
and any observed data y belonging to a set of full (Lebesgue) measure, the cardinality of the
support of a particular solution of the Lasso problem is an unbiased estimator of the degrees
of freedom. This is achieved without the need of uniqueness of the Lasso solution. Thus,
our result holds true for both the underdetermined and the overdetermined case, where the
latter was originally studied in [32]. We also show, by providing a simple counterexample, that
although the dof theorem of [32] is correct, their proof contains a flaw since their divergence
formula holds on a different set of a full measure than the one that they claim. An effective
estimator of the number of degrees of freedom may have several applications including an
objectively guided choice of the regularization parameter in the Lasso through the SURE

framework. Our theoretical findings are illustrated through several numerical simulations.
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1 Introduction

1.1 Problem statement

We consider the following linear regression model

y = Ax0 + ε, µ = Ax0, (1)

where y ∈ Rn is the observed data or the response vector, A = (a1, · · · , ap) is an n × p design
matrix, x0 =

(
x0

1, · · · , x0
p

)T is the vector of unknown regression coefficients and ε is a vector of i.i.d.
centered Gaussian random variables with variance σ2 > 0. In this paper, the number of observations
n can be greater than the ambient dimension p of the regression vector to be estimated. Recall
that when n < p, (1) is an underdetermined linear regression model, whereas when n ≥ p and all
the columns of A are linearly independent, it is overdetermined.

Let x̂(y) be an estimator of x0, and µ̂(y) = Ax̂(y) be the associated response or predictor. The
concept of degrees of freedom plays a pivotal role in quantifying the complexity of a statistical
modeling procedure. More precisely, since y ∼ N (µ = Ax0, σ2Idn×n) (Idn×n is the identity on
Rn), according to [8], the degrees of freedom (dof) of the response µ̂(y) is defined by

df =
n∑
i=1

cov(µ̂i(y), yi)
σ2

. (2)

Many model selection criteria involve df , e.g. Cp (Mallows [14]), AIC (Akaike Information Criterion,
[1]), BIC (Bayesian Information Citerion, [22]), GCV (Generalized Cross Validation, [3]) and SURE
(Stein’s unbiased risk estimation [23], see Section 2.2). Thus, the dof is a quantity of interest in
model validation and selection and it can be used to get the optimal hyperparameters of the
estimator. Note that the optimality here is intended in the sense of the prediction µ̂(y) and not
the coefficients x̂(y).

The well-known Stein’s lemma [23] states that if y 7→ µ̂(y) is weakly differentiable then its
divergence is an unbiased estimator of its degrees of freedom, i.e.

d̂f(y) = div(µ̂(y)) =
n∑
i=1

∂µ̂i(y)
∂yi

, and E(d̂f(y)) = df . (3)

Here, in order to estimate x0, we consider solutions to the Lasso problem, proposed originally
in [26]. The Lasso amounts to solving the following convex optimization problem

min
x∈Rp

1
2
‖y −Ax‖22 + λ‖x‖1, (P1(y, λ))

where λ > 0 is called the Lasso regularization parameter and ‖ · ‖2 (resp. ‖ · ‖1) denotes the `2
(resp. `1) norm. An important feature of the Lasso is that it promotes sparse solutions. In the
last years, there has been a huge amount of work where efforts have focused on investigating the
theoretical guarantees of the Lasso as a sparse recovery procedure from noisy measurements. See,
e.g., [9, 10, 30, 31, 19, 16, 17, 7, 11, 27], to name just a few.

1.2 Contributions and related work

Let µ̂λ(y) = Ax̂λ(y) be the Lasso response vector, where x̂λ(y) is a solution of the Lasso problem
(P1(y, λ)). Note that all minimizers of the Lasso share the same image under A, i.e. µ̂λ(y) is
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uniquely defined; see Lemma 2 in Section 5 for details. The main contribution of this paper is first
to provide an unbiased estimator of the degrees of freedom of the Lasso response for any design
matrix. The estimator is valid everywhere except on a set of (Lebesgue) measure zero. We reach
our goal without any additional assumption to ensure uniqueness of the Lasso solution. Thus, our
result covers the challenging underdetermined case where the Lasso problem does not necessarily
have a unique solution. It obviously holds when the Lasso problem (P1(y, λ)) has a unique solution,
and in particular in the overdetermined case studied in [32]. Using the estimator at hand, we also
establish the reliability of the SURE as an unbiased estimator of the Lasso prediction risk.

While this paper was submitted, we became aware of the independent work of Tibshirani and
Taylor [25], who studied the dof for general A both for the Lasso and the general (analysis) Lasso.

Section 3 is dedicated to a thorough comparison and discussion of connections and differences
between our results and the one in [32, Theorem 1] for the overdetermined case, and that of
[12, 25, 28] for the general case.

1.3 Overview of the paper

This paper is organized as follows. Section 2 is the core contribution of this work where we state our
main results. There, we provide the unbiased estimator of the dof of the Lasso, and we investigate
the reliability of the SURE estimate of the Lasso prediction risk. Then, we discuss relation of
our work with concurrent one in the literature in Section 3. Numerical illustrations are given in
Section 4. The proofs of our results are postponed to Section 5. A final discussion and perspectives
of this work are provided in Section 6.

2 Main results

2.1 An unbiased estimator of the dof

First, some notations and definitions are necessary. For any vector x, xi denotes its ith component.
The support or the active set of x is defined by

I = supp(x) = {i : xi 6= 0},

and we denote its cardinality as | supp(x)| = |I|. We denote by xI ∈ R|I| the vector built by
restricting x to the entries indexed by I. The active matrix AI = (ai)i∈I associated to a vector x
is obtained by selecting the columns of A indexed by the support I of x. Let ·T be the transpose
symbol. Suppose that AI is full column rank, then we denote the Moore-Penrose pseudo-inverse
of AI , A+

I = (AT
I AI)

−1AT
I . sign(·) represents the sign function: sign(a) = 1 if a > 0; sign(a) = 0

if a = 0; sign(a) = −1 if a < 0.
For any I ⊆ {1, 2, · · · , p}, let VI = span(AI), PVI the orthogonal projector onto VI and PV ⊥I that
onto the orthogonal complement V ⊥I .

Let S ∈ {−1, 1}|I| be a sign vector, and j ∈ {1, 2, · · · , p}. Fix λ > 0. We define the following
set of hyperplanes

HI,j,S = {u ∈ Rn : 〈PV ⊥I (aj), u〉 = ±λ(1− 〈aj , (A+
I )TS〉)}. (4)

Note that, if aj does not belong to VI , then HI,j,S becomes a finite union of two hyperplanes. Now,
we define the following finite set of indices

Ω = {(I, j, S) : aj 6∈ VI} (5)
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and let Gλ be the subset of Rn which excludes the finite union of hyperplanes associate to Ω, that
is

Gλ = Rn \
⋃

(I,j,S)∈Ω

HI,j,S . (6)

To cut a long story short,
⋃

(I,j,S)∈ΩHI,j,S is a set of (Lebesgue) measure zero (Hausdorff dimen-
sion n− 1), and therefore Gλ is a set of full measure.

We are now ready to introduce our main theorem.

Theorem 1. Fix λ > 0. For any y ∈ Gλ, consider My,λ the set of solutions of (P1(y, λ)). Let
x∗λ(y) ∈My,λ with support I∗ such that AI∗ is full rank. Then,

|I∗| = minbxλ(y)∈My,λ

| supp(x̂λ(y))|. (7)

Furthermore, there exists ε > 0 such that for all z ∈ Ball(y, ε), the n-dimensional ball with center
y and radius ε, the Lasso response mapping z 7→ µ̂λ(z) satisfies

µ̂λ(z) = µ̂λ(y) + PVI∗ (z − y). (8)

As stated, this theorem assumes the existence of a solution whose active matrix AI∗ is full rank.
This can be shown to be true; see e.g. [5, Proof of Theorem 1] or [20, Theorem 3, Section B.1]1. It
is worth noting that this proof is constructive, in that it yields a solution x∗λ(y) of (P1(y, λ)) such
that AI∗ is full column rank from any solution x̂λ(y) whose active matrix has a nontrivial kernel.
This will be exploited in Section 4 to derive an algorithm to get x∗λ(y), and hence I∗.

A direct consequence of our main theorem is that outside Gλ, the mapping µ̂λ(y) is C∞ and
the sign and support are locally constant. Applying Stein’s lemma yields Corollary 1 below. The
latter states that the number of nonzero coefficients of x∗λ(y) is an unbiased estimator of the dof
of the Lasso.

Corollary 1. Under the assumptions and with the same notations as in Theorem 1, we have the
following divergence formula

d̂fλ(y) := div(µ̂λ(y)) = |I∗|. (9)

Therefore,
df = E(d̂fλ(y)) = E(|I∗|). (10)

Obviously, in the particular case where the Lasso problem has a unique solution, our result
holds true.

2.2 Reliability of the SURE estimate of the Lasso prediction risk

In this work, we focus on the SURE as a model selection criterion. The SURE applied to the Lasso
reads

SURE(µ̂λ(y)) = −nσ2 + ‖µ̂λ(y)− y‖22 + 2σ2d̂fλ(y), (11)

where d̂f(y) is an unbiased estimator of the dof as given in Corollary 1. It follows that the
SURE(µ̂λ(y)) is an unbiased estimate of the prediction risk, i.e.

Risk(µ) = E
(
‖µ̂λ(y)− µ‖22

)
= E (SURE(µ̂λ(y))) .

1This proof is alluded to in the note at the top of [21, Page 363].
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We now evaluate its reliability by computing the expected squared-error between SURE(µ̂λ(y))
and SE(µ̂λ(y)), the true squared-error, that is

SE(µ̂λ(y)) = ‖µ̂λ(y)− µ‖22. (12)

Theorem 2. Under the assumptions of Theorem 1, we have

E
(

(SURE(µ̂λ(y))− SE(µ̂λ(y)))2
)

= −2σ4n+ 4σ2E
(
‖µ̂λ(y)− y‖22

)
+ 4σ4E (|I∗|) . (13)

Moreover,

E

((
SURE(µ̂λ(y))− SE(µ̂λ(y))

nσ2

)2
)

= O

(
1
n

)
. (14)

3 Relation to prior work

Overdetermined case [32]

The authors in [32] studied the dof of the Lasso in the overdetermined case. Precisely, when n ≥ p
and all the columns of the design matrix A are linearly independent, i.e. rank(A) = p. In fact, in
this case the Lasso problem has a unique minimizer x̂λ(y) = x∗λ(y) (see Theorem 1).

Before discussing the result of [32], let’s point out a popular feature of x̂λ(y) as λ varies in
]0,+∞[:

• For λ ≥ ‖ATy‖∞, the optimum is attained at x̂λ(y) = 0.

• The interval
]
0, ‖ATy‖∞

[
is divided into a finite number of subintervals characterized by the

fact that within each such subinterval, the support and the sign vector of x̂λ(y) are constant.
Explicitly, let (λm)0≤m≤K be the finite sequence of λ’s values corresponding to a variation
of the support and the sign of x̂λ(y), defined by

‖ATy‖∞ = λ0 > λ1 > λ2 > · · · > λK = 0.

Thus, in ]λm+1, λm[, the support and the sign of x̂λ(y) are constant, see [7, 17, 18]. Hence,
we call (λm)0≤m≤K the transition points.

Now, let λ ∈]λm+1, λm[. Thus, from Lemma 1 (see Section 5), we have the following implicit form
of x̂λ(y),

(x̂λ(y))Im = A+
Im
y − λ(AT

ImAIm)−1Sm, (15)

where Im and Sm are respectively the (constant) support and sign vector of x̂λ(y) for λ ∈]λm+1, λm[.
Hence, based on (15), [32] showed that for all λ > 0, there exists a set of measure zero Nλ, which
is a finite collection of hyperplanes in Rn, and they defined

Kλ = Rn \ Nλ, (16)

so that ∀ y ∈ Kλ, λ is not any of the transition points.
Then, for the overdetermined case, [32] stated that for all y ∈ Kλ, the number of nonzero coefficients
of the unique solution of (P1(y, λ)) is an unbiased estimator of the dof. In fact, their main argument
is that, by eliminating the vectors associated to the transition points, the support and the sign of
the Lasso solution are locally constant with respect to y, see [32, Lemma 5].

We recall that the overdetermined case, considered in [32], is a particular case of our result
since the minimizer is unique. Thus, according to the Corollary 1, we find the same result as [32]
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but valid on a different set y ∈ Gλ = Rn \ ⋃(I,j,S)∈ΩHI,j,S . A natural question arises: can we
compare our assumption to that of [32] ? In other words, is there a link between Kλ and Gλ ?

The answer is that, depending on the matrix A, these two sets may be different. More impor-
tantly, it turns out that although the dof formula [32, Theorem 1] is correct, unfortunately, their
proof contains a flaw since their divergence formula [32, Lemma 5] is not true on the set Kλ. We
prove this by providing a simple counterexample.

Example of vectors in Gλ but not in Kλ Let {e1, e2} be an orthonormal basis of R2 and let’s
define a1 = e1 and a2 = e1 + e2, and A the matrix whose columns are a1 and a2.

Let’s define I = {1}, j = 2 and S = 1. It turns out that A+
I = a1 and 〈(A+

I )TS, aj〉 = 1 which
implies that for all λ > 0,

HI,j,S = {u ∈ Rn : 〈PV ⊥I (aj), u〉 = 0} = span(a1) .

Let y = αa1 with α > 0, for any λ > 0, y ∈ HI,j,S (or equivalently here y /∈ Gλ). Using Lemma 1
(see Section 5), one gets that for any λ ∈]0, α[, the solution of (P1(y, λ)) is x̂λ(y) = (α− λ, 0) and
that for any λ ≥ α, x̂λ(y) = (0, 0). Hence the only transition point is λ0 = α. It follows that for
λ < α, y belongs to Kλ defined in [32], but y /∈ Gλ.

We prove then that in any ball centered at y, there exists a vector z1 such that the support of
the solution of (P1(z1, λ)) is different from the support of (P1(y, λ)).
Let’s choose λ < α and ε ∈]0, α− λ[ and let’s define z1 = y + εe2. From Lemma 1 (see Section 5),
one deduces that the solution of (P1(z1, λ)) is equal to x̂λ(z1) = (α − λ − ε, ε) whose support is
different from that of x̂λ(y) = (α− λ, 0).

More generally, when there are sets {I, j, S} such that 〈(A+
I )TS, aj〉 = 1, a difference between

the two sets Gλ and Kλ may arise. Clearly, Gλ is not only the set of transition points associated
to λ.

According to the previous example, in this specific situation, for any λ > 0 there may exist
some vectors y that are not transition points associated to λ where the support of the solution
of (P1(y, λ)) is not stable to infinitesimal perturbations of y. This situation may occur for under
or overdetermined problems. In summary, even in the overdetermined case, excluding the set of
transition points is not sufficient to guarantee stability of the support and sign of the Lasso solution.

General case [12, 25, 28]

In [12], the author studies the degrees of freedom of a generalization of the Lasso where the
regression coefficients are constrained to a closed convex set. When the latter is a `1 ball and
p > n, he proposes the cardinality of the support as an estimate of df but under a restrictive
assumption on A under which the Lasso problem has a unique solution.

In [25, Theorem 2], the authors proved that

df = E(rank(AI))

where I = I(y) is the active set of any solution x̂λ(y) to (P1(y, λ)). This coincides with Corollary 1
when AI is full rank with rank(AI) = rank(AI∗). Note that in general, there exist vectors y ∈ Rn

where the smallest cardinality among all supports of Lasso solutions is different from the rank of
the active matrix associated to the largest support. But these vectors are precisely those excluded
in Gλ. In the case of the generalized Lasso (a.k.a. analysis sparsity prior in the signal processing
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Figure 1: A counterexample for n = p = 2 of vectors in Gλ but not in Kλ. See text for a detailed
discussion.

community), Vaiter et al. [28, Corollary 1] and Tibshirani and Taylor [25, Theorem 3] provide
a formula of an unbiased estimator of df . This formula reduces to that of Corollary 1 when the
analysis operator is the identity.

4 Numerical experiments

Experiments description In this section, we support the validity of our main theoretical find-
ings with some numerical simulations, by checking the unbiasedness and the reliability of the SURE
for the Lasso. Here is the outline of these experiments.

For our first study, we consider two kinds of design matrices A, a random Gaussian matrix
with n = 256 and p = 1024 whose entries are ∼iid N (0, 1/n), and a deterministic convolution
design matrix A with n = p = 256 and a Gaussian blurring function. The original sparse vector
x0 was drawn randomly according to a mixed Gaussian-Bernoulli distribution, such that x0 is
15-sparse (i.e. | supp(x0) = 15|). For each design matrix A and vector x0, we generate K = 100
independent replications yk ∈ Rn of the observation vector according to the linear regression model
(1). Then, for each yk and a given λ, we compute the Lasso response µ̂λ(yk) using the now popular
iterative soft-thresholding algorithm [4]2, and we compute SURE(µ̂λ(yk)) and SE(µ̂λ(yk)). We then
compute the empirical mean and the standard deviation of

(
SURE(µ̂λ(yk))

)
1≤k≤K , the empirical

mean of
(
SE(µ̂λ(yk))

)
1≤k≤K , which corresponds to the computed prediction risk, and we compute

RT the empirical normalized reliability on the left-hand side of (13),

RT =
1
K

K∑
k=1

(
SURE(µ̂λ(yk))− SE(µ̂λ(yk))

nσ2

)2

. (17)

Moreover, based on the right-hand side of (13), we compute R̂T as

R̂T = − 2
n

+
4

n2σ2

(
1
K

K∑
k=1

(
‖µ̂λ(yk)− yk‖22

))
+

4
n2

(
1
K

K∑
k=1

(|I∗|k)

)
, (18)

where at the kth replication, |I∗|k is the cardinality of the support of a Lasso solution whose active
matrix is full column rank as stated in Theorem 1. Finally, we repeat all these computations for

2Iterative soft-thresholding through block-coordinate relaxation was proposed in [21] for matrices A structured
as the union of a finite number of orthonormal matrices.
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Figure 2: The SURE and its reliability as a function of λ for two types of design matrices. (a)
Gaussian; (b) Convolution. For each kind of design matrix, we associate three plots.

various values of λ, for the two kinds of design matrices considered above.

Construction of full rank active matrix As stated in the discussion just after Theorem 1,
in situations where the Lasso problem has non-unique solutions, and the minimization algorithm
returns a solution whose active matrix is rank deficient, one can construct an alternative optimal
solution whose active matrix is full column rank, and then get the estimator of the degrees of
freedom.

More precisely, let x̂λ(y) be a solution of the Lasso problem with support I such that its active
matrix AI has a non-trivial kernel. The construction is as follows:

1. Take h ∈ kerAI such that supph ⊂ I.

2. For t ∈ R, Ax̂λ(y) = A (x̂λ(y) + th) and the mapping t 7→ ‖x̂λ(y) + th‖1 is locally affine
in a neighborhood of 0, i.e. for |t| < minj∈I |(x̂λ(y))j |/‖h‖∞. x̂λ(y) being a minimizer of
(P1(y, λ)), this mapping is constant in a neighborhood of 0. We have then constructed a
whole collection of solutions to (P1(y, λ)) having the same image and the same `1 norm,
which lives on a segment.

3. Move along h with the largest step t0 > 0 until an entry of x̂1
λ(y) = x̂λ(y) + t0h vanishes, i.e.

supp(x̂1
λ(y) + t0h) ( I.

4. Repeat this process until getting a vector x∗λ(y) with a full column rank active matrix AI∗ .

Note that this construction bears similarities with the one in [20].
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Figure 3: The SURE and its reliability as a function of the number of observations n.
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Results discussion Figure 2 depicts the obtained results. For each design matrix, we associate a
panel, each containing three plots. Hence, for each case, from left to right, the first plot represents
the SURE for one realization of the noise as a function of λ. In the second graph, we plot the com-
puted prediction risk curve and the empirical mean of the SURE as a function of the regularization
parameter λ. Namely, the dashed curve represents the calculated prediction risk, the solid curve
represents the empirical mean of the SURE, and the shaded area represent the empirical mean
of the sure ± the empirical standard deviation of the SURE. The latter shows that the SURE
is an unbiased estimator of the prediction risk with a controlled variance. This suggests that the
SURE is consistent, and then so is our estimator of the degrees of freedom. In the third graph,
we plot the theoretical and empirical normalized reliability, defined respectively by (17) and (18),
as a function of the regularization parameter λ. More precisely, the solid and dashed blue curves
represent respectively RT and R̂T . This confirms numerically that both sides (RT and R̂T ) of (13)
indeed coincide.

As discussed in the introduction, one of the motivations of having an unbiased estimator of the
degrees of freedom of the Lasso is to provide a data-driven objective way for selecting the optimal
Lasso regularization parameter λ. For this, one can compute the optimal λ that minimizes the
SURE, i.e.

λoptimal = argmin
λ>0

SURE(µ̂λ(y)). (19)

In practice, this optimal value can be found either by a exhaustive search over a fine grid, or alter-
natively by any dicothomic search algorithm (e.g. golden section) if λ 7→ SURE(µ̂λ(y)) is unimodal.

Now, for our second simulation study, we consider a partial Fourier design matrix, with n < p

and a constant underdeterminacy factor p/n = 4. x0 was again simulated according to a mixed
Gaussian-Bernoulli distribution with d0.1pe non-zero entries. For each of three values of λ/σ ∈
{0.1, 1, 10} (small, medium and large), we compute the prediction risk curve, the empirical mean
of the SURE, as well as the values of the normalized reliability RT and R̂T , as a function of
n ∈ {8, · · · , 1024}. The obtained results are shown in Figure 3. For each value of λ, the first plot
(top panel) displays the normalized empirical mean of the SURE (solid line) and its 5% quantiles
(dotted) as well as the computed normalized prediction risk (dashed). Unbiasedness is again clear
whatever the value of λ. The trend on the prediction risk (and average SURE) is in agreement
with rates known for the Lasso, see e.g. [2]. The second plot confirms that the SURE is an
asymptotically reliable estimate of the prediction risk with the rate established in Theorem 2.
Moreover, as expected, the actual reliability gets closer to the upper-bound (48) as the number of
samples n increases.

5 Proofs

First of all, we recall some classical properties of any solution of the Lasso (see, e.g., [17, 7, 11, 27]).
To lighten the notation in the two following lemmas, we will drop the dependency of the minimizers
of (P1(y, λ)) on either λ or y.

Lemma 1. x̂ is a (global) minimizer of the Lasso problem (P1(y, λ)) if and only of:

1. AT
I (y −Ax̂) = λ sign(x̂I), where I = {i : x̂i 6= 0}, and

2. |〈aj , y −Ax̂〉| ≤ λ, ∀ j ∈ Ic,

10



where Ic = {1, . . . , p}\I. Moreover, if AI is full column rank, then x̂ satisfies the following implicit
relationship:

x̂I = A+
I y − λ(AT

I AI)
−1 sign(x̂I) . (20)

Note that if the inequality in condition 2 above is strict, then x̂ is the unique minimizer of the
Lasso problem (P1(y, λ)) [11].

Lemma 2 below shows that all solutions of (P1(y, λ)) have the same image by A. In other
words, the Lasso response µ̂λ(y), is unique, see [5].

Lemma 2. If x̂1 and x̂2 are two solutions of (P1(y, λ)), then

Ax̂1 = Ax̂2 = µ̂λ(y).

Before delving into the technical details, we recall the following trace formula of the divergence.
Let Jbµ(y) be the Jacobian matrix of a mapping y 7→ µ̂(y), defined as follows

(
Jbµ(y)

)
i,j

:=
∂µ̂(y)i
∂yj

, i, j = 1, · · · , n. (21)

Then we can write
div (µ̂(y)) = tr

(
Jbµ(y)

)
. (22)

Proof of Theorem 1. Let x∗λ(y) be a solution of the Lasso problem (P1(y, λ)) and I∗ its support
such that AI∗ is full column rank. Let (x∗λ(y))I∗ be the restriction of x∗λ(y) to its support and
S∗ = sign ((x∗λ(y))I∗). From Lemma 2 we have,

µ̂λ(y) = Ax∗λ(y) = AI∗(x∗λ(y))I∗ .

According to Lemma 1, we know that

AT
I∗(y − µ̂λ(y)) = λS∗;

|〈ak, y − µ̂λ(y)〉| ≤ λ, ∀ k ∈ (I∗)c.

Furthermore, from (20), we get the following implicit form of x∗λ(y)

(x∗λ(y))I∗ = A+
I∗y − λ(AT

I∗AI∗)
−1S∗. (23)

It follows that
µ̂λ(y) = PVI∗ (y)− λdI∗,S∗ , (24)

and
r̂λ(y) = y − µ̂λ(y) = PV ⊥

I∗
(y) + λdI∗,S∗ , (25)

where dI∗,S∗ = (A+
I∗)

TS∗. We define the following set of indices

J = {j : |〈aj , r̂λ(y)〉| = λ}. (26)

From Lemma 1 we deduce that
I∗ ⊂ J.

Since the orthogonal projection is a self-adjoint operator and from (25), for all j ∈ J , we have

|〈PV ⊥
I∗

(aj), y〉+ λ〈aj , dI∗,S∗〉| = λ. (27)
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As y ∈ Gλ, we deduce that if j ∈ J ∩ (I∗)c then inevitably we have

aj ∈ VI∗ , and therefore |〈aj , dI∗,S∗〉| = 1. (28)

In fact, if aj 6∈ VI∗ then (I∗, j, S∗) ∈ Ω and from (27) we have that y ∈ HI∗,j,S∗ , which is a
contradiction with y ∈ Gλ.
Therefore, the collection of vectors (ai)i∈I∗ forms a basis of VJ = span(aj)j∈J . Now, suppose that
x̂λ(y) is another solution of (P1(y, λ)), such that its support I is different from I∗. If AI is full
column rank, then by using the same above arguments we can deduce that (ai)i∈I forms also a
basis of VJ . Therefore, we have

|I| = |I∗| = dim(VJ).

On the other hand, if AI is not full rank, then there exists a subset I0 ( I such that AI0 is full
rank (see the discussion following Theorem 1) and (ai)i∈I0 forms also a basis of VJ , which implies
that

|I| > |I0| = dim(VJ) = |I∗|.

We conclude that for any solution x̂λ(y) of (P1(y, λ)), we have

| supp(x̂λ(y))| ≥ |I∗|,

and then |I∗| is equal to the minimum of the cardinalities of the supports of solutions of (P1(y, λ)).
This proves the first part of the theorem.

Let’s turn to the second statement. Note that Gλ is an open set and all components of (x∗λ(y))I∗
are nonzero, so we can choose a small enough ε such that Ball(y, ε) ( Gλ, that is, for all z ∈
Ball(y, ε), z ∈ Gλ. Now, let x1

λ(z) be the vector supported in I∗ and defined by

(x1
λ(z))I∗ = A+

I∗z − λ(AT
I∗AI∗)

−1S∗ = (x∗λ(y))I∗ +A+
I∗(z − y). (29)

If ε is small enough, then for all z ∈ Ball(y, ε), we have

sign(x1
λ(z))I∗ = sign(x∗λ(y))I∗ = S∗. (30)

In the rest of the proof, we invoke Lemma 1 to show that, for ε small enough, x1
λ(z) is actually

a solution of (P1(z, λ)). First we notice that z −Ax1
λ(z) = PV ⊥I (z) + λdI∗,S∗ . It follows that

AT
I∗(z −Ax1

λ(z)) = λAT
I∗dI∗,S∗ = λS∗ = λ sign (x1

λ(z))I∗ . (31)

Moreover for all j ∈ J ∩ I∗, from (28), we have that

|〈aj , z −Ax1
λ(z)〉| = |〈aj , PV ⊥

I∗
(z) + λdI∗,S∗〉|

= |〈PV ⊥
I∗

(aj), z〉+ λ〈aj , dI∗,S∗〉|
= λ|〈aj , dI∗,S∗〉| = λ.

and for all j /∈ J

|〈aj , z −Ax1
λ(z)〉| ≤ |〈aj , y −Ax∗λ(y)〉|+ |〈PV ⊥

I∗
(aj), z − y〉|

Since for all j /∈ J , |〈aj , y − Ax∗λ〉| < λ, there exists ε such that for all z ∈ Ball(y, ε) and ∀ j /∈ J ,
we have

|〈aj , z −Ax1
λ(z)〉| < λ.

12



Therefore, we obtain
|〈aj , z −Ax1

λ(z)〉| ≤ λ, ∀ j ∈ (I∗)c.

Which, by Lemma 1, means that x1
λ(z) is a solution of (P1(z, λ)), and the unique Lasso response

associated to (P1(z, λ)), denoted by µ̂λ(z), is defined by

µ̂λ(z) = PVI∗ (z)− λdI∗,S∗ . (32)

Therefore, from (24) and (32), we can deduce that for all z ∈ Ball(y, ε) we have

µ̂λ(z) = µ̂λ(y) + PVI∗ (z − y).

Proof of Corollary 1. We showed that there exists ε sufficiently small such that

‖z − y‖2 ≤ ε⇒ µ̂λ(z) = µ̂λ(y) + PVI∗ (z − y). (33)

Let h ∈ VI∗ such that ‖h‖2 ≤ ε and z = y + h. Thus, we have that ‖z − y‖2 ≤ ε and then

‖µ̂λ(z)− µ̂λ(y)‖2 = ‖PVI∗ (h)‖2 = ‖h‖2 ≤ ε. (34)

Therefore, the Lasso response µ̂λ(y) is uniformly Lipschitz on Gλ. Moreover, µ̂λ(y) is a continuous
function of y, and thus µ̂λ(y) is uniformly Lipschitz on Rn. Hence, µ̂λ(y) is almost differentiable;
see [15] and [7].

On the other hand, we proved that there exists a neighborhood of y, such that for all z in this
neighborhood, there exists a solution of the Lasso problem (P1(z, λ)), which has the same support
and the same sign as x∗λ(y), and thus µ̂λ(z) belongs to the vector space VI∗ , whose dimension
equals to |I∗|, see (24) and (32). Therefore, µ̂λ(y) is a locally affine function of y, and then

Jbµλ(y) = PVI∗ . (35)

Then the trace formula (22) implies that

div (µ̂λ(y)) = tr (PVI∗ ) = |I∗|. (36)

This holds almost everywhere since Gλ is of full measure, and (10) is obtained by invoking Stein’s
lemma.

Proof of Theorem 2. First, consider the following random variable

Q1(µ̂λ(y)) = ‖µ̂λ(y)‖22 + ‖µ‖22 − 2〈y, µ̂λ(y)〉+ 2σ2 div(µ̂λ(y)).

From Stein’s lemma, we have

E〈ε, µ̂λ(y)〉 = σ2E (div(µ̂λ(y))) .

Thus, we can deduce that Q1(µ̂λ(y)) and SURE(µ̂λ(y)) are unbiased estimator of the prediction
risk, i.e.

E (SURE(µ̂λ(y))) = E (Q1(µ̂λ(y))) = E (SE(µ̂λ(y))) = Risk(µ).

Moreover, note that SURE(µ̂λ(y))−Q1(µ̂λ(y)) = ‖y‖22 − E
(
‖y‖22

)
, where

E
(
‖y‖22

)
= nσ2 + ‖µ‖22, and V

(
‖y‖22

)
= 2σ4

(
n+ 2

‖µ‖22
σ2

)
. (37)
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Now, we remark also that

Q1(µ̂λ(y))− SE(µ̂λ(y)) = 2
(
σ2 div(µ̂λ(y))− 〈ε, µ̂λ(y)〉

)
. (38)

After an elementary calculation, we obtain

E(SURE(µ̂λ(y))− SE(µ̂λ(y)))2 = E(Q1(µ̂λ(y))− SE(µ̂λ(y)))2 + V
(
‖y‖22

)
+ 4T, (39)

where
T = σ2E

(
div(µ̂λ(y))‖y‖22

)
− E

(
〈ε, µ̂λ(y)〉‖y‖22

)
= T1 + T2, (40)

with
T1 = 2

(
σ2E (div(µ̂λ(y))〈ε, µ〉)− E (〈ε, µ̂λ(y)〉〈ε, µ〉)

)
(41)

and
T2 = σ2E

(
div(µ̂λ(y))‖ε‖22

)
− E

(
〈ε, µ̂λ(y)〉‖ε‖22

)
. (42)

Hence, by using the fact that a Gaussian probability density ϕ(εi) satisfies εiϕ(εi) = −σ2ϕ′(εi)
and integrations by parts, we find that

T1 = −2σ2E (〈µ̂λ, µ〉)

and
T2 = −2σ4E (div(µ̂λ(y))) .

It follows that
T = −2σ2

(
E (〈µ̂λ, µ〉) + σ2E (div(µ̂λ(y)))

)
. (43)

Moreover, from [13, Property 1], we know that

E(Q1(µ̂λ(y))− SE(µ̂λ(y)))2 = 4σ2

(
E
(
‖µ̂λ(y)‖22

)
+ σ2E

(
tr
((
Jbµλ(y)

)2)))
, (44)

Thus, since Jbµλ(y) = PVI∗ which is an orthogonal projector (hence self-adjoint and idempotent),

we have tr
((
Jbµλ(y)

)2) = div(µ̂λ(y)) = |I∗|. Therefore, we get

E(Q1(µ̂λ(y))− SE(µ̂λ(y)))2 = 4σ2
(
E
(
‖µ̂λ(y)‖22

)
+ σ2E (|I∗|)

)
. (45)

Furthermore, observe that

E (SURE(µ̂λ(y))) = −nσ2 + E
(
‖µ̂λ(y)− y‖22

)
+ 2σ2E (|I∗|) . (46)

Therefore, by combining (37), (39), (43) and (45), we obtain

E(SURE(µ̂λ(y))− SE(µ̂λ(y)))2 = 2nσ4 + 4σ2E (SE(µ̂λ(y)))− 4σ4E (|I∗|)
= 2nσ4 + 4σ2E (SURE(µ̂λ(y)))− 4σ4E (|I∗|)

(by using (46)) = −2nσ4 + 4σ2E
(
‖µ̂λ(y)− y‖22

)
+ 4σ4E (|I∗|) .

On the other hand, since x∗λ(y) is a minimizer of the Lasso problem (P1(y, λ)), we observe that

1
2
‖µ̂λ(y)− y‖22 ≤

1
2
‖µ̂λ(y)− y‖22 + λ‖x∗λ(y)‖1 ≤

1
2
‖A.0− y‖22 + λ‖0‖1 =

1
2
‖y‖22.

Therefore, we have
E
(
‖µ̂λ(y)− y‖22

)
≤ E

(
‖y‖22

)
= nσ2 + ‖µ‖22. (47)
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Then, since |I∗| = O(n) and from (47), we have

E

((
SURE(µ̂λ(y))− SE(µ̂λ(y))

nσ2

)2
)
≤ 6
n

+
4‖µ‖22
n2σ2

. (48)

Finally, since ‖µ‖2 < +∞, we can deduce that

E

((
SURE(µ̂λ(y))− SE(µ̂λ(y))

nσ2

)2
)

= O

(
1
n

)
.

6 Discussion

In this paper we proved that the number of nonzero coefficients of a particular solution of the
Lasso problem is an unbiased estimate of the degrees of freedom of the Lasso response for linear
regression models. This result covers both the over and underdetermined cases. This was achieved
through a divergence formula, valid almost everywhere except on a set of measure zero. We gave
a precise characterization of this set, and the latter turns out to be larger than the set of all the
vectors associated to the transition points considered in [32] in the overdetermined case. We also
highlight the fact that even in the overdetermined case, the set of transition points is not sufficient
for the divergence formula to hold.

We think that some techniques developed in this article can be applied to derive the degrees of
freedom of other nonlinear estimating procedures. Typically, a natural extension of this work is to
consider other penalties such as those promoting structured sparsity, e.g. the group Lasso.
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