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Abstract

In this paper, we investigate the degrees of freedom (df) of penalized ℓ1 minimization (also
known as the Lasso) for linear regression models. We give a closed-form expression of the
degrees of freedom of the Lasso response. Namely, we show that for any given Lasso regular-
ization parameter λ and any observed data y belongs to a set of full measure, the cardinal
of the support of a particular solution of the Lasso problem is an unbiased estimator of the
degrees of freedom of the Lasso response. This work is achieved without any assumption on the
uniqueness of the Lasso solution. Thus, our result remains true for both the underdetermined
and the overdetermined case studied originally in [27]. We also prove that a key result in [27]
is not true by providing a simple counterexample. An effective estimator of the number of
degrees of freedom may have several applications including an objectively guided choice of the
regularization parameter in the Lasso through the SURE framework.
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1 Introduction

1.1 Problem statement

We consider the following linear regression model

y = Ax0 + ε, µ = Ax0, (1)

where y ∈ Rn is the observed data or the response vector, A = (a1, · · · , ap) is an n×p deterministic

design matrix, x0 =
(

x0
1, · · · , x

0
p

)t
is the vector of unknown regression coefficients and ε is a vector

of i.i.d. centered Gaussian random variables with variance σ2 > 0. In this paper, the observation
number n can be greater or less than the number of the parameter to be estimated p. Recall
that when n < p, (1) is called underdetermined linear regression model, which is probably the
most famous example of statistical problems in high dimensional. On the other hand, when all
the vectors of the design matrix A are linearly independent, which is only possible if n ≥ p, (1) is
called overdetermined linear regression model.

To estimate x0, we consider the least absolute shrinkage and selection operator (Lasso) proce-
dure, proposed originally by Tibshirani [22]. The Lasso estimate amounts to solving the following
convex optimization problem

P1(y, λ) : min
x∈Rp

1

2
‖y −Ax‖22 + λ‖x‖1, (2)

where λ > 0 is called the Lasso regularization parameter and ‖·‖2 (resp. ‖·‖1) denotes the ℓ2 ( resp.
ℓ1) norm. The convexity of this minimization problem ensures that the estimator can be computed
even if n < p and with very large p. An important feature of the Lasso is that, depending on the
regularization parameter, some coefficients are exactly set to zero. In the last years, there has been
a huge amount of work where efforts have focused on investigating the theoretical guarantees of
the Lasso as a sparse recovery procedure from noisy measurements. See, e.g., Fan and Li [7], Fan
and Peng [8], Zhao and Bin [25], Zou [26], Ravikumar et al. [18], Nardi and Rinaldo [15], Osborne
et al. [16], Efron et al. [5], Fuchs [10] and Tropp [23], to mention just a few.

Degrees of freedom df is a familiar phrase in statistics. More generally, degrees of freedom
is often used to quantify the complexity of a statistical modeling procedure. However, there is
no exact correspondence between the degrees of freedom df and the number of parameters in the
model. Now, let us introduce a precise definition of the degrees of freedom of any fitting procedure
and reveals its statistical importance. Let x̂ = δ(y) be an estimator of x0, and let µ̂ = Ax̂ be the
response or the predictor associated to x̂. Since y ∼ N(µ = Ax0, σ2I), and according to Efron [6],
the degrees of freedom of the response µ̂ is defined by

df(µ̂) =

n
∑

i=1

cov(µ̂i, yi)

σ2
. (3)

For example, when µ̂ is given by a linear function of y, i.e. µ̂ = δ(y) = Sy, with some matrix S
being independent of y, the degrees of freedom equals to the trace of S, i.e. df(µ̂) = tr(S).

With df defined in (3), we can employ the covariance penalty method to construct a Cp-type
statistic (Mallows [13]) as

Cp(µ̂) = −nσ2 + ‖µ̂− y‖22 + 2σ2df(µ̂). (4)

Note that Cp is an unbiased estimator of the true risk or the true prediction error

Risk(µ̂) = E‖µ̂− µ‖22 = E‖A(x̂ − x0)‖22. (5)

Moreover, Efron [4] showed that in some settings Cp offers substantially better accuracy than
cross-validation and related nonparametric methods. Many others model selection criteria involve
df(µ̂), e.g. AIC (Akaike Information Criterion, [1]), BIC (Bayesian Information Citerion, [19]),
GCV (Generalized Cross Validation, [2]) and SURE (Stein’s unbiased risk estimation, see below).
Thus, the concept of degrees of freedom plays an important role in model validation and selection.
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The degrees of freedom intervenes also to finding the optimal hyperparameters of the estimator,
e.g the regularization parameter λ in the Lasso. Note that, the optimality here is in the sense of
the prediction and not for the estimation. Finally, we find the degrees of freedom in the formula
of the Fischer statistic used for the global test on the prediction.

In this work, we are interested in particular by the SURE as a model selection criteria. Indeed,
suppose that the degrees of freedom has an unbiased estimator, denoted by d̂f(µ̂), the SURE is
defined as follows

SURE(µ̂) = −nσ2 + ‖µ̂− y‖22 + 2σ2d̂f(µ̂). (6)

Hence, by replacing df(µ̂) in (4) by its its unbiased estimate d̂f(µ̂), the SURE or the modified Cp

statistic is still unbiased as an estimate of the true risk (5). Lemma 1 below, called the Stein’s
lemma, ensures that if µ̂ is continuous and almost differentiable then its divergence is an unbiased
estimator of its degrees of freedom.

Lemma 1. (Stein’s lemma [20]). Let y ∼ N(µ, σ2I) and µ̂ be an estimator of µ. Suppose that

µ̂i : R
n → R is absolutely continuous in i-th coordinate for i = 1, · · · , n. If E|

∂µ̂i

∂yi
| < ∞ for each i,

then
n
∑

i=1

cov(µ̂i, yi)

σ2
= E (div µ̂) , (7)

where

div µ̂ =

n
∑

i=1

∂µ̂i

∂yi
.

Therefore an unbiased estimator of the degrees of freedom is given by

d̂f(µ̂) = div µ̂. (8)

1.2 Some characteristics of the Lasso solution

In this section, we recall some classical properties of the Lasso solution (see, e.g., Osborne et al.
[16], Efron et al. [5], Fuchs [10] and Tropp [23]). First, some notations are necessary. Let x̃ ∈ Rp.
x̃i denotes the ith component of x̃. The support or the active set of x̃ is defined by

I = supp(x̃) = {i : x̃i 6= 0},

and we denote its cardinal as | supp(x̃)| = |I|. Moreover, we denote by x̃I the reduced dimensional
vector built upon the non-zero components of x̃. The active matrix AI associated to a vector x̃ is
obtained by selecting the colomns of A indexed by the support I of x̃. Let At

I be the transpose
matrix of AI . Suppose that AI is full rank, then the pseudo-inverse (At

IAI)
−1At

I of AI is denoted
A+

I . sign(·) represents the sign function: sign(a) = 1 if a > 0; sign(a) = 0 if a = 0; sign(a) = −1 if
a < 0. Let sign(x̃) be the sign vector of x̃, such that sign(x̃)i = sign(x̃i).
Next, we recall the first order optimality conditions for the Lasso estimator, see [9] and [10].

Lemma 2. A necessary and sufficient condition for x̃ to be a minimizer of the Lasso problem
P1(y, λ) is that x̃ satisfies the two following conditions:

1. At
I(y −Ax̃) = λsign(x̃I), i.e. 〈ak, y −Ax̃〉 = λ sign x̃k, ∀ k ∈ I,

2. |〈aj , y −Ax̃〉| ≤ λ, ∀ j ∈ Ic,

where Ic is the complement of I. Moreover, if AI is full rank, then x̃ satisfies the following implicit
relationship:

x̃I = A+
I y − λ(At

IAI)
−1 sign(x̃I). (9)

Note that if the inequality in the condition 2 is strict, then x̃ is the unique minimizer of the
Lasso problem P1(y, λ). Lemma 3 below shows that all the solutions of P1(y, λ) have the same
image by A. In others words, the lasso response, denoted by µ̂λ(y), is unique, see [3].

Lemma 3. If x̃1 and x̃2 are solutions of P1(y, λ), then

Ax̃1 = Ax̃2 = µ̂λ(y).
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Uniqueness of the Lasso solution In the statistical framework of (1), and under the sparsity
assumption on x0 the vector of unknown regression parameters, we distinguish two cases. First, the
overdetermined case, that is, when all the vectors of the design matrix A are linearly independent
i.e. rank(A) = p. In this case the Lasso problem has a unique solution. On the other hand, the
underdetermined case presented in the introduction of this paper. Thus, in this case the Lasso
problem may have several solutions. If points (±ai)i6p are in general position, that is if any affine
subspace of Rn of dimension k contains less than k+1 points amongst (±ai)i6p, (exluding antipodal
paires), then the solution of the LASSO is unique for all y ∈ Rn and for all λ > 0. If these points
are in general position we will say that A satisfies condition (GP).

Moreover, this condition is satisfied by most matrices. Precisely, for any matrix A, the matrix
A+W , where W is a random matrix whose columns are independent and follows a probability law
with a density, satisfies (GP) with probability 1. For instance, it is the case when the entries of the
design matrix A are identically and independently sampled from a standard normal distribution.

1.3 Contributions and relationship to prior work

Let µ̂λ(y) = Ax̂λ(y) be the unique Lasso response vector, where x̂λ(y) is a solution of the Lasso
problem (2). The main contribution of this paper is first to generalize the results of [27] to the
more challenging underdetermined case where the Lasso solution may not be unique. We provide
an unbiased estimator of the degrees of freedom of the Lasso response valid everywhere except on
a set of measure zero. Let’s mention that we reach our goal without any additional assumption
to ensure the uniqueness of the Lasso solution. Thus, our result is valid when the Lasso problem
(2) has a unique solution, and in particular for the overdetermined case studied by Zou et al.
[27]. Indeed, for the overdetermined case, authors [27] shows that for a fixed λ, and y outside a
finite union of hyperplanes, the number of non-zero coefficients of the unique solution of the Lasso
problem is an unbiased estimator of the degrees of the freedom of the response Lasso. In this work,
we arrive at a similar expression of the degrees of freedom as in [27] for the overdetermined case,
but with the notable distinction that it holds on a different set (of full measure) for the observed
data y. Section 3 is dedicated to a thorough comparison and discussion of differences between our
results, when specialized to the overdetermined case, and that in [27, Theorem 1]. On the other
hand, using the estimator at hand, we establish the reliability of the SURE for the Lasso.

1.4 Overview of the paper

This paper is organized as follows. Section 2 is the core contribution of this work where we state
our main results. There, we provide the unbiased estimator of the degrees of freedom of the Lasso,
and we investigate the reliability of the SURE estimate of the Lasso response. Then, we compare
our result with that of [27] for the overdetermined case, in Section 3. Numerical illustrations are
given in Section 4. The proofs of our results are postponed to Section 5. A final discussion and
perspectives of this work are provided in Section 6.

2 Main results

2.1 An unbiased estimator of df

We first define some notation. Let I ⊆ {1, 2, · · · , p}, such that AI = (ai)i∈I is full rank. We denote
the cardinal of I by |I|, the range of AI by VI , the orthogonal projection onto VI by PVI

, and the
orthogonal projection onto the orthogonal complement V ⊥

I of VI by PV ⊥

I
. We recall

VI = span(ai)i∈I , PVI
= AIA

+
I , and PV ⊥

I
= In×n − PVI

.

Let S ∈ {−1, 1}|I| be a sign vector, j ∈ {1, 2, · · · , p}. Fix λ > 0. Thus, we define the following set
of hyperplanes

HI,j,S = {u ∈ Rn : 〈PV ⊥

I
(aj), u〉 = ±λ(1− 〈aj , (A

+
I )

tS〉)}. (10)
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Note that, if aj does not belong to VI , then HI,j,S becomes a finite union of two hyperplanes. Now,
we define the following finite set of indices

Ω = {(I, j, S) : aj 6∈ VI} (11)

and let Gλ be the subset of Rn which excludes the finite union of hyperplanes associate to Ω, that
is

Gλ = Rn \
⋃

(I,j,S)∈Ω

HI,j,S . (12)

To cut a long story short,
⋃

(I,j,S)∈ΩHI,j,S is a set of (Lebesgue) measure zero (Hausdorff dimension

n− 1), and therefore Gλ is a set of full measure.
Now, we are now ready to introduce our main theorem.

Theorem 1. Fix λ > 0. For any y ∈ Gλ, consider My,λ the set of solutions of P1(y, λ). Let
x∗
λ ∈ My,λ with support I∗ such that AI∗ is full rank. Then,

|I∗| = min
xλ∈My,λ

| supp(xλ)|. (13)

Furthermore, there exists ε > 0 such that for all z ∈ Ball(y, ε), the n-dimensional ball with center
y and radius ε, we have

µ̂λ(z) = µ̂λ(y) + PVI∗
(z − y). (14)

Thus, a direct consequence of our main theorem is given by Corollary 1 below. The latter shows
that if y belongs to Gλ, then the number of nonzero coefficients of the solution x∗

λ is an unbiased
estimator of the degrees of freedom of the Lasso response.

Corollary 1. Under the assumptions and with the same notations of Theorem 1, we have the
following divergence formula

div(µ̂λ(y)) = |I∗|. (15)

Therefore,
df(µ̂λ) = E(|I∗|). (16)

Obviously, in the particular case where the Lasso problem has a unique solution, our result remains
true. Precisely, the cardinal of the support of this solution is an unbiased estimator of the degrees
of freedom of the Lasso response.

2.2 Reliability of the SURE estimate of the Lasso response

From the estimator of the degree of freedom of the Lasso response d̂f(µ̂λ), it follows that the
SURE(µ̂λ) (see (6)) is an unbiased estimator of Risk(µ̂λ) the true risk, defined by (5). We now
evaluate its reliability by computing the expected squared-error between SURE and SE, the true
squared-error, that is

SE = ‖µ̂λ − µ‖22. (17)

Theorem 2. Under the assumptions of Theorem 1, we have

E
(

(SURE(µ̂λ)− SE)2
)

= −2σ4n+ 4σ2E
(

‖µ̂λ − y‖22
)

+ 4σ4E (|I∗|) . (18)

Moreover,

E

(

(

SURE(µ̂λ)− SE

nσ2

)2
)

= O

(

1

n

)

. (19)
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3 Comparison with prior work

The authors in [27] studied the degrees of freedom of the Lasso response but in the overdetermined
case. Precisely, when all the vectors of the design matrix A are linearly independent, which is only
possible if n ≥ p. In other words, they consider that the design matrix A is full rank, that is,
rank(A) = p. In fact, in this case the Lasso problem has a unique solution, denoted by x̂λ. Thus,
before presenting the results of [27], it is necessary to point out a feature on the optimum x̂λ when
λ varies from 0 to +∞:

• For λ ≥ ‖Aty‖∞, the optimum is attained at x̂(λ) = 0.

• The interval ]0, ‖Aty‖∞[ can be divided into finite number of subintervals characterized by
the fact that within each such subinterval, the support and the sign vector of the optimum
of P1(y, λ) are constant, with respect to λ. Explicitly, let {λm} be the finite sequence of λ’s
values corresponding to a variation of the support and the sign of x̂(λ), defined by

‖Aty‖∞ = λ0 > λ1 > λ2 > · · · > λK = 0.

Thus, in the interior of the interval (λm+1, λm), the support and the sign vector of the
optimum of (2) are constant with respect to λ, for more details see [5], [16] and [17]. Hence,
we call {λm} the transition points.

Now, let λ ∈ (λm+1, λm). Thus, from Lemma 2, we have the following implicit form of x̂λ,

(x̂λ)Im = A+
Im

y − λ(At
Im

AIm)−1Sm, (20)

where Im and Sm are respectively the constant support and the constant vector sign of x̂λ with
respect to λ. Hence, based on (20), [27] showed that for all λ > 0, there exists a set of measure
zero Nλ, which is a finite collection of hyperplanes in Rn, and they defined

Kλ = Rn \ Nλ, (21)

so that ∀ y ∈ Kλ, λ is not any of the transition points, that is, λ 6∈ {λm}.
Then, for the overdetermined case, [27] stated that for all y ∈ Kλ, the number of nonzero coefficients
of the unique solution of P1(y, λ) is an unbiased estimator of the degrees of freedom of the Lasso
response. In fact, their main argument is that, by eliminating the vectors associated to transition
points, the support and the sign of the lasso solution are locally constant with respect to y, see
[27, Lemma 5].

We recall that the overdetermined case, considered in [27], is a particular case for which the
uniqueness of the solution of the Lasso problem is direct. Thus, according to the Corollary 1, we
find the same result as [27] but valid on a different set y ∈ Gλ = Rn \

⋃

(I,j,S)∈ΩHI,j,S . A natural

question arises: can we compare our assumption to that of [27] ? In other words, is there a link
between Kλ and Gλ ?

The answer is that, depending on the matrix A, these two sets may be different. More impor-
tantly, it turns out that unfortunately, the key Lemma 5 in [27] is not true on the set Kλ. We
prove this by providing a simple counterexample.

3.1 Example of vectors in Gλ but not in Kλ

Let {e1, e2} an orthonormal basis of R2 and let’s define a1 = e1 and a2 = e1+ e2 and A the matrix
which first column is equal to a1 and which second one is equal to a2.

Let’s define I = {1}, j = 2 and S = 1. It turns out that A+
I = a1 and 〈(A+

I )
tS, aj〉 = 1 which

implies that for all λ > 0,

HI,j,S = {u ∈ Rn : 〈PV ⊥

I
aj , u〉 = 0} = span(a1) .

Let y = αa1 with α > 0, for any λ > 0, y ∈ HI,j,S that is y /∈ Gλ. Using lemma 2, one gets that
for any λ ∈]0, α[, the solution of P1(y, λ) is x(λ) = (α−λ, 0) and that for any λ > α, x(λ) = (0, 0).
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Hence the only transition point is λ0 = α. It follows that for λ < α, y belongs to Kλ defined in
[27], but y /∈ Gλ.

We prove then that in any ball centered at y, there exists a vector z1 such that the support of
the solution of P1(z1, λ) is different from the support of P1(y, λ).
Let’s choose λ < α and ε ∈]0, α − λ[ and let’s define z1 = y + εe2. From lemma 2, one deduces
that the solution of P1(z1, λ) is equal to x1(λ) = (α − λ − ε, ε) whose support is different from
x(λ) = (α− λ, 0).

When there are sets {I, j, S} such that 〈(A+
I )

tS, aj〉 = 1 a difference between the two sets Gλ

and Kλ may exist. Clearly, Gλ is not only the set of transition points associated to λ.
According to the previous example, in this specific situation, for any λ > 0 there may exist

some vectors y that are not transition points associated to λ where the support of the solution of
P1(y, λ) is not stable to infinitesimal perturbations of y. This situation may occur for under- or
over-determined problems. In summary, excluding the set of transition points is not sufficient to
guarantee stability of the support of sign of the solution of the Lasso.

Figure 1: A counter-example for n = p = 2 of vectors in Gλ but not in Kλ. See text for a detailed
discussion.

4 Numerical experiments

In this section, we check the validity of our arguments by some numerical simulations. Indeed, in
the previous section, we have introduced d̂f(µ̂λ) an unbiased estimator of the degrees of freedom
of the Lasso response µ̂λ. Note that this estimator is at the heart of the SURE, that reads

SURE(µ̂λ) = −nσ2 + ‖µ̂λ − y‖22 + 2σ2d̂f(µ̂λ).

The SURE is an unbiased estimator of the true risk or the true predictor,

E{SURE(µ̂λ)} = Risk{µ̂λ} = ESE = E{‖µ̂λ − µ‖2}, where µ = Ax0.

Thus, to confirm our main theoretical results it is sufficient to verify numerically the above equality.
Here is the outline of these experiments. For our first study, we consider three kinds of simulated
design matrix A, Gaussian, partial Fourier and Hadamard, with n = 1024 and p = 4096, and
a deterministic convolution design matrix A, with n = p = 1024. For each case, we simulate
x0 the actual parameter vector or the original signal, according to a mixed Gaussian-Bernoulli
distribution, such that x0 has 15 nonzero coefficients. For each design matrix A and vector x0,
we simulate n observations of the linear regression model (1), that is, y = µ + ǫ, with Ax0 fixed
and ǫ ∼ N(0, σ2). Then, for a given λ, we compute the Lasso response µ̂λ using the now popular
iterative soft-thresholding algorithm, and we calculate the SURE and the SE. After K = 100
independent replications, we compute the empirical mean and the standard deviation of (SUREk)k
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(the sequence of the computed SURE values), the empirical mean of (SEk)k (the sequence of
the obtained SE), which corresponds to the computed Risk, and we compute RT the empirical
normalized reliability on the left-hand side of (18),

RT =
1

K

K
∑

k=1

(

SUREk − SEk

nσ2

)2

. (22)

Moreover, based on the right-hand side of (18), we compute R̂T as

R̂T = −
2

n
+

4

n2σ2

(

1

K

K
∑

k=1

(

‖ (µ̂λ)k − yk‖
2
2

)

)

+
4

n2

(

1

K

K
∑

k=1

(|I∗|k)

)

, (23)

where (µ̂λ)k, yk and |I∗|k are respectively the response lasso, the observed data, and the cardinal
of the support of the lasso solution at the kth replication. Finally, we repeat all this computations
for various values of λ, for the four kind of design matrices introduced above.

Figure 2 below shows all obtained results for the four cases. For each kind of design matrix,
we associate a panel, which contains four plots. Hence, for each case, from left to right and top
to bottom, the first plot represents the observed data without and with noise, that is, the fixed
µ and an observation of y. In the second graph, we plot the calculated true Risk curve and the
empirical mean of the SURE as a function of the regularization parameter λ. Namely, the red curve
represents the calculated true Risk, the blue curve represent the empirical mean of the SURE, and
the shaded area represent the empirical mean of the sure ± the empirical standard deviation of the
SURE. The latter shows that the SURE is an unbiased estimator of the true Risk with a controlled
variance SURE. This suggests that the SURE is consistent, and then our estimator of the degrees
of freedom of the Lasso response is also consistent. In the third graph, we plot the theoretical
and empirical normalized reliability, defined respectively by (22) and (23), as a function of the
regularization parameter λ. More precisely, the solid and dashed blue curves represent respectively
RT and R̂T , and the horizontal blue line is the upper-bound of the normalized reliability given by
right hand term of (52). This confirms numerically that both sides (RT and R̂T ) of (18) indeed
coincide.

As discussed in the introduction, one of the motivations of having an unbiased estimator of the
degrees of freedom of the Lasso is to provide a data-driven objective way for selecting the optimal
Lasso regularization parameter λ. For this, we compute the optimal λ that minimizes the SURE
(see the second plot), i.e.

λoptimal = min
λ

SURE(µ̂λ). (24)

In the fourth graph, we compare the original signal x0, represented by the blue circles, and the
Lasso solution associated to λoptimal, denoted by x̂λoptimal

plotted with red crosses. We remark that
some coefficients of x̂λoptimal

are nonzero outside the support of x0. This is not a real surprise,
since the optimality is in the sense of the prediction variable estimation rather than the regression
coefficients.
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Figure 2: The SURE and its reliability as a function of λ for four types of design matrices. (a)
Gaussian; (b) Random Fourier; (c) Random Hadamard; (d) Convolution. For each kind of design
matrix, we associate four plots.
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Now, for our second simulation study, we fix λ and we consider a partial Fourier design matrix,
with n < p = 4096. Then, we compute the calculated true Risk curve, the empirical mean of the
SURE, the values of the normalized reliability RT and R̂T , as a function of n. The obtained results
are shown in Figure 4. From top to bottom, the first plot displays the empirical mean and standard
deviation of the SURE and the true Risk. Unbiasedness is again clear. The second plot confirms
again that the SURE is an asymptotically reliable estimate of the risk with the rate established in
Theorem 2.
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Figure 3: The SURE and its reliability as a function of the number of observations n.

5 Proofs

Before delving into the technical details, let us introduce the following matrix representation of the
divergence. Let µ̂ be a function of y and Jµ̂ ≡ ∂µ̂

∂y
be the Jacobian matrix of µ̂, defined as follows

(Jµ̂)i,j ≡

(

∂µ̂

∂y

)

i,j

=
∂µ̂i

∂yj
, i, j = 1, · · · , n. (25)

Then we can write

div (µ̂) = tr (Jµ̂) ≡ tr

(

∂µ̂

∂y

)

. (26)

The above trace expression will be used in our proofs.

Proof of Theorem 1. Recall that x∗
λ is a solution of the Lasso problem P1(y, λ) and I∗ its support.

Let (x∗
λ)I∗ be the restricted vector of x∗

λ into its support, S∗ = sign ((x∗
λ)I∗) and µ̂λ(y) be the

unique Lasso response of P1(y, λ), see Lemma 3. Here, we have

µ̂λ(y) = Ax∗
λ = AI∗(x∗

λ)I∗ .

According to Lemma 2, we know that

At
I∗(y − µ̂λ(y)) = λS∗;

|〈ak, y − µ̂λ(y)〉| ≤ λ, ∀ k ∈ (I∗)c.
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Furthermore, from (9), we get the following implicit form of x∗
λ

(x∗
λ)I∗ = A+

I∗y − λ(At
I∗AI∗)−1S∗. (27)

It follows that
µ̂λ(y) = PVI∗

(y)− λdI∗,S∗ , (28)

and
r̂λ(y) = y − µ̂λ(y) = PV ⊥

I∗
(y) + λdI∗,S∗ , (29)

where VI∗ = span(ai)i∈I∗ , PVI∗
= AI∗A+

I∗ is the orthogonal projection onto VI , PV ⊥

I∗
= In×n−PVI∗

is the orthogonal projection onto the orthogonal complement V ⊥
I∗ of VI∗ , and dI∗,S∗ = (A+

I∗)tS∗.
We define the following set of indices

J = {j : |〈aj , r̂λ(y)〉| = λ}. (30)

From lemma 2 we deduce that
I∗ ⊂ J.

Since the orthogonal projection is a self-adjoint operator and from (29), for all j ∈ J , we have

|〈PV ⊥

I∗
(aj), y〉+ λ〈aj , dI∗,S∗〉| = λ. (31)

As y ∈ Gλ, we deduce that if j ∈ J ∩ (I∗)c then inevitably we have:

aj ∈ VI∗ , and then |〈aj , dI∗,S∗〉| = 1. (32)

In fact, if aj 6∈ VI∗ then (I∗, j, S∗) ∈ Ω and from (31) we have that y ∈ HI∗,j,S∗ , which is a
contradiction with y ∈ Gλ.
Therefore, the finite set of vectors (ai)i∈I∗ forms a basis of VJ = span(aj)j∈J . Now, suppose that
x̄λ is an other solution of P1(y, λ), such that its support Ī is different than I∗. If AĪ is full rank,
then by using the same above arguments we can deduce that (ai)i∈Ī forms also a basis of VJ .
Therefore, we have

|Ī| = |I∗| = dim(VJ ).

On the other hand, if AĪ is not full rank, then there exists a subset I0 ( Ī such that AI0 is full
rank and (ai)i∈I0 forms also a basis of VJ , which implies that

|Ī | > |I0| = dim(VJ ) = |I∗|.

So, for any solution x̂ of the Lasso problem, we have

| supp(x̂)| ≥ |I∗|,

and then |I∗| equals to the minimum of the cardinal’s support of solutions of the Lasso problem.
Now, note that Gλ is an open set and all components of (x∗

λ)I∗ are nonzero, so we can choose
a small enough ε such that Ball(y, ε) ( Gλ, that is, for all z ∈ Ball(y, ε), z ∈ Gλ. Now, let x1

λ be
the vector supported in I∗ and defined by

(x1
λ)I∗ = A+

I∗z − λ(At
I∗AI∗)−1S∗ = (x∗

λ)I∗ +A+
I∗(z − y). (33)

If ε is small enough, then for all z ∈ Ball(y, ε), we have

sign(x1
λ)I∗ = sign(x∗

λ)I∗ = S∗. (34)

Here, we use Lemma 2 to prove that, for ε small enough, x1
λ is a solution of P1(z, λ). First we

notice that z −Ax1
λ = PV ⊥

I
(z) + λdI∗,S∗ . It follows that

At
I∗(z −Ax1

λ) = λAt
I∗dI∗,S∗ = λS∗ = λ sign (x1

λ)I∗ . (35)
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Moreover for all j ∈ J ∩ I∗ from (32), we have that

|〈aj , z −Ax1
λ〉| = |〈aj , PV ⊥

I∗
(z) + λdI∗,S∗〉|

= |〈PV ⊥

I∗
(aj), z〉+ λ〈aj , dI∗,S∗〉|

= λ|〈aj , dI∗,S∗〉| = λ.

and for all j /∈ J
|〈aj , z −Ax1

λ〉| 6 |〈aj , y −Ax∗
λ〉|+ |〈PV ⊥

I∗
(aj), z − y〉|

Since for all j /∈ J , |〈aj , y −Ax∗
λ〉| < λ, there exists ε such that for all z ∈ Ball(y, ε) and ∀ j /∈ J ,

we have
|〈aj , z −Ax1

λ〉| < λ.

Therefore, we obtain
|〈aj , z −Ax1

λ〉| ≤ λ, ∀ j ∈ (I∗)c.

So, from Lemma 2, we have that x1
λ is a solution of P1(z, λ), and the unique Lasso response

associated to P1(z, λ), denoted by µ̂λ(z), is defined by

µ̂λ(z) = PVI∗
(z)− λdI∗,S∗ . (36)

Therefore, from (28) and (36), we can deduce that for all z ∈ Ball(y, ε) we have

µ̂λ(z) = µ̂λ(y) + PVI∗
(z − y).

Proof of Corollary 1. We showed that there exists ε sufficiently small such that

‖z − y‖2 ≤ ε ⇒ µ̂λ(z) = µ̂λ(y) + PVI∗
(z − y). (37)

Let h ∈ VI∗ such that ‖h‖2 ≤ ε and z = y + h. Thus, we have that ‖z − y‖2 ≤ ε and then

‖µ̂λ(z)− µ̂λ(y)‖2 = ‖PVI∗
(h)‖2 = ‖h‖2 ≤ ε. (38)

Therefore, the Lasso response µ̂λ(y) is uniformly Lipschitz on Gλ. Moreover, µ̂λ(y) is a continuous
function of y, and thus µ̂λ(y) is uniformly Lipschitz on Rn. Hence, µ̂λ(y) is almost differentiable;
see Meyer and Woodroofe [14] and Efron et al. [5].

On the other hand, we proved that there exists a neighborhood of y, such that for all z in this
neighborhood, there exists a solution of the Lasso problem P1(z, λ), which has the same support
and the same sign of x∗

λ, and thus µ̂λ(z) belongs to the vector space VI∗ , whose dimension equals
to |I∗|, see (28) and (36). Therefore, µ̂λ(y) is a locally affine function of y, and then

Jµ̂λ(y) =
∂µ̂λ(y)

∂y
= PVI∗

(39)

Then the trace formula (26) implies that

div (µ̂λ(y)) = tr (PVI∗
) = |I∗|. (40)

This holds almost everywhere since Gλ is of full measure, and (16) is obtained by invoking Stein’s
lemma.

Proof of Theorem 2. First, consider the following random variable

Q1(µ̂λ) = ‖µ̂λ‖
2
2 + ‖µ‖22 − 2〈y, µ̂λ〉+ 2σ2 div(µ̂λ).

From Lemma 1, we have
E〈ε, µ̂λ〉 = σ2Ediv(µ̂λ).
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Thus, we can deduce that Q1(µ̂λ) and SURE(µ̂λ) are unbiased estimator of the true risk, i.e.

ESURE(µ̂λ) = EQ1(µ̂λ) = E{SE} = Risk(µ̂λ).

Moreover, note that SURE(µ̂λ)−Q1(µ̂λ) = ‖y‖22 − E{‖y‖22}, where

E
(

‖y‖22
)

= nσ2 + ‖µ‖22, and V{‖y‖22} = 2σ4

(

n+ 2
‖µ‖22
σ2

)

. (41)

Now, we remark also that

Q1(µ̂λ)− SE = 2
(

σ2 div(µ̂λ)− 〈ε, µ̂λ〉
)

. (42)

After an elementary calculation, we obtain

E(SURE(µ̂λ)− SE)2 = E(Q1(µ̂λ)− SE)2 + V{‖y‖22}+ 4T, (43)

where
T = σ2Ediv(µ̂λ)‖y‖

2
2 − E〈ε, µ̂λ〉‖y‖

2
2 = T1 + T2, (44)

with
T1 = 2

(

σ2Ediv(µ̂λ)〈ε, µ〉 − E〈ε, µ̂λ〉〈ε, µ〉
)

(45)

and
T2 = σ2Ediv(µ̂λ)‖ε‖

2
2 − E〈ε, µ̂λ〉‖ε‖

2
2. (46)

Hence, by using the fact that a gaussian probability density f(εi) satisfies εif(εi) = −σ2f
′

(εi) and
integrations by parts, we find that

T1 = −2σ2E〈µ̂λ, µ〉

and
T2 = −2σ4E [div(µ̂λ)] .

It follows that
T = −2σ2

(

E〈µ̂λ, µ〉+ σ2Ediv(µ̂λ)
)

. (47)

Moreover, from [ [12], Property 1 page 25], we know that

E(Q1(µ̂λ)− SE)2 = 4σ2
(

E
[

‖µ̂λ‖
2
2

]

+ σ2E
[

tr{(Jµ̂λ
)
2}
])

, (48)

where Jµ̂λ
=

(

∂ (µ̂λ)i
∂yj

)

1≤i,j≤n

is the Jacobian matrix of µ̂λ. Thus, since Jµ̂λ
= PVI∗

which is a

self-adjoint projection, we have (Jµ̂λ
)
2
= Jµ̂λ

, and tr (Jµ̂λ
) = div(µ̂λ) = |I∗|. Therefore, we get

E(Q1(µ̂λ)− SE)2 = 4σ2
(

E
(

‖µ̂λ‖
2
2

)

+ σ2E (|I∗|)
)

. (49)

Furthermore, observe that

ESURE(µ̂λ) = −nσ2 + E
(

‖µ̂λ − y‖22
)

+ 2σ2E (|I∗|) . (50)

Therefore, by combining (41), (43), (47) and (49), we obtain

E(SURE(µ̂λ)− SE)2 = 2nσ4 + 4σ2ESE−4σ4E (|I∗|)

= 2nσ4 + 4σ2E (SURE(µ̂λ))− 4σ4E (|I∗|)

(by using (50)) = −2nσ4 + 4σ2E
(

‖µ̂λ − y‖22
)

+ 4σ4E (|I∗|) .

On the other hand, since x∗
λ is an optimum of the Lasso problem P1(y, λ), we observe that

1

2
‖µ̂λ − y‖22 ≤

1

2
‖µ̂λ − y‖22 + λ‖x∗

λ‖1 ≤
1

2
‖A.0− y‖22 + λ‖0‖1 =

1

2
‖y‖22.
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Therefore, we have
E
(

‖µ̂λ − y‖22
)

≤ E
(

‖y‖22
)

= nσ2 + ‖µ‖22. (51)

Then, since |I∗| = o(n) and from (51), we have

E

(

(

SURE(µ̂λ)− SE

nσ2

)2
)

≤
6

n
+

4‖µ‖22
n2σ2

. (52)

Finally, since ‖µ‖22 < +∞, we can deduce that

E

(

(

SURE(µ̂λ)− SE

nσ2

)2
)

= O

(

1

n

)

.

6 Discussion

In this paper we proved that the number of nonzero coefficients of a particular solution of the
Lasso problem is an unbiased estimate of the degrees of freedom of the Lasso response for linear
regression models. This result covers both the over and underdetermined case. This was achieved
through a divergence formula, valid almost everywhere except on a set of measure zero. We gave
a precise characterization of this set, and the latter turns out to be larger than the set of all the
vectors associated to the transition points considered in [27] in the overdetermined case. We also
highlight the fact the set of transition points is not sufficient for the divergence formula to hold,
hence providing a counterexample to some of the key results in [27].

We think that some techniques developed in this article can be applied to derive the degrees of
freedom of other nonlinear estimating procedures. Typically, a natural extension of this work is to
extend it to other penalties such as those promoting structured sparsity, e.g. the group Lasso.
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