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We prove local and global well-posedness in H s,0 (R 2 ), s > -1 2 , for the Cauchy problem associated with the Kadomotsev-Petviashvili-Burgers-I equation (KPBI) by working in Bourgain's type spaces. This result is almost sharp if one requires the flow-map to be smooth.

Introduction

We study the well-posedness of the initial value problem for the Kadomtsev-Petviashvili-Burgers (KPBI) equations in R 2 :

(1.1)

(∂ t u + u xxx -u xx + uu x ) x -u yy = 0, u(0, x, y) = ϕ(x, y).
where u is a real-valued function of (x, t) ∈ R 2 × R + . Note that if we replace -u yy by +u yy , (1.1) becomes the KPBII equation. This equation, models in some regime the wave propagation in electromagnetic saturated zone( cf. [START_REF] Leblond | KP lumps in ferromagnets : a three-dimensional KdV-Burgers models[END_REF]). More generally, be considered as a toys model for two-dimensional wave propagation taking into account the effect of viscosity. Note that since we are interested in an almost unidirectional propagation, the dissipative term acts only in the main direction of the propagation in KPB. This equation is a dissipative version of the Kadomtsev-Petviashvili-I equation (KPI) :

(1.2)

∂ t u + u xxx + uu x x -u yy = 0.
which is a "universal" model for nearly one directional weakly nonlinear dispersive waves, with weak transverse effects and strong surface tension effects. Bourgain had developed a new method, clarified by Ginibre in [START_REF] Ginibre | Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'aprés Bourgain)[END_REF], for the study of Cauchy problem associated with non-linear dispersive equations. This method was successfully applied to the nonlinear Schrödinger, KdV as well as KPII equations. It was shown by that the Bourgain spaces can be used to study the Cauchy problems associated to semi-linear equations with a linear part containing both dispersive and dissipative terms (and consequently this applies to KPB equations). By introducing a Bourgain space associated to the usual KPI equation (related only to the dispersive part of the linear symbol in the KPBI equation), Molinet-Ribaud [START_REF] Molinet | The global Cauchy problem in Bourgain's type spaces for a dispersive dissipative semilinear equation[END_REF] had proved global existence for the Cauchy problem associated to the KPBI equation when the initial value in H s 1 ,s 2 (R 2 ), s 1 > 0 and s 2 0. Kojok [START_REF] Kojok | On the stability of line-shock profiles for Kadomtsev-Petviashvili-Burgers equations[END_REF] had proved the local and global existence for (1.1) for small initial data in L 2 (R 2 ). In this paper, we improve the results obtained by Molinet-Ribaud, by proving the local existence for the KPBI equation , with initial value ϕ ∈ H s 1 ,0 when s 1 > -1 2 . The main new ingredient is a trilinear estimate for the KPI equation proved in [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF]. Following [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF], we introduce a Bourgain space associated to the KPBI equation. This space is in fact the intersection of the space introduced in [START_REF] Bourgain | On the Cauchy problem for the Kadomtsev-Petviashivili equation[END_REF] and of a Sobolev space linked to the dissipative effect. The advantage of this space is that it contains both the dissipative and dispersive parts of the linear symbol of (1.1). This paper is organized as follows. In Section 2, we introduce our notations and we give an extension of the semi-group of the KPBI equation by a linear operator defined on the whole real axis. In Section 3 we derive linear estimates and some smoothing properties for the operator L defined by (2.15) in the Bourgain spaces . In Section 4 we state Strichartz type estimates for the KP equation which yield bilinear estimates. In Section 5, using bilinear estimates, a standard fixed point argument and some smoothing properties, we prove uniqueness and global existence of the solution of KPBI equation in anisotropic sobolev space H s,0 with s > -1 2 . Finally, in section 6, we ensures that our local existence result is optimal if one requires the smoothness of the flow-map. Acknowledgments. I would like to thank my advisor prof Luc Molinet for his help, suggestions and for the rigorous attention to this paper.

Notations and main results

We will use C to denote various time independent constants, usually depending only upon s. In case a constant depends upon other quantities, we will try to make it explicit. We use A B to denote an estimate of the form A ≤ CB. similarly, we will write A ∼ B to mean A B and B A. We writre

• := (1 + | • | 2 ) 1/2 ∼ 1 + | • |.
The notation a + denotes a + ǫ for an arbitrarily small ǫ. Similarly a-denotes a -ǫ. For b ∈ R, we denote respectively by H b (R) and Ḣb (R) the nonhomogeneous and homogeneous Sobolev spaces which are endowed with the following norms :

(2.1) ||u|| 2 H b = R τ 2b |û(τ )| 2 dτ, ||u|| 2 Ḣb = R |τ | 2b |û(τ )| 2 dτ
where . denotes the Fourier transform from S ′ (R 2 ) to S ′ (R 2 ) which is defined by :

f (ξ) := F(f )(ξ) = R 2 e i λ,ξ f (λ)dλ, ∀f ∈ S ′ (R 2 ).
Moreover, we introduce the corresponding space (resp space-time) Sobolev spaces H s 1 ,s 2 (resp H b,s 1 ,s 2 ) which are defined by :

(2.2) H s 1 ,s 2 (R 2 ) =: {u ∈ S ′ (R 2 ); ||u|| H s 1 ,s 2 (R 2 ) < +∞}, (2.3) H b,s 1 ,s 2 (R 2 ) =: {u ∈ S ′ (R 3 ); ||u|| H b,s 1 ,s 2 (R 3 ) < +∞} where, (2.4) ||u|| 2 H s 1 ,s 2 = R 2 ξ 2s 1 η 2s 2 |û(ν)| 2 dν, (2.5) ||u|| 2 H b,s 1 ,s 2 = R 2 τ b ξ 2s 1 η 2s 2 |û(τ, ν)| 2 dνdτ,
and ν = (ξ, η). Let U (•) be the unitary group in H s 1 ,s 2 , s 1 , s 2 ∈ R, defining the free evolution of the (KP-II) equation, which is given by

(2.6) U (t) = exp(itP (D x , D y )),
where P (D x , D y ) is the Fourier multiplier with symbol P (ξ, η) = ξ 3 -η 2 /ξ. By the Fourier transform, (2.6) can be written as :

(2.7)

F x (U (t)φ) = exp(itP (ξ, η)) φ, ∀φ ∈ S ′ (R 2 ), t ∈ R.
Also, by the Fourier transform, the linear part of the equation (1.1) can be written as :

(2.8) i(τ -ξ 3 -η 2 /ξ) + ξ 2 =: i(τ -P (η, ξ)) + ξ 2 .
We need to localize our solution, and the idea of Bourgain has been to consider this localisation, by defining the space X b,s equipped by the

(2.9) ||u|| X b,s 1 ,s 2 = || i(τ -P (η, ξ)) + ξ 2 b ξ s 1 η s 2 ũ(τ, ξ, η)|| L 2 (R 3 ) .
We will need to define the decomposition of Littlewood-

Paley. Let η ∈ C 0 (R) be such that η ≥ 0, supp η ⊂ [-2, 2], η = 1 on [-1, 1]. We define next ϕ(ξ) = η(ξ) -η(2ξ).
Any summations over capitalized variables such as N , L are presumed to be dyadic, i.e. these variables range over numbers of the form N = 2 j , j ∈ Z and L = 2 l , l ∈ N. We set ϕ N (ξ) = ϕ( ξ N ) and define the operator P N by F x (P N u) = ϕ N F x (u). We introduce ψ L (τ, ζ) = ϕ L (τ -P (ζ)) and for any u ∈ S(R 2 ),

F x (P N u(t))(ξ) = ϕ N (ξ)F x (u)(t, ξ), F(Q L u)(τ, ξ, η) = ψ L (τ, ζ)F(u)(τ, ξ); L > 1 and F(Q 1 u)(τ, ξ, η) = η τ -P (ζ) F(u)(τ, ξ).
Roughly speaking, the operator P N localizes in the annulus {|ξ| ∼ N } where as Q L localizes in the region { τ -P (ζ) ∼ L}. We denote P N u by u N , Q L u by u L and P N (Q L u) by u N,L . For T ≥ 0, we consider the localized Bourgain spaces X b,s 1 ,s 2 T endowed with the norm

u X b,s 1 ,s 2 T = inf w∈X b,s 1 ,s 2 { w X b,s 1 ,s 2 , w(t) = u(t) on [0, T ] }.
We also use the space-time Lebesgue space L p,q t,x endowed with the norm u L q,r t,x = u L r x L q t , and we will use the notation L 2 t,x for L 2,2 t,x . We denote by W (•) the semigroup associated with the free evolution of the KPB equations, (2.10)

F x (W (t)φ) = exp(itP (ξ, η) -|ξ| 2 t) φ, ∀φ ∈ S ′ (R 2 ), t ≥ 0.
Also, we can extend W to a linear operator defined on the whole real axis by setting, (2.11)

F x (W (t)φ) = exp(itP (ξ, η) -|ξ| 2 |t|) φ, ∀φ ∈ S ′ (R 2 ), t ∈ R.
By the Duhamel integral formulation, the equation (1.1) can be written as (2.12)

u(t) = W (t)φ - 1 2 t 0 W (t -t ′ )∂ x (u 2 (t ′ ))dt ′ , t ≥ 0.
To prove the local existence result, we will apply a fixed point argument to the extension of (2.12), which is defined on whole the real axis by:

(2.13)

u(t) = ψ(t)[W (t)φ -L(∂ x (ψ 2 T u 2 ))(x, t)],
where t ∈ R, ψ indicates a time cutoff function :

(2.14) ψ ∈ C ∞ 0 (R), sup ψ ⊂ [-2, 2], ψ = 1 on [-1, 1], ψ T (.) = ψ(./T ), and (2.15) L(f )(x, t) = W (t) e ixξ e itτ -e -|t|ξ 2 iτ + ξ 2 F(W (-t)f )(ξ, τ )dξdτ.
One easily sees that

(2.16) χ R + (t)ψ(t)L(f )(x, t) = χ R + (t)ψ(t) t 0 W (t -τ )f (τ )dτ.
Indeed, taking w = W (-•)f , the right hand side of (2.16) can be rewritten as

W (t) χ R + (t)ψ(t) e ixξ e itτ -e -|t|ξ 2 iτ + ξ 2 ŵ(ξ, τ ′ )dξdτ ′ .
In [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF], the authors performed the iteration process in the space X s,b equipped with the norm:

u X b,s 1 ,s 2 = i(τ -P (ν)) + ξ 2 b ξ s 1 η s 2 û(τ, ν) L 2 (R 3 ) ,
which take advantage of the mixed dispersive-dissipative part of the equation. We will rather work in its Besov version X s,b,q (with q = 1) defined as the weak closure of the test functions that are uniformly bounded by the norm

u X b,s,0,q = N L L + N 2 bq N sq P N Q L u q L 2 x,y,t 2 q 1 2 . Remark 2.1. It is clear that if u solves (2.13) then u is a solution of (2.12) on [0, T ], T < 1.
Thus it is sufficient to solve (2.13) for a small time (T < 1 is enough).

Definition 2.1. The Cauchy problem (1.1) is locally well-posed in the space X if for any ϕ ∈ X there exists T = T (||ϕ|| X ) > 0 and a map F from X to C([0, T ]; X) such that u = F (ϕ) is the unique solution for the equation (1.1) in some space Y ֒→ C([0, T ]; X) and F is continuous in the sense that

||F (ϕ 1 ) -F (ϕ 2 )|| L ∞ ([0,T ];X) ≤ M (||ϕ 1 -ϕ 2 || X , R)
for some locally bounded function

M from R + ×R + to R + such that M (S, R) → 0 for fixed R when S → 0 and for ϕ 1 , ϕ 2 ∈ X such that ||ϕ 1 || X +||ϕ 2 || X ≤ R.
Remark 2.2. We obtain the global existence if we can extend the solutions to all t ∈ R + , by iterating the result of local existence, in this case we say that the Cauchy problem is globally well posed.

The global existence of the solution to our equation will be obtained thanks to the regularizing effect of the dissipative term and the fact that the L 2 norm is not increasing.

Let us now state our results:

Theorem 2.2. Let s 1 > -1/2, β ∈] -1/2, min(0, s 1 )
] and φ ∈ H s 1 ,0 . Then there exists a time T = T (||φ|| H β,0 ) > 0 and a unique solution u of (1.1) in

(2.17) Y T = X 1/2,s 1 ,0,1 T Moreover, u ∈ C(R + ; H s 1 ,0 ) and the map φ -→ u is C ∞ from H s 1 ,0 to Y T .
Remark 2.3. Note that this theorem holds also for all initial data belonging to H s 1 ,s 2 with s 2 0.

Remark 2.4. H -1 2 ,0 is a critical Sobolev space by scaling considerations for the KPI equation.

Theorem 2.3. Let s < -1/2. Then it does not exist a time T > 0 such that the equation (1.1) admits a unique solution in C([0, T [, H s,0 ) for any initial data in some ball of H s,0 (R 2 ) centered at the origin and such that the map

(2.18) φ -→ u is C 2 -differentiable at the origin from H s,0 to C([0, T ], H s,0 ).
The principle of the proof of local existence result holds in two steps:

Step 1: In order to apply a standard argument of fixed point, we want to estimate the two terms: free term and the forcing term of equation (2.13). A first step is to show using Fourier analysis, that the map φ -→ ψ(t)W (t)φ is bounded from H s,0 to X 1 2 ,s,0,1 and the map L is also bounded from X -1 2 ,s,0,1 to X 1 2 ,s,0,1 .

Step 2: We treat the bilinear term, by proving that the map

(u, v) -→ ∂ x (uv) is bounded from X 1 2 ,s,0,1 × X 1 2 ,s,0,1 to X -1 2 ,s,0,1 .

Linear Estimates

In this section, we mainly follow Molinet-Ribaud [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF] ( see also [START_REF] Guo | Baoxiang Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation[END_REF] and [START_REF] Molinet | Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case[END_REF] for the Besov version) to estimate the linear term in the space X 1 2 ,s,0,1 . We start by the free term: 3.1. Estimate for the free term. Proposition 3.1. Let s ∈ R, then ∀φ ∈ H s,0 , we have:

||ψ(t)W (t)φ|| X 1 2 ,s,01 ||φ || H s,0 .
Proof . This is equivalent to prove that (3.1)

L L + N 2 1 2 ||P N Q L (ψ(t)W (t)φ)|| L 2 x,y,t ||P N φ|| L 2 x,y
for each dyadic N. Using Plancherel, we obtain

L L + N 2 1 2 ||P N Q L (ψ(t)W (t)φ)|| L 2 x,y,t L L + N 2 1 2 ||ϕ N (ξ)ϕ L (τ ) φ(ξ)F t (ψ(t)e -|t|ξ 2 e itP (ν) )(τ )|| L 2 ξ,η,τ ||P N φ|| L 2 L L + N 2 1 2 ||ϕ N (ξ)P L (ψ(t)e -|t|ξ 2 )|| L ∞ ξ L 2 τ . (3.2)
Note that from Prop 4.1 in [START_REF] Molinet | Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case[END_REF] we have:

(3.3) L L + N 2 1 2 ||ϕ N (ξ)P L (ψ(t)e -|t|ξ 2 )|| L ∞ ξ L 2 τ 1.
Combining (3.3) and (3.2), we obtain the result.

3.2.

Estimates for the forcing term. Now we shall study in X 1 2 ,s,0,1 the linear operator L :

Proposition 3.2. Let f ∈ S(R 2 ), There exists C > 0 such that: ||ψ(t)L(f )|| X 1 2 ,s,0,1 ≤ C||f || X -1 2 ,s,0,1 . Proof . Let w(τ ) = W (-τ )f (τ ), K(t) = ψ(t) R e itτ -e -|t|ξ 2 iτ + ξ 2 ŵ(ξ, η, τ )dτ.
Therefore, by the definition, it suffices to prove that (3.4)

L L+N 2 1 2 ||ϕ N (ξ)ϕ L (τ )F t (K)(τ )|| L 2 ξ,η,τ L L+N 2 -1 2 ||ϕ N (ξ)ϕ L (τ ) ŵ(ξ, η, τ )|| L 2 ξ,η,τ . We can break up K in K = K 1,0 + K 1,∞ + K 2,0 + K 2,∞ ,
where

K 1,0 =: ψ(t) |τ |≤1 e itτ -1 iτ + ξ 2 ŵ(ξ, η, τ )dτ, K 1,∞ = ψ(t) |τ |≥1 e itτ iτ + ξ 2 ŵ(ξ, η, τ )dτ, K 2,0 = ψ(t) |τ |≤1 1 -e -|t|ξ 2 iτ + ξ 2 ŵ(ξ, η, τ )dτ, K 2,∞ = ψ(t) |τ |≥1 e -|t|ξ 2 iτ + ξ 2 ŵ(ξ, η, τ )dτ. Contribution of K 2,∞ .
Clearly we have

L L + N 2 1 2 ||ϕ N (ξ)Q L (K 2,∞ )|| L 2 ξ,η,τ L L + N 2 1 2 sup ξ∈I k ||ϕ N (ξ)Q L (ψ(e -|t|ξ 2 ))(t)|| L 2 ξ,τ × ||ϕ N (ξ) ŵ(ξ, η, τ )|| L 2 ξ,η τ dτ L L + N 2 -1 2 ||ϕ N (ξ)ϕ L (τ ) ŵ(ξ, η, τ )|| L 2 ξ,η,τ
, where we use (3.3) in the last step. Contribution of K 2,0 .

We have for |ξ| 1

L L + N 2 1 2 ||ϕ N (ξ)Q L (K 2,0 )|| L 2 ξ,η,τ L L + N 2 1 2 sup ξ∈I k ||ϕ N (ξ)P L (ψ(1 -e -|t|ξ 2 ))(t)|| L 2 t × || ŵ(ξ, η, τ )|| L 2 ξ,η τ dτ L L + N 2 -1 2 ||ϕ N (ξ)ϕ L (τ ) ŵ(ξ, η, τ )|| L 2 ξ,η,τ
, where we used (3.3) in the last step.

For |ξ| 1, using Taylors expansion, we have

L L + N 2 1 2 ||ϕ N (ξ)Q L (K 2,0 )|| L 2 ξ,η,τ n L L + N 2 1 2 ||ϕ N (ξ) |τ | 1 ŵ(τ ) iτ + ξ 2 dτ P L (|t| n ψ(t)) |ξ| 2n n! || L 2 ξ,η,t n || t n ψ(t) n! || B 1 2 2,1 || |τ | 1 |ξ| 2 |ϕ N (ξ) ŵ(ξ, η, τ )| |iτ + ξ 2 | dτ || L 2 ξ,η L L + N 2 -1 2 ||ϕ N (ξ)ϕ L (τ ) ŵ(ξ, η, τ )|| L 2 ξ,η,τ
, where in the last inequality we used the fact

|||t| n ψ(t)|| B 1 2 2,1 |||t| n ψ(t)|| H 1 C2 n . Contribution of K 1,∞ .
By the identity F(u ⋆ v) = ûv and the triangle inequality iτ

+ ξ 2 ≤ τ 1 + |i(τ -τ 1 ) + ξ 2 |, Let g(ξ, η, τ ) = | ŵ(ξ,η,τ )| |iτ +ξ 2 | χ |τ | 1 we see that L L + N 2 1 2 ||ϕ N (ξ)Q L (K 1,∞ )|| L 2 ξ,η,τ L L + N 2 1 2 ||ϕ N (ξ)ϕ L (ξ, τ ) ψ * τ 1 g(ξ, η, τ 1 )|| L 2 ξ,η,τ L L 1 2 ϕ N (ξ)ϕ L (τ 1 )| ψ(τ 1 )| ⋆ g(ξ, η, τ 1 ) L 2 ξ,η,τ + L ||ϕ N (ξ)ϕ L (τ ) ψ(τ 1 ) ⋆ ( ŵ(ξ, η, τ 1 ) |iτ + ξ 2 | 1 2 χ |τ 1 | 1 )|| L 2 ξ,η,τ . Due to the convolution inequality ||u ⋆ v|| L 2 τ ||u|| L 1 τ ||v|| L 2 τ , we obtain L L + N 2 1 2 ||ϕ N (ξ)Q L (K 1,∞ )|| L 2 ξ,η,τ L L|| ψ(t)|| L 1 τ ||ϕ N (ξ)ϕ L (τ ) | ŵ(τ )| |iτ + ξ 2 | χ {|τ |≥1} || L 2 ξ,η,τ + L ||ψ(t)|| L 1 τ ||ϕ N (ξ)ϕ L (τ ) | ŵ(τ )| |iτ + ξ 2 | 1/2 χ {|τ |≥1} || L 2 ξ,η,τ ≤ C L L + N 2 -1/2 ||ϕ N (ξ)ϕ L (τ ) ŵ(τ )|| L 2 ξ,η,τ . Contribution of K 1,0 .
Using Taylors expansion, we obtain that:

K 1,0 = ψ(t) |τ | 1 n≥1 (itτ ) n n!(iτ + ξ 2 ) ŵ(ξ, η, τ )dτ.
Thus, we get

L L + N 2 1 2 ||ϕ N (ξ)Q L (K 1,0 )|| L 2 ξ,η,τ n≥1 t n ψ(t) n! B 1 2 2,1 |τ |≤1 |τ | |iτ + |ξ| 2 | |ϕ k (ξ) ŵ(ξ, η, τ )|dτ L 2 ξ,η L L + N 2 -1 2 ϕ N (ξ)ϕ L (τ ) ŵ(ξ, η, τ ) L 2 ξ,η,τ
, where we used |t| n ψ(t)

B 1 2 2,1 ≤ |t| n ψ(t) H 1 ≤ C2 n in the last step.
Therefore, we complete the proof of the proposition.

Strichartz and bilinear estimates

The goal of this section is to etablish the main bilinear estimate.This type of bilinear estimate is necessary to control the nonlinear term ∂ x (u 2 ) in X -1 2 ,s,0,1 . First following [START_REF] Ginibre | On the cauchy problem for the Zakarov system[END_REF] it is easy to check that for any u ∈ X 1 2 ,0,0,1 supported in [-T, T ] and any θ ∈ [0, 1 2 ] it holds: (4.1)

||u|| X θ,s,0,1 ≤ T 1 2 -θ ||u|| X 1/2,s,0,1 . The following lemma is prepared by Molinet-Ribaud in [START_REF] Molinet | The global Cauchy problem in Bourgain's type spaces for a dispersive dissipative semilinear equation[END_REF].

Lemma 4.1. Let 2 ≤ r and 0 ≤ β ≤ 1/2. Then (4.2) |D x | -βδ(r) 2 U (t)ϕ L q,r t,x ≤ C ϕ L 2
where δ(r) = 1 -2 r , and (q, r, β) fulfils the condition

(4.3) 0 ≤ 2 q ≤ 1 - β 3 δ(r) < 1.
Now we will prove the following one:

Lemma 4.2. Let v ∈ L 2 (R 3 ) with supp v ⊂ {(t, x, y) : |t| ≤ T }, δ(r) = 1 -2/
r and vN = ϕ n v for some dyadic integer N . Then for all (r, β, θ) with

(4.4) 2 ≤ r < ∞, 0 ≤ β ≤ 1/2, 0 ≤ δ(r) ≤ θ 1 -β/3 , (4.5) ||F -1 t,x (|ξ| -θβδ(r) 2 τ -P (ν) -θ 2 |v N (τ, ν)|)|| L q,r t,x,y ≤ C||v N || L 2 (R 3 )
where q is defined by

(4.6) 2/q = (1 -β/3)δ(r) + (1 -θ).
Proof Using Lemma 4.2 together with Lemma 3.3 of [START_REF] Ginibre | Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'aprés Bourgain)[END_REF], we see that

(4.7) |D x | -βδ(r) 2 u N L q,r t,x ≤ C u N X 1/2,0,0,1 .
By the definition of X b,s,0,1 we have (4.8) u N L 2 t,x = u N X 0,0,0,2 . Hence for 0 ≤ θ ≤ 1, by interpolation, (4.9)

|D x | -θβδ(r) 2 u N L q 1 ,r 1 t,x ≤ C u N X θ 2 ,0,0,1 where 1 q 1 = θ q + 1 -θ 2 , 1 r 1 = θ r + 1 -θ 2 .
Since δ(r 1 ) = θδ(r), (4.4) follows from (4.3)

1 q 1 = 1 - β 3 δ(r 1 ) + (1 -θ),
which can be rewritten as

F -1 t,x |ξ| -θβδ(r) 2 ûN L q 1 ,r 1 t,x ≤ C τ -P (ν) θ 2 ûN L 2 .
This clearly completes the proof. Now, we will estimate the bilinear terms using the following Lemma (see [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF]):

Lemma 4.3. Let k 1 , k 2 ,k 3 ∈ Z, j 1 , j 2 , j 3 ∈ Z + , and f i : R 3 -→ R + are L 2 functions supported in D k i ,j i , i = 1, 2, 3. Then (4.10) (f 1 * f 2 )f 3 2 j 1 +j 2 +j 3 2 2 -(k 1 +k 2 +k 3 ) 2 ||f 1 || L 2 ||f 2 || L 2 ||f 3 || L 2 Where D k,j = {(ξ, µ, τ ) : |ξ| ∈ [2 k-1 , 2 k ], µ ∈ R, |τ -P (ξ, µ)| ≤ 2 j } .
We are now in position to prove our main bilinear estimate: Proposition 4.4. For all u, v ∈ X 1/2,s,0,1 (R 3 ), s > -1 2 with compact support in time included in the subset {(t, x, y) : t ∈ [-T, T ]}, there exists µ > 0 such that the following bilinear estimate holds

(4.11) ||∂ x (uv)|| X -1/2,s,0,1 ≤ CT µ ||u|| X 1/2,s,0,1 ||v|| X 1/2,s,0,1 .
Remark 4.1. We will mainly use the following version of (4.11), which is a direct consequence of Proposition 4.4, together with the triangle inequality

∀β ∈] - 1 2 , 0], ∀s ≥ β, ξ s ≤ ξ β ξ 1 s-β + ξ β ξ -ξ 1 s-β , ||∂ x (uv)|| X -1/2,s,0,1 ≤CT µ(β) ||u|| X 1/2,β,0,1 ||v|| X 1/2,s,0,1 + ||u|| X 1/2,s,0,1 ||v|| X 1/2,β,0,1 . (4.12)
with µ(β) > 0.

Proof of Prop 4.4.We proceed by duality. Let w ∈ X 1/2,-s,0,∞ , we will estimate the following term 

J = N,N 1 ,N 2 L,L 1 ,L 2 L + N 2 -1 2 N s N   (û N 1 ,L 1 *
(û N 1 ,L 1 * v N 2 ,L 2 ) ŵN,L dξdηdτ L 1 2 1 L 1 2 2 L 1 2 N -1 2 1 N -1 2 2 N -1 2 ||û N 1 ,L 1 || L 2 ξ,η,τ ||v N 2 ,L 2 || L 2 ξ,η,τ || ŵN,L || L 2 ξ,η,τ
.

Case 1.: 1 N , N 1 1, and N 2 1.

We have clearly: (4.14)

(û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ ||u N 1 ,L 1 || L 4 t,x,y ||v N 2 ,L 2 || L 4 t,x,y ||w N,L || L 2 t,x,y
using Lemma 4.2 ( with β = 1 2 , r = 4) we obtain that there exists α ∈ [ 6 7 , 12 13 [ such that:

(û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ L α 2 1 N α 8 1 ||û N 1 ,L 1 || L 2 ξ,τ L α 2 2 N α 8 2 ||v N 2 ,L 2 || L 2 ξ,τ || ŵN,L || L 2 ξ,η,τ . (4.15)
By interpolating (4.13) with (4.15) we obtain that: there exist

β = θα 2 + 1-θ 2 ∈ [ α 2 , 1 2 
] and θ = -8s+α 4+α ∈]0, 1[ such that:

(û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ N s 1 L β 1 ||û N 1 ,L 1 || L 2 ξ,τ × N s 2 L β 2 ||v N 2 ,L 2 || L 2 ξ,η,τ × L θ 2 N -θ 2 || ŵN,L || L 2 ξ,η,τ . Then L + N 2 -1 2 N s N (û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ N s 1 L β 1 ||û N 1 ,L 1 || L 2 ξ,τ × N s 2 L β 2 ||v N 2 ,L 2 || L 2 ξ,η,τ × L θ 2 N -θ 2 L + N 2 -1 2 N s N || ŵN,L || L 2 ξ,η,τ
. Now we have:

L + N 2 -1 2 N s N (û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ N ( 1 2 -β) 1 N s 1 L 1 + N 2 1 1 2 -( 1 2 -β) ||û N 1 ,L 1 || L 2 ξ,τ × N s 2 L 2 + N 2 2 1 2 ||v N 2 ,L 2 || L 2 ξ,η,τ × L θ 2 N -θ 2 L + N 2 -1 2 N s N N β-1 2 2 || ŵN,L || L 2 ξ,η,τ . (4.16)
Note that:

L<N 2 L θ 2 N -θ 2 L + N 2 -1 2 N s N N β-1 2 2 || ŵN,L || L 2 ξ,η,τ L<N 2 ( L N 2 ) θ 2 N θ 2 +s+β-1 2 || ŵN,L || L 2 ξ,η,τ L<N 2 ( L N 2 ) θ 2 N σ || ŵN,L || L 2 ξ,η,τ
where σ = α 8 + θ( 3α 8 -1 2 ) < 0. By summing in L 1 , N 1 , L 2 , N 2 and L < N 2 , we get:

J ||u|| X 1 2 -µ,s,0,1 ||v|| X 1 2 ,s,0,1 ||w|| L 2 ξ,η,τ T µ ||u|| X 1 2 ,s,0,1 ||v|| X 1 2 ,s,0,1 ||w|| L 2 ξ,η,τ , where µ = 1 2 -β > 0.
Now we have:

L>N 2 L θ 2 N -θ 2 L + N 2 -1 2 N s N N β-1 2 2 || ŵN,L || L 2 ξ,η,τ L>N 2 ( L N 2 ) θ-1 2 N θ 2 +s+β-1 2 || ŵN,L || L 2 ξ,η,τ L>N 2 ( N 2 L ) 1-θ 2 N σ || ŵN,L || L 2 ξ,η,τ
where σ = σ(α, θ) < 0. Thus by summing (4.16) in L 1 , N 1 , L 2 , N 2 and L ≥ N 2 , we get the desired estimate. Case 2.: N 1 1 and N 2 ∼ N 1. By Cauchy-Schwarz we obtain:

L + N 2 -1 2 N s N (û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ L + N 2 -1 2 N s N ||u N 1 ,L 1 || L 4 + ,4 + t,x,y ||v N 2 ,L 2 || L 4 -,4 - t,x,y ||w N,L || L 2 t,x,y . But |ξ 1 | ∼ N 1 ≤ 1 thus ||u N 1 ,L 1 || L 4 + ,4 + t,x,y N θβδ(r) 2 1 ||F -1 t,x (|ξ 1 | -θβδ(r) 2 ûN 1 ,L 1 )|| L 4 + ,4 + t,x,y
.

By applying Lemma 4.2 with r = 4 + , β = 1 2 and θ = 1 we obtain that:

||F -1 t,x (|ξ 1 | -θβδ(r) 2 ûN 1 ,L 1 )|| L 4 + ,4 + t,x,y N ǫ 1 ||F -1 t,x (|ξ 1 | -θβδ(r) 2 ûN 1 ,L 1 )|| L q,4 + t,x,y N ǫ 1 || τ -P (ν) + ξ 2 1 2 ûN 1 ,L 1 || L 2 t,x,y N ǫ 1 N 1 s || L 1 + N 2 1 1 2 ûN 1 ,L 1 || L 2 t,x,y
where ǫ = θβδ(r) 2 . Now taking r = 4 -, β = 1 2 , and θ = 1 2 and using again Lemma 4.2 we obtain that:

||v N 2 ,L 2 || L 4 -,4 - t,x,y N θβδ(r) 2 2 ||F -1 t,x (|ξ 2 | -θβδ(r) 2 vN 2 ,L 2 )|| L 4 -,4 - t,x,y N 1 16 + 2 || L 2 + N 2 2 1 4 vN 2 ,L 2 || L 2 t,x,y N -γ || L 2 + N 2 2 1 2 -δ vN 2 ,L 2 || L 2 t,x,y
where 0 < δ < 1 2 , and γ > 0 small. Thus:

L + N 2 -1 2 N s N (û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ N ǫ 1 N 1 s L 1 + N 2 1 1 2 ||û N 1 ,L 1 || L 2 ξ,η,τ × N 2 s L 2 + N 2 2 1 2 -δ ||v N 2 ,L 2 || L 2 ξ,η,τ × L + N 2 -1 2 N N -γ ||w N,L || L 2 ξ,η,τ . But L + N 2 -1 2 L -γ 4 N -1+ γ 2 , then : N L L+N 2 -1 2 N N -γ ||w N,L || L 2 ξ,η,τ N L N N -γ L -γ 4 N -1+ γ 2 ||w N,L || L 2 ξ,η,τ ||w|| L 2 ξ,η,τ
.

This yields:

J ||u|| X 1/2,s,0,1 ||v|| X 1/2-δ,s,0,1 ||w|| L 2 T δ ||u|| X 1/2,s,0,1 ||v|| X 1/2,s,0,1 ||w|| L 2 .
Case 3.: N 1 , N 2 and N 1.

From (4.15) we have :

(û N 1 ,L 1 * v N 2 ,L 2 ) ŵN,L dξdηdτ L α 2 1 N α 8 1 L α 2 2 N α 8 2 ||û N 1 ,L 1 || L 2 ξ,η,τ ||v N 2 ,L 2 || L 2 ξ,η,τ || ŵN,L || L 2 ξ, η,τ . Thus : 
L + N 2 -1 2 N s N (û N 1 ,L 1 * vN 2 ,L 2 ) ŵN,L dξdηdτ N 1 s L 1 + N 2 1 α 2 N α 8 1 ||û N 1 ,L 1 || L 2 ξ,η,τ × N 2 s L 2 + N 2 2 α 2 N α 8 2 ||v N 2 ,L 2 || L 2 ξ,η,τ × L + N 2 -1 2 N N s ||w N,L || L 2 ξ,η,τ
.

By summing we obtain that:

J ||u|| X 1 2 -( 1 2 -α 2 ),s,0,1 ||v|| X 1/2,s,0,1 ||w|| L 2 T µ ||u|| X 1 2 ,s,0,1 ||v|| X 1/2,s,0,1 ||w|| L 2 , where µ = 1 2 -α 2 > 0.
This completes the proof.

5. Proof of Theorem 2.2

5.1. Existence result. 5 Let φ ∈ H s 1 ,0 with s 1 > -1/2. For T ≤ 1, if u is a solution of the integral equation (2.13), then u solve KP B -I-equation on [0, T /2].
We first prove the statement for T = T (||ϕ|| H s 1 ,0 ). Now we are going to solve (2.13) in a ball of the space X 1/2,s 1 ,0,

. By Proposition 3.1 and Proposition 3.2, it results that,

(5.1) ||L(u)|| X 1/2,s 1 ,0,1 T ≤ C||φ|| H s 1 ,0 + C||∂ x (u 2 )|| X -1/2,s 1 ,0,1 T .
By the Proposition 4.4, we can deduce

(5.2) ||L(u)|| X 1/2,s 1 ,0,1 T ≤ C||φ|| H s 1 ,0 + CT µ ||u|| 2 X 1/2,s 1 ,0,1 T . Noticing that ∂ x (u 2 ) -∂ x (v 2 ) = ∂ x [(u -v)(u + v)],
in the same way we get

(5.3) ||L(u) -L(v)|| X 1/2,s 1 ,0,1 T ≤ CT µ ||u -v|| X 1/2,s 1 ,0,1 T ||u + v|| X 1/2,s 1 , 0,1 T 
. Now take T = (4C 2 ||φ|| H s 1 ,0 ) -1/µ we deduce from (5.2) and (5.3) that L is strictly contractive on the ball of radius 2C(||φ||

H s 1 ,0 ) in X 1 2 ,s 1 ,0,1 T
. This proves the existence of a unique solution u 1 to (2.13) in X

1/2,s 1 ,0,1 T with T = T (||φ|| H s 1 ,0 ). Note that our space X 1 2 ,s 1 ,0,1 T is embedded in C([0, T ], H s 1 ,0 ), thus u belongs C([0, T 1 ], H s 1 ,0 ).

Uniqueness.

The above contraction argument gives the uniqueness of the solution to the truncated integral equation (2.13). We give here the argument of [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF] to deduce easily the uniqueness of the solution to the integral equation (2.12). Let u 1 , u 2 ∈ X 1/2,s 1 ,0,1 T be two solution of the integral equation (2.13) on the time interval [0, T ] and let ũ1 -ũ2 be an extension of u 1 -u 2 in X 1/2,s 1 ,0,1 such that ũ1 -ũ2 = u 1 -u 2 on [0, γ] and

||ũ 1 -ũ2 || X 1/2,s 1 ,0,1 ≤ 2||u 1 -u 2 || X 1/2,s 1 ,0,1 γ with 0 < γ ≤ T /2. It results by Proposition 3.1 and 3.2 that, ||u 1 -u 2 || X 1/2,s 1 ,0,1 γ ≤ ||ψ(t)L[∂ x ψ 2 γ (t ′ ) ũ1 (t ′ ) -ũ2 (t ′ ) u 1 (t ′ ) + u 2 (t ′ ) ]|| X 1/2,s 1 ,0,1 ≤ C||∂ x ψ 2 γ (t) ũ1 (t) -ũ2 (t) u 1 (t) + u 2 (t) || X -1/2,s 1 ,0,1 ≤ Cγ µ/2 ||ũ 1 -ũ2 || X 1/2,s 1 ,0,1 ||u 1 + u 2 || X 1/2,s 1 ,0,1 T
for some µ > 0. Hence

||u 1 -u 2 || X 1/2,s 1 ,0,1 γ ≤ 2Cγ µ/2 ||u 1 || X 1/2,s 1 ,0,1 T +||u 2 || X 1/2,s 1 ,0,1 T ||u 1 -u 2 || X 1/2,s 1 ,0,1 γ . Taking γ ≤ 4C(||u 1 (t)|| X 1/2,s 1 ,0,1 T + ||u 2 (t)|| X 1/2,s 1 ,0,1 T ) -µ/2
, this forces u 1 ≡ u 2 on [0, γ]. Iterating this argument, one extends the uniqueness result on the whole time interval [0,T]. Now proceeding exactly (with (4.12) in hand ) in the same way as above but in the space

Z = {u ∈ X 1/2,s 1 ,0 T / u Z = u X 1/2,β,0,1 T + ϕ H β,0 ϕ H s 1 ,0 u X 1/2,s 1 ,0,1 T < +∞} ,
where β is such that β ∈]-1 2 , min(0, s 1 )[, we obtain that for T 1 = T 1 ( ϕ H β,0 ), L is also strictly contractive on a ball of Z. It follows that there exists a unique solution ũ to KPBI in X 1/2,s 1 ,0,1 T . If we indicate by T * = T max the maximum time of the existence in X 1/2,s 1 ,0,1 then by uniqueness, we have u = ũ on [0, min(T 1 , T * )[ and this gives that T * ≥ T (||φ|| H β,0 ). The continuity of map φ -→ u from H s 1 ,0 to X 1/2,s 1 ,0,1 follows from classical argument, and in particular the map is continuous from H s 1 ,0 to C([0, T 1 ], H s 1 ,0 ). The analyticity of the flow-map is a direct consequence of the implicit function theorem.

Global existence .

Recalling that T = T (||φ|| H δ,0 ) with δ ∈]- 1 2 , min(0, s)], and u ∈ X 1/2,s,0,1 ⊂ L 2 t H s+1,0 , s+1 > 0, it follows that there exists t 0 ∈]0, T [ such that u(t 0 ) ∈ L 2 . Taking u(t 0 ) ∈ L 2 as initial data, it is easy to show that ||u(t)|| L 2 ≤ ||u(t 0 )|| L 2 , ∀t ≥ t 0 . Since the time of local existence T only depends on ||φ|| H δ,0 , this clearly gives that the solution is global in time. By iteration, we obtain that u ∈ C(R * + , H ∞,0 ).

Proof of Theorem 2.3

Let u be a solution of (1.1), we have (6.1) u(φ, t, x, y) = W (t)φ(x, y) -

1 2 t 0 W (t -t ′ )∂ x (u 2 (φ, t ′ , x, y))dt ′ .
Suppose that the solution map is C 2 . Since u(0, t, x, y) = 0, it is easy to check that

u 1 (t, x, y) := ∂u ∂φ (0, t, x, y)[h] = W (t)h u 2 (t, x, y) := ∂ 2 u ∂φ 2 (0, t, x, y)[h, h] = - t 0 W (t -t ′ )∂ x (W (t ′ )h) 2 dt ′ .
The assumption of C 2 -regularity of the solution map implies that (6. 

F x →ξ,y →η (u 2 (t, ., .)) = (iξ)e itP (ξ,η) R 2 φ(ξ 1 , η 1 ) φ(ξ -ξ 1 , η -η 1 ) × e -t(ξ 2 1 +(ξ-ξ 1 )
2 ) e itχ(ξ,ξ 1 ,η,η 1 ) -e -ξ 2 t -2ξ 1 (ξ -ξ 1 ) + iχ(ξ, ξ 1 , η, η 1 ) dξ 1 dη 1 (6.3) where χ(ξ, ξ 1 , η, η 1 ) = P (ξ 1 , η 1 ) + P (ξ -ξ 1 , η -η 1 ) -P (ξ, η). Note that, from the definition of P (ξ, η), we have that

χ(ξ, ξ 1 , η, η 1 ) = 3ξξ 1 (ξ -ξ 1 ) - (ηξ 1 -η 1 ξ) 2 ξξ 1 (ξ -ξ 1 ) . 
Let us first recall the counter-example constructed in [START_REF] Kojok | Sharp well-posedness for Kadomtsev-Petviashvili-Burgers (KPBII) equation in R 2[END_REF]. We define the sequence of initial data (φ N ) N , N > 0 by

(6.4) φN (ξ, η) = N -3/2-s (χ A N (|ξ|, η) + χ B N (|ξ|, η))
where A N , B N are defined by

A N = [N/2, 3N/4] × [-6N 2 , 6N 2 ], B N = [N, 2N ] × [ √ 3N 2 , ( √ 3 + 1)N 2 ].
It is simple to see that ||φ N || H s,0 ∼ 1. We denote by u 2,N the sequence of the second iteration u 2 associated with φ N . Note that F x →ξ,y →η (u 2,N (t)) can be split into three parts :

F x →ξ,y →η (u 2,N (t)) = (g(t) + f (t) + h(t))
where g(ξ, η, t) = (iξ)e itP (ξ,η)

(|ξ 1 |, η 1 ) ∈ A N (|ξ -ξ 1 |, η -η 1 ) ∈ A N φ(ξ 1 , η 1 ) φ(ξ -ξ 1 , η -η 1 ) × e -t(ξ 2 1 +(ξ-ξ 1 ) 2 ) e itχ(ξ,ξ 1 ,η,η 1 ) -e -ξ 2 t -2ξ 1 (ξ -ξ 1 ) + iχ(ξ, ξ 1 , η, η 1 ) dξ 1 dη 1 f (ξ, η, t) = (iξ)e itP (ξ,η) (|ξ 1 |, η 1 ) ∈ B N (|ξ -ξ 1 |, η -η 1 ) ∈ B N φ(ξ 1 , η 1 ) φ(ξ -ξ 1 , η -η 1 ) × e -t(ξ 2 1 +(ξ-ξ 1 ) 2 ) e itχ(ξ,ξ 1 ,η,η 1 ) -e -ξ 2 t -2ξ 1 (ξ -ξ 1 ) + iχ(ξ, ξ 1 , η, η 1 ) dξ 1 dη 1 and h(ξ, η, t) = (iξ)e itP (ξ,η) D(ξ, η) φ(ξ 1 , η 1 ) φ(ξ -ξ 1 , η -η 1 ) × e -t(ξ 2 1 +(ξ-ξ 1 ) 2 ) e itχ(ξ,ξ 1 ,η,η 1 ) -e -ξ 2 t -2ξ 1 (ξ -ξ 1 ) + iχ(ξ, ξ 1 , η, η 1 ) dξ 1 dη 1 where D(ξ, η) = (ξ 1 , η 1 ) : (|ξ -ξ 1 |, η -η 1 ) ∈ A N , (|ξ 1 |, η 1 ) ∈ B N ∪ (ξ 1 , η 1 ) : (|ξ 1 |, η 1 ) ∈ A N , (|ξ -ξ 1 |, η -η 1 ) ∈ B N := D 1 (ξ, η) ∪ D 2 (ξ, η). (6.5) Then: ||u 2,N (t)|| 2 H s,0 [ 3 2 N,2N ]×[( √ 3-5)N 2 ,( √ 3+6)N 2 ] (1 + |ξ| 2 ) s (-|g| 2 -|f | 2 + |h| 2 )dξdη = [ 3 2 N,2N ]×[( √ 3-5)N 2 ,( √ 3+6)N 2 ] (1 + |ξ| 2 ) s |h| 2 dξdη (g = f = 0 in [ 3 2 N, 2N ] × [( √ 3 -5)N 2 , ( √ 3 + 6)N 2 ])
Therefore, obviously

||u 2,N (t)|| 2 H s,0 ≥ CN -4s-6 2N 3N/2 ( √ 3+6)N 2 ( √ 3-5)N 2 |ξ| 2 (1 + |ξ| 2 ) s × D(ξ,η) e -t(ξ 2 1 +(ξ-ξ 1 ) 2 ) e itχ(ξ,ξ 1 ,η,η 1 ) -e -ξ 2 t -2ξ 1 (ξ -ξ 1 ) + iχ(ξ, ξ 1 , η, η 1 ) dξ 1 dη 1 2 dξdη. (6.6)
We need to find a lower bound for the right-hand side of (6.6). We will prove the following lemma: Lemma 6.1. Let (ξ 1 , η 1 ) ∈ D 1 (ξ, η) or (ξ 1 , η 1 ) ∈ D 2 (ξ, η). For N >> 1 we have χ(ξ, ξ 1 , η, η 1 ) N 3 .

Proof of lemma 6.1. Let ξ, η ∈ R and (ξ 1 , η 1 ) ∈ D 1 (ξ, η). Let Λ(ξ, ξ 1 , η 1 ) = η 1 + (ξ -ξ 1 )(η 1 -√ 3ξξ 1 ) ξ 1 .

Thus where η ∈ [η, Λ(ξ, ξ 1 , η 1 )]. Note that we choosed Λ such that χ(ξ, ξ 1 , Λ(ξ, ξ 1 , η 1 ), η 1 ) = 0. Hence χ(ξ, ξ 1 , η, η 1 ) = η -Λ(ξ, ξ 1 , η 1 ) 2ξ 1 (ηξ 1 -η 1 ξ) ξξ 1 (ξ -ξ 1 ) .

Λ(ξ, ξ 1 , η 1 ) -η 1 ≤ |ξ -ξ 1 | |ξ 1 | η 1 - √ 3ξ 2 
Since η -Λ(ξ, ξ 1 , η 1 ) ≤ η -η 1 + η 1 -Λ(ξ, ξ 1 , η 1 ) ≤ CN 2 , it follows that χ(ξ, ξ 1 , η, η 1 ) |ξ 1 | η -Λ(ξ, ξ 1 , η 1 ) (η -η 1 )ξ 1 -η 1 (ξ -ξ 1 ) ξξ 1 (ξ -ξ 1 )

N 3 |(η -η 1 )ξ 1 | |ξξ 1 (ξ -ξ 1 )| + |η 1 (ξ -ξ 1 )| |ξξ 1 (ξ -ξ 1 )| N 3 ( √ 3 + 1)N 3 N 3 + C N 3 N 3 N 3 .
In the other case where (ξ 1 , η 1 ) ∈ D 2 (ξ, η) i.e. (ξ 1 , η 1 ) ∈ A N and (ξ -ξ 1 , ηη 1 ) ∈ B N , follows from first case since we can write (ξ 1 , η 1 ) = (ξ -(ξξ 1 ), η -(η -η 1 )) ∈ A N and that χ(ξ, ξ 1 , η, η 1 ) = χ(ξ, ξ -ξ 1 , η, η -η 1 ).

This completes the proof of the Lemma. We return to the proof of the theorem, note that for any ξ ∈ [3N/2, 2N ] and η ∈ [( √ 3 -5)N 2 , ( √ 3 + 6)N 2 ], we have mes D(ξ, η) ≥ N 3 2 . Now, for 0 < ǫ << 1 fixed, we choose a sequence of times (t N ) N defined by t N = N -3-ǫ . For N >> 1 it can be easily seen that (6.7) e -ξ 2 t N ≥ e -N 2 t N > C.

By Lemma 6.1 we have -2ξ 1 (ξ -ξ 1 )+iχ(ξ, ξ 1 , η, η 1 ) ≤ N 2 +N 3 ≤ CN 3 . Hence (6.8) e -2ξ 1 (ξ-ξ 1 )t+itχ(ξ,ξ 1 ,η,η 1 ) -1 -2ξ 1 (ξ -ξ 1 ) + iχ(ξ, ξ 1 , η, η 1 ) = 1

N 3+ǫ + O( 1 N 6+2ǫ ).
By combining the relations (6.7) and (6.8), we obtain (6.9) D(ξ,η) e -ξ 2 t e -2ξ 1 (ξ-ξ 1 )t+itχ(ξ,ξ 1 ,η,η 1 ) -1 -2ξ 1 (ξ -ξ 1 ) + iχ(ξ, ξ 1 , η, η H s,0 ≥ N -1-2ǫ 0 -2s . This leads to a contradiction for N >> 1, since we have -1 -2ǫ -2s > 0 for s ≤ -1/2 -ǫ. This completes the proof of Theorem 2.3.

  vN 2 ,L 2 ) ŵN,L dξdηdτ | By symmetry we can assume that N 1 ≤ N 2 , note that |ξ| ≤ |ξ 1 | + |ξ 2 | then N N 2 .

	From Lemma 4.3, we have:
	(4.13)

  2) ||u 1 (t, ., .)|| H s,0 ||h|| H s,0 , ||u 2 (t, ., .)|| H s,0 ||h|| 2 H s,0 . Now let P (ξ, η) = ξ 3 + η 2 /ξ. A straightforward calculation reveals that

  1 -√ 3ξ 1 (ξ -ξ 1 ) . Since ξ 1 ∈ [N, 2N ] and ξ -ξ 1 ∈ [ N 2 , 3N 4 ], it results that Λ(ξ, ξ 1 , η 1 ) -η 1 ≤ 1/4 3 √ 3N 2 + 2 √ 3N 2 ≤ 6N 2 .Now by the mean value theorem we can writeχ(ξ, ξ 1 , η, η 1 ) = χ(ξ, ξ 1 , Λ(ξ, ξ 1 , η 1 ), η 1 ) + η -Λ(ξ, ξ 1 , η 1 ) ∂χ ∂η (ξ, ξ 1 , η, η 1 )

	We recall that η 1 ∈ [ √ follows that and we have	3N 2 , ( √ √ 3ξ 2 1 ∈ [ 3 + 1)N 2 ] and ξ 1 ∈ [N, 2N ]. Therefore, it √ 3N 2 , 4 √ 3N 2 ] η 1 -√ 3N 2 ≤ N 2 .

  1 ) dξ 1 dη 1 ≥ CN -ǫ , |ξ| 2 (1 + |ξ| 2 ) s dξdη × N -2ǫ 0 ≥ CN -6-4s N 2s N 2 N 3 N -2ǫ 0 ≥ CN -1-2ǫ 0 -2sand, hence1 ∼ ||φ N || 2 H s,0 ≥ ||u 2,N (t N )|| 2

	it results that ||u 2,N (t N )|| 2 H s,0 ≥ CN -4s-6	3N 3N/2	( √ √ ( 3-6)N 2 3+7)N 2
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