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ON THE WELL-POSEDNESS FOR

KADOMTSEV-PETVIASHVILI-BURGERS I EQUATION.

DARWICH MOHAMAD

Abstract. We prove local and global well-posedness in H
s,0(R2), s >

−

1
2
, for the Cauchy problem associated with the Kadomotsev-Petviashvili-

Burgers-I equation (KPBI) by working in Bourgain’s type spaces. This
result is almost sharp if one requires the flow-map to be smooth.

1. Introduction

We study the well- posedness of the initial value problem for the Kadomtsev-
Petviashvili-Burgers (KPBI) equations in R

2 :

(1.1)

{

(∂tu+ uxxx − uxx + uux)x − uyy = 0,
u(0, x, y) = ϕ(x, y).

where u is a real-valued function of (x, t) ∈ R
2×R

+. Note that if we replace
−uyy by +uyy, (1.1) becomes the KPBII equation.
This equation, models in some regime the wave propagation in electromag-
netic saturated zone( cf.[12]). More generally, be considered as a toys model
for two-dimensional wave propagation taking into account the effect of viscos-
ity. Note that since we are interested in an almost unidirectional propagation,
the dissipative term acts only in the main direction of the propagation in
KPB. This equation is a dissipative version of the Kadomtsev-Petviashvili-I
equation (KPI) :

(1.2)
(

∂tu+ uxxx + uux
)

x
− uyy = 0.

which is a ”universal” model for nearly one directional weakly nonlinear dis-
persive waves, with weak transverse effects and strong surface tension effects.
Bourgain had developed a new method, clarified by Ginibre in [5], for the
study of Cauchy problem associated with non-linear dispersive equations.
This method was successfully applied to the nonlinear Schrödinger, KdV
as well as KPII equations. It was shown by Molinet-Ribaud [14] that the
Bourgain spaces can be used to study the Cauchy problems associated to
semi-linear equations with a linear part containing both dispersive and dis-
sipative terms (and consequently this applies to KPB equations).
By introducing a Bourgain space associated to the usual KPI equation (re-
lated only to the dispersive part of the linear symbol in the KPBI equation),
Molinet-Ribaud [14] had proved global existence for the Cauchy problem as-
sociated to the KPBI equation when the initial value in Hs1,s2(R2), s1 > 0
and s2 > 0.
Kojok [9] had proved the local and global existence for (1.1) for small initial
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data in L2(R2). In this paper, we improve the results obtained by Molinet-
Ribaud, by proving the local existence for the KPBI equation , with initial
value ϕ ∈ Hs1,0 when s1 > −1

2 .
The main new ingredient is a trilinear estimate for the KPI equation proved
in [11]. Following [15], we introduce a Bourgain space associated to the KPBI
equation. This space is in fact the intersection of the space introduced in
[2] and of a Sobolev space linked to the dissipative effect. The advantage of
this space is that it contains both the dissipative and dispersive parts of the
linear symbol of (1.1).
This paper is organized as follows. In Section 2, we introduce our notations
and we give an extension of the semi-group of the KPBI equation by a linear
operator defined on the whole real axis. In Section 3 we derive linear esti-
mates and some smoothing properties for the operator L defined by (2.15)
in the Bourgain spaces . In Section 4 we state Strichartz type estimates for
the KP equation which yield bilinear estimates. In Section 5, using bilinear
estimates, a standard fixed point argument and some smoothing properties,
we prove uniqueness and global existence of the solution of KPBI equation in
anisotropic sobolev space Hs,0 with s > −1

2 . Finally, in section 6, we ensures
that our local existence result is optimal if one requires the smoothness of
the flow-map.
Acknowledgments. I would like to thank my advisor prof Luc Molinet for
his help, suggestions and for the rigorous attention to this paper.

2. Notations and main results

We will use C to denote various time independent constants, usually de-
pending only upon s. In case a constant depends upon other quantities, we
will try to make it explicit. We use A . B to denote an estimate of the
form A ≤ CB. similarly, we will write A ∼ B to mean A . B and B . A.
We writre 〈·〉 := (1 + | · |2)1/2 ∼ 1 + | · |. The notation a+ denotes a+ ǫ for
an arbitrarily small ǫ. Similarly a− denotes a − ǫ. For b ∈ R, we denote
respectively by Hb(R) and Ḣb(R) the nonhomogeneous and homogeneous
Sobolev spaces which are endowed with the following norms :

(2.1) ||u||2Hb =

∫

R

〈τ〉2b|û(τ)|2dτ, ||u||2
Ḣb =

∫

R

|τ |2b|û(τ)|2dτ

where .̂ denotes the Fourier transform from S ′(R2) to S ′(R2) which is defined
by :

f̂(ξ) := F(f)(ξ) =

∫

R2

ei〈λ,ξ〉f(λ)dλ, ∀f ∈ S ′(R2).

Moreover, we introduce the corresponding space (resp space-time) Sobolev
spaces Hs1,s2 (resp Hb,s1,s2) which are defined by :

(2.2) Hs1,s2(R2) =: {u ∈ S ′

(R2); ||u||Hs1,s2 (R2) < +∞},

(2.3) Hb,s1,s2(R2) =: {u ∈ S ′

(R3); ||u||Hb,s1 ,s2 (R
3) < +∞}

where,

(2.4) ||u||2Hs1,s2 =

∫

R2

〈ξ〉2s1〈η〉2s2 |û(ν)|2dν,
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(2.5) ||u||2
Hb,s1,s2

=

∫

R2

〈τ〉b〈ξ〉2s1〈η〉2s2 |û(τ, ν)|2dνdτ,

and ν = (ξ, η). Let U(·) be the unitary group in Hs1,s2 , s1, s2 ∈ R, defining
the free evolution of the (KP-II) equation, which is given by

(2.6) U(t) = exp(itP (Dx,Dy)),

where P (Dx,Dy) is the Fourier multiplier with symbol P (ξ, η) = ξ3 − η2/ξ.
By the Fourier transform, (2.6) can be written as :

(2.7) Fx(U(t)φ) = exp(itP (ξ, η))φ̂, ∀φ ∈ S ′

(R2), t ∈ R.

Also, by the Fourier transform, the linear part of the equation (1.1) can be
written as :

(2.8) i(τ − ξ3 − η2/ξ) + ξ2 =: i(τ − P (η, ξ)) + ξ2.

We need to localize our solution, and the idea of Bourgain has been to
consider this localisation, by defining the space Xb,s equipped by the

(2.9) ||u||Xb,s1,s2 = ||〈i(τ − P (η, ξ)) + ξ2〉b〈ξ〉s1〈η〉s2 ũ(τ, ξ, η)||L2(R3).

We will need to define the decomposition of Littlewood-Paley. Let η ∈
C0(R) be such that η ≥ 0, supp η ⊂ [−2, 2], η = 1 on [−1, 1]. We define next
ϕ(ξ) = η(ξ) − η(2ξ).
Any summations over capitalized variables such as N , L are presumed to be
dyadic, i.e. these variables range over numbers of the form N = 2j , j ∈ Z

and L = 2l, l ∈ N. We set ϕN (ξ) = ϕ( ξ
N ) and define the operator PN by

Fx(PNu) = ϕNFx(u). We introduce ψL(τ, ζ) = ϕL(τ − P (ζ)) and for any
u ∈ S(R2),

Fx(PNu(t))(ξ) = ϕN (ξ)Fx(u)(t, ξ), F(QLu)(τ, ξ, η) = ψL(τ, ζ)F(u)(τ, ξ);L > 1

and F(Q1u)(τ, ξ, η) = η
(

τ−P (ζ)
)

F(u)(τ, ξ). Roughly speaking, the operator
PN localizes in the annulus {|ξ| ∼ N} where as QL localizes in the region
{〈τ − P (ζ)〉 ∼ L}. We denote PNu by uN , QLu by uL and PN (QLu) by
uN,L.

For T ≥ 0, we consider the localized Bourgain spaces Xb,s1,s2
T endowed with

the norm

‖u‖
X

b,s1,s2
T

= inf
w∈Xb,s1,s2

{‖w‖Xb,s1 ,s2 , w(t) = u(t) on [0, T ] }.

We also use the space-time Lebesgue space Lp,q
t,x endowed with the norm

‖u‖Lq,r
t,x

=
∥

∥‖u‖Lr
x

∥

∥

Lq
t
,

and we will use the notation L2
t,x for L2,2

t,x .
We denote by W (·) the semigroup associated with the free evolution of the
KPB equations,

(2.10) Fx(W (t)φ) = exp(itP (ξ, η) − |ξ|2t)φ̂, ∀φ ∈ S ′

(R2), t ≥ 0.

Also, we can extend W to a linear operator defined on the whole real axis
by setting,

(2.11) Fx(W (t)φ) = exp(itP (ξ, η) − |ξ|2|t|)φ̂, ∀φ ∈ S ′

(R2), t ∈ R.
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By the Duhamel integral formulation, the equation (1.1) can be written as

(2.12) u(t) =W (t)φ− 1

2

∫ t

0
W (t− t′)∂x(u

2(t′))dt′, t ≥ 0.

To prove the local existence result, we will apply a fixed point argument to
the extension of (2.12), which is defined on whole the real axis by:

(2.13) u(t) = ψ(t)[W (t)φ− L(∂x(ψ
2
Tu

2))(x, t)],

where t ∈ R, ψ indicates a time cutoff function :

(2.14) ψ ∈ C∞
0 (R), sup ψ ⊂ [−2, 2], ψ = 1 on [−1, 1],

ψT (.) = ψ(./T ), and

(2.15) L(f)(x, t) =W (t)

∫

eixξ
eitτ − e−|t|ξ2

iτ + ξ2
F(W (−t)f)(ξ, τ)dξdτ.

One easily sees that

(2.16) χR+(t)ψ(t)L(f)(x, t) = χR+(t)ψ(t)

∫ t

0
W (t− τ)f(τ)dτ.

Indeed, taking w = W (−·)f , the right hand side of (2.16) can be rewritten
as

W (t)

(

χR+(t)ψ(t)

∫

eixξ
eitτ − e−|t|ξ2

iτ + ξ2
ŵ(ξ, τ

′

)dξdτ
′

)

.

In [15], the authors performed the iteration process in the spaceXs,b equipped
with the norm:

‖u‖Xb,s1,s2 = ‖〈i(τ − P (ν)) + ξ2〉b 〈ξ〉s1〈η〉s2 û(τ, ν)‖L2(R3),

which take advantage of the mixed dispersive-dissipative part of the equa-
tion. We will rather work in its Besov version Xs,b,q (with q = 1) defined
as the weak closure of the test functions that are uniformly bounded by the
norm

‖u‖Xb,s,0,q =

(

∑

N

[

∑

L

〈L+N2〉bq 〈N〉sq‖PNQLu‖qL2
x,y,t

]
2
q

)
1
2

.

Remark 2.1. It is clear that if u solves (2.13) then u is a solution of (2.12)
on [0, T ], T < 1. Thus it is sufficient to solve (2.13) for a small time (T < 1
is enough).

Definition 2.1. The Cauchy problem (1.1) is locally well-posed in the space
X if for any ϕ ∈ X there exists T = T (||ϕ||X ) > 0 and a map F from X to
C([0, T ];X) such that u = F (ϕ) is the unique solution for the equation (1.1)
in some space Y →֒ C([0, T ];X) and F is continuous in the sense that

||F (ϕ1)− F (ϕ2)||L∞([0,T ];X) ≤ M(||ϕ1 − ϕ2||X , R)
for some locally bounded function M from R+×R+ to R+ such that M(S,R) →
0 for fixed R when S → 0 and for ϕ1, ϕ2 ∈ X such that ||ϕ1||X+||ϕ2||X ≤ R.
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Remark 2.2. We obtain the global existence if we can extend the solutions
to all t ∈ R+, by iterating the result of local existence, in this case we say
that the Cauchy problem is globally well posed.
The global existence of the solution to our equation will be obtained thanks to
the regularizing effect of the dissipative term and the fact that the L2 norm
is not increasing.

Let us now state our results:

Theorem 2.2. Let s1 > −1/2, β ∈]− 1/2,min(0, s1)] and φ ∈ Hs1,0. Then
there exists a time T = T (||φ||Hβ,0) > 0 and a unique solution u of (1.1) in

(2.17) YT = X
1/2,s1,0,1
T

Moreover, u ∈ C(R+;H
s1,0) and the map φ 7−→ u is C∞ from Hs1,0 to YT .

�

Theorem 2.3. Let s < −1/2. Then it does not exist a time T > 0 such that
the equation (1.1) admits a unique solution in C([0, T [,Hs,0) for any initial
data in some ball of Hs,0(R2) centered at the origin and such that the map

(2.18) φ 7−→ u

is C2-differentiable at the origin from Hs,0 to C([0, T ],Hs,0). �

Remark 2.3. Note that these theorems holds also for all initial data belong-
ing to Hs1,s2 with s2 > 0.

The principle of the proof of local existence result holds in two steps:
Step 1: In order to apply a standard argument of fixed point, we want to
estimate the two terms: free term and the forcing term of equation (2.13). A
first step is to show using Fourier analysis, that the map φ 7−→ ψ(t)W (t)φ is

bounded from Hs,0 to X
1
2
,s,0,1 and the map L is also bounded from X− 1

2
,s,0,1

to X
1
2
,s,0,1.

Step 2: We treat the bilinear term, by proving that the map (u, v) 7−→
∂x(uv) is bounded from X

1
2
,s,0,1 ×X

1
2
,s,0,1 to X− 1

2
,s,0,1.

3. Linear Estimates

In this section, we mainly follow Molinet-Ribaud [15] ( see also [22] and

[17] for the Besov version) to estimate the linear term in the space X
1
2
,s,0,1.

We start by the free term:

3.1. Estimate for the free term.

Proposition 3.1. Let s ∈ R, then ∀φ ∈ Hs,0, we have:

||ψ(t)W (t)φ||
X

1
2 ,s,01 . ||φ ||Hs,0 .

Proof . This is equivalent to prove that

(3.1)
∑

L

〈L+N2〉 1
2 ||PNQL(ψ(t)W (t)φ)||L2

x,y,t
. ||PNφ||L2

x,y
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for each dyadic N. Using Plancherel, we obtain
∑

L

〈L+N2〉 1
2 ||PNQL(ψ(t)W (t)φ)||L2

x,y,t

.
∑

L

〈L+N2〉 1
2 ||ϕN (ξ)ϕL(τ)φ̂(ξ)Ft(ψ(t)e

−|t|ξ2eitP (ν))(τ)||L2
ξ,η,τ

. ||PNφ||L2

∑

L

〈L+N2〉 1
2 ||ϕN (ξ)PL(ψ(t)e

−|t|ξ2)||L∞

ξ L2
τ
.(3.2)

Note that from Prop 4.1 in [17] we have:

(3.3)
∑

L

〈L+N2〉 1
2 ||ϕN (ξ)PL(ψ(t)e

−|t|ξ2)||L∞

ξ L2
τ
. 1.

Combining (3.3) and (3.2), we obtain the result. �

3.2. Estimates for the forcing term. Now we shall study in X
1
2
,s,0,1 the

linear operator L :

Proposition 3.2. Let f ∈ S(R2), There exists C > 0 such that:

||ψ(t)L(f)||
X

1
2 ,s,0,1 ≤ C||f ||

X−
1
2 ,s,0,1 .

Proof . Let

w(τ) =W (−τ)f(τ), K(t) = ψ(t)

∫

R

eitτ − e−|t|ξ2

iτ + ξ2
ŵ(ξ, η, τ)dτ.

Therefore, by the definition, it suffices to prove that
(3.4)
∑

L

〈L+N2〉 1
2 ||ϕN (ξ)ϕL(τ)Ft(K)(τ)||L2

ξ,η,τ
.

∑

L

〈L+N2〉− 1
2 ||ϕN (ξ)ϕL(τ)ŵ(ξ, η, τ)||L2

ξ,η,τ
.

We can break up K in K = K1,0 +K1,∞ +K2,0 +K2,∞, where

K1,0 =: ψ(t)

∫

|τ |≤1

eitτ − 1

iτ + ξ2
ŵ(ξ, η, τ)dτ, K1,∞ = ψ(t)

∫

|τ |≥1

eitτ

iτ + ξ2
ŵ(ξ, η, τ)dτ,

K2,0 = ψ(t)

∫

|τ |≤1

1− e−|t|ξ2

iτ + ξ2
ŵ(ξ, η, τ)dτ, K2,∞ = ψ(t)

∫

|τ |≥1

e−|t|ξ2

iτ + ξ2
ŵ(ξ, η, τ)dτ.

Contribution of K2,∞.
Clearly we have
∑

L

〈L+N2〉 1
2 ||ϕN (ξ)QL(K2,∞)||L2

ξ,η,τ
.

∑

L

〈L+N2〉 1
2 sup
ξ∈Ik

||ϕN (ξ)QL(ψ(e
−|t|ξ2))(t)||L2

ξ,τ

×
∫ ||ϕN (ξ)ŵ(ξ, η, τ)||L2

ξ,η

〈τ〉 dτ

.
∑

L

〈L+N2〉− 1
2 ||ϕN (ξ)ϕL(τ)ŵ(ξ, η, τ)||L2

ξ,η,τ
,

where we use (3.3) in the last step.
Contribution of K2,0.
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We have for |ξ| > 1

∑

L

〈L+N2〉 1
2 ||ϕN (ξ)QL(K2,0)||L2

ξ,η,τ
.

∑

L

〈L+N2〉 1
2 sup
ξ∈Ik

||ϕN (ξ)PL(ψ(1 − e−|t|ξ2))(t)||L2
t

×
∫ ||ŵ(ξ, η, τ)||L2

ξ,η

〈τ〉 dτ

.
∑

L

〈L+N2〉− 1
2 ||ϕN (ξ)ϕL(τ)ŵ(ξ, η, τ)||L2

ξ,η,τ
,

where we used (3.3) in the last step.
For |ξ| 6 1, using Taylors expansion, we have

∑

L

〈L+N2〉 1
2 ||ϕN (ξ)QL(K2,0)||L2

ξ,η,τ

.
∑

n

∑

L

〈L+N2〉 1
2 ||ϕN (ξ)

∫

|τ |61

ŵ(τ)

iτ + ξ2
dτPL(|t|nψ(t))

|ξ|2n
n!

||L2
ξ,η,t

.
∑

n

||t
nψ(t)

n!
||
B

1
2
2,1

||
∫

|τ |61

|ξ|2|ϕN (ξ)ŵ(ξ, η, τ)|
|iτ + ξ2| dτ ||L2

ξ,η

.
∑

L

〈L+N2〉− 1
2 ||ϕN (ξ)ϕL(τ)ŵ(ξ, η, τ)||L2

ξ,η,τ
,

where in the last inequality we used the fact
|||t|nψ(t)||

B
1
2
2,1

6 |||t|nψ(t)||H1 6 C2n.

Contribution of K1,∞.
By the identity F(u ⋆ v) = ûv̂ and the triangle inequality 〈iτ + ξ2〉 ≤ 〈τ1〉+
|i(τ − τ1) + ξ2|, Let g(ξ, η, τ) = |ŵ(ξ,η,τ)|

|iτ+ξ2| χ|τ |>1 we see that

∑

L

〈L+N2〉 1
2 ||ϕN (ξ)QL(K1,∞)||L2

ξ,η,τ

.
∑

L

〈L+N2〉 1
2 ||ϕN (ξ)ϕL(ξ, τ)ψ̂ ∗τ1 g(ξ, η, τ1)||L2

ξ,η,τ

.
∑

L

〈L〉 1
2

∥

∥

∥
ϕN (ξ)ϕL(τ1)|ψ̂(τ1)| ⋆ g(ξ, η, τ1)

∥

∥

∥

L2
ξ,η,τ

+
∑

L

||ϕN (ξ)ϕL(τ)ψ̂(τ1) ⋆ (
ŵ(ξ, η, τ1)

|iτ + ξ2| 12
χ|τ1|>1)||L2

ξ,η,τ
.

Due to the convolution inequality ||u ⋆ v||L2
τ
. ||u||L1

τ
||v||L2

τ
, we obtain

∑

L

〈L+N2〉 1
2 ||ϕN (ξ)QL(K1,∞)||L2

ξ,η,τ
.

∑

L

L||ψ̂(t)||L1
τ
||ϕN (ξ)ϕL(τ)

|ŵ(τ)|
|iτ + ξ2|χ{|τ |≥1}||L2

ξ,η,τ

+
∑

L

||ψ(t)||L1
τ
||ϕN (ξ)ϕL(τ)

|ŵ(τ)|
|iτ + ξ2|1/2χ{|τ |≥1}||L2

ξ,η,τ

≤ C
∑

L

〈L+N2〉−1/2||ϕN (ξ)ϕL(τ)ŵ(τ)||L2
ξ,η,τ

.
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Contribution of K1,0.
Using Taylors expansion, we obtain that:

K1,0 = ψ(t)

∫

|τ |61

∑

n≥1

(itτ)n

n!(iτ + ξ2)
ŵ(ξ, η, τ)dτ.

Thus, we get
∑

L

〈L+N2〉 1
2 ||ϕN (ξ)QL(K1,0)||L2

ξ,η,τ

.
∑

n≥1

∥

∥

∥

∥

tnψ(t)

n!

∥

∥

∥

∥

B
1
2
2,1

∥

∥

∥

∥

∥

∫

|τ |≤1

|τ |
|iτ + |ξ|2| |ϕk(ξ)ŵ(ξ, η, τ)|dτ

∥

∥

∥

∥

∥

L2
ξ,η

.
∑

L

〈L+N2〉− 1
2 ‖ϕN (ξ)ϕL(τ)ŵ(ξ, η, τ)‖L2

ξ,η,τ
,

where we used ‖|t|nψ(t)‖
B

1
2
2,1

≤ ‖|t|nψ(t)‖H1 ≤ C2n in the last step.

Therefore, we complete the proof of the proposition.

4. Strichartz and bilinear estimates

The goal of this section is to etablish the main bilinear estimate.This
type of bilinear estimate is necessary to control the nonlinear term ∂x(u

2) in

X− 1
2
,s,0,1.

First following [6] it is easy to check that for any u ∈ X
1
2
,0,0,1 supported in

[−T, T ] and any θ ∈ [0, 12 ] it holds:

(4.1) ||u||Xθ,s,0,1 ≤ T
1
2
−θ||u||X1/2,s,0,1 .

The following lemma is prepared by Molinet-Ribaud in [14].

Lemma 4.1. Let 2 ≤ r and 0 ≤ β ≤ 1/2. Then

(4.2)
∥

∥

∥
|Dx|−

βδ(r)
2 U(t)ϕ

∥

∥

∥

Lq,r
t,x

≤ C‖ϕ‖L2

where δ(r) = 1− 2
r , and (q, r, β) fulfils the condition

(4.3) 0 ≤ 2

q
≤

(

1− β

3

)

δ(r) < 1.

Now we will prove the following one:

Lemma 4.2. Let v ∈ L2(R3) with supp v ⊂ {(t, x, y) : |t| ≤ T}, δ(r) =
1− 2/r and v̂N = ϕnv̂ for some dyadic integer N . Then for all (r, β, θ) with

(4.4) 2 ≤ r <∞, 0 ≤ β ≤ 1/2, 0 ≤ δ(r) ≤ θ

1− β/3
,

(4.5) ||F−1
t,x (|ξ|−

θβδ(r)
2 〈τ − P (ν)〉−θ

2 |v̂N (τ, ν)|)||Lq,r
t,x,y

≤ C||vN ||L2(R3)

where q is defined by

(4.6) 2/q = (1− β/3)δ(r) + (1− θ).

�
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Proof Using Lemma 4.2 together with Lemma 3.3 of [5], we see that

(4.7)
∥

∥

∥
|Dx|−

βδ(r)
2 uN

∥

∥

∥

Lq,r
t,x

≤ C‖uN‖X1/2,0,0,1 .

By the definition of Xb,s,0,1 we have

(4.8) ‖uN‖L2
t,x

= ‖uN‖X0,0,0,2 .

Hence for 0 ≤ θ ≤ 1, by interpolation,

(4.9)
∥

∥

∥
|Dx|−

θβδ(r)
2 uN

∥

∥

∥

L
q1,r1
t,x

≤ C‖uN‖
X

θ
2 ,0,0,1

where
1

q1
=
θ

q
+

1− θ

2
,

1

r1
=
θ

r
+

1− θ

2
.

Since δ(r1) = θδ(r), (4.4) follows from (4.3)

1

q1
=

(

1− β

3

)

δ(r1) + (1− θ),

which can be rewritten as
∥

∥

∥
F−1
t,x

(

|ξ|−
θβδ(r)

2 ûN

)
∥

∥

∥

L
q1,r1
t,x

≤ C
∥

∥

∥
〈τ − P (ν)〉 θ

2 ûN

∥

∥

∥

L2
.

This clearly completes the proof.
Now, we will estimate the bilinear terms using the following Lemma (see
[11]):

Lemma 4.3. Let k1 , k2 ,k3 ∈ Z, j1, j2 , j3 ∈ Z+ , and fi : R
3 7−→ R

+ are
L2 functions supported in Dki,ji , i = 1, 2, 3. Then

(4.10)

∫

(f1 ∗ f2)f3 . 2
j1+j2+j3

2 2
−(k1+k2+k3)

2 ||f1||L2 ||f2||L2 ||f3||L2

Where Dk,j = {(ξ, µ, τ) : |ξ| ∈ [2k−1, 2k], µ ∈ R, |τ − P (ξ, µ)| ≤ 2j} .

We are now in position to prove our main bilinear estimate:

Proposition 4.4. For all u, v ∈ X1/2,s,0,1(R3), s > −1
2 with compact sup-

port in time included in the subset {(t, x, y) : t ∈ [−T, T ]}, there exists µ > 0
such that the following bilinear estimate holds

(4.11) ||∂x(uv)||X−1/2,s,0,1 ≤ CT µ||u||X1/2,s,0,1 ||v||X1/2,s,0,1 .

�

Remark 4.1. We will mainly use the following version of (4.11), which is
a direct consequence of Proposition 4.4, together with the triangle inequality

∀β ∈]− 1

2
, 0], ∀s ≥ β, 〈ξ〉s ≤ 〈ξ〉β〈ξ1〉s−β + 〈ξ〉β〈ξ − ξ1〉s−β,

||∂x(uv)||X−1/2,s,0,1 ≤CT µ(β)
(

||u||X1/2,β,0,1 ||v||X1/2,s,0,1

+ ||u||X1/2,s,0,1 ||v||X1/2,β,0,1

)

.(4.12)

with µ(β) > 0.
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Proof of Prop 4.4.We proceed by duality. Let w ∈ X1/2,−s,0,∞, we will
estimate the following term

J =
∑

N,N1,N2

∑

L,L1,L2

〈L+N2〉− 1
2 〈N〉sN





∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ |

By symmetry we can assume that N1 ≤ N2, note that | ξ |≤| ξ1 | + | ξ2 |
then N . N2.
From Lemma 4.3, we have:
(4.13)
∫

(ûN1,L1∗v̂N2,L2)ŵN,Ldξdηdτ . L
1
2
1 L

1
2
2 L

1
2N

− 1
2

1 N
− 1

2
2 N− 1

2 ||ûN1,L1 ||L2
ξ,η,τ

||v̂N2,L2 ||L2
ξ,η,τ

||ŵN,L||L2
ξ,η,τ

.

Case 1.: 1 6 N , N1 > 1, and N2 > 1.
We have clearly:
(4.14)
∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ . ||uN1,L1 ||L4
t,x,y

||vN2,L2 ||L4
t,x,y

||wN,L||L2
t,x,y

using Lemma 4.2 ( with β = 1
2 , r = 4) we obtain that there exists α ∈ [67 ,

12
13 [

such that:

∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ . L
α
2
1 N

α
8
1 ||ûN1,L1 ||L2

ξ,τ
L

α
2
2 N

α
8
2 ||v̂N2,L2 ||L2

ξ,τ
||ŵN,L||L2

ξ,η,τ
.

(4.15)

By interpolating (4.13) with (4.15) we obtain that: there exist β = θα
2 +

1−θ
2 ∈ [α2 ,

1
2 ] and θ = −8s+α

4+α ∈]0, 1[ such that:

∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ . N s
1L

β
1 ||ûN1,L1 ||L2

ξ,τ

×N s
2L

β
2 ||v̂N2,L2 ||L2

ξ,η,τ

× L
θ
2N− θ

2 ||ŵN,L||L2
ξ,η,τ

.

Then

〈L+N2〉− 1
2 〈N〉sN

∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ . N s
1L

β
1 ||ûN1,L1 ||L2

ξ,τ

×N s
2L

β
2 ||v̂N2,L2 ||L2

ξ,η,τ

× L
θ
2N− θ

2 〈L+N2〉− 1
2 〈N〉sN ||ŵN,L||L2

ξ,η,τ
.

Now we have:

〈L+N2〉− 1
2 〈N〉sN

∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ . N
( 1
2
−β)

1 N s
1 〈L1 +N2

1 〉
1
2
−( 1

2
−β)||ûN1,L1 ||L2

ξ,τ

×N s
2 〈L2 +N2

2 〉
1
2 ||v̂N2,L2 ||L2

ξ,η,τ

× L
θ
2N− θ

2 〈L+N2〉− 1
2 〈N〉sNNβ− 1

2
2 ||ŵN,L||L2

ξ,η,τ
.(4.16)
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Note that:
∑

L<N2

L
θ
2N− θ

2 〈L+N2〉− 1
2 〈N〉sNNβ− 1

2
2 ||ŵN,L||L2

ξ,η,τ
.

∑

L<N2

(
L

N2
)
θ
2N

θ
2
+s+β− 1

2 ||ŵN,L||L2
ξ,η,τ

.
∑

L<N2

(
L

N2
)
θ
2Nσ||ŵN,L||L2

ξ,η,τ

where σ = α
8 + θ(3α8 − 1

2) < 0.

By summing in L1, N1, L2, N2 and L < N2, we get:

J . ||u||
X

1
2−µ,s,0,1 ||v||X 1

2 ,s,0,1 ||w||L2
ξ,η,τ

. T µ||u||
X

1
2 ,s,0,1 ||v||X 1

2 ,s,0,1 ||w||L2
ξ,η,τ

,

where µ = 1
2 − β > 0.

Now we have:
∑

L>N2

L
θ
2N− θ

2 〈L+N2〉− 1
2 〈N〉sNNβ− 1

2
2 ||ŵN,L||L2

ξ,η,τ
.

∑

L>N2

(
L

N2
)
θ−1
2 N

θ
2
+s+β− 1

2 ||ŵN,L||L2
ξ,η,τ

.
∑

L>N2

(
N2

L
)
1−θ
2 Nσ||ŵN,L||L2

ξ,η,τ

where σ = σ(α, θ) < 0. Thus by summing (4.16) in L1, N1, L2, N2 and
L ≥ N2, we get the desired estimate.

Case 2.: N1 6 1 and N2 ∼ N > 1.
By Cauchy-Schwarz we obtain:

〈L+N2〉− 1
2 〈N〉sN

∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ

6 〈L+N2〉− 1
2 〈N〉sN ||uN1,L1 ||L4+,4+

t,x,y

||vN2,L2 ||L4−,4−

t,x,y

||wN,L||L2
t,x,y

.

But |ξ1| ∼ N1 ≤ 1 thus

||uN1,L1 ||L4+,4+

t,x,y

. N
θβδ(r)

2
1 ||F−1

t,x (|ξ1|−
θβδ(r)

2 ûN1,L1)||L4+,4+

t,x,y

.

By applying Lemma 4.2 with r = 4+, β = 1
2 and θ = 1 we obtain that:

||F−1
t,x (|ξ1|−

θβδ(r)
2 ûN1,L1)||L4+,4+

t,x,y

. N ǫ
1 ||F−1

t,x (|ξ1|−
θβδ(r)

2 ûN1,L1)||Lq,4+

t,x,y

. N ǫ
1 ||〈τ − P (ν) + ξ2〉 1

2 ûN1,L1 ||L2
t,x,y

. N ǫ
1〈N1〉s||〈L1 +N2

1 〉
1
2 ûN1,L1 ||L2

t,x,y

where ǫ = θβδ(r)
2 .

Now taking r = 4−, β = 1
2 , and θ = 1

2 and using again Lemma 4.2 we obtain
that:

||vN2,L2 ||L4−,4−

t,x,y

. N
θβδ(r)

2
2 ||F−1

t,x (|ξ2|−
θβδ(r)

2 v̂N2,L2)||L4− ,4−

t,x,y

. N
1
16

+

2 ||〈L2 +N2
2 〉

1
4 v̂N2,L2 ||L2

t,x,y

. N−γ ||〈L2 +N2
2 〉

1
2
−δ v̂N2,L2 ||L2

t,x,y
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where 0 < δ < 1
2 , and γ > 0 small. Thus:

〈L+N2〉− 1
2 〈N〉sN

∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ

. N ǫ
1

(

〈N1〉s〈L1 +N2
1 〉

1
2 ||ûN1,L1 ||L2

ξ,η,τ

)

×
(

〈N2〉s〈L2 +N2
2 〉

1
2
−δ||v̂N2,L2 ||L2

ξ,η,τ

)

× 〈L+N2〉− 1
2NN−γ ||wN,L||L2

ξ,η,τ
.

But 〈L+N2〉− 1
2 6 L− γ

4N−1+ γ
2 , then :

∑

N

∑

L

〈L+N2〉− 1
2NN−γ ||wN,L||L2

ξ,η,τ
6

∑

N

∑

L

NN−γL− γ
4N−1+ γ

2 ||wN,L||L2
ξ,η,τ

. ||w||L2
ξ,η,τ

.

This yields:

J . ||u||X1/2,s,0,1 ||v||X1/2−δ,s,0,1 ||w||L2 . T δ||u||X1/2,s,0,1 ||v||X1/2,s,0,1 ||w||L2 .

Case 3.: N1, N2 and N . 1.
From (4.15) we have :
∫

(ûN1,L1∗v̂N2,L2)ŵN,Ldξdηdτ . L
α
2
1 N

α
8
1 L

α
2
2 N

α
8
2 ||ûN1,L1 ||L2

ξ,η,τ
||v̂N2,L2 ||L2

ξ,η,τ
||ŵN,L||L2

ξ,η,τ
.

Thus :

〈L+N2〉− 1
2 〈N〉sN

∫

(ûN1,L1 ∗ v̂N2,L2)ŵN,Ldξdηdτ .
(

〈N1〉s〈L1 +N2
1 〉

α
2N

α
8
1 ||ûN1,L1 ||L2

ξ,η,τ

)

×
(

〈N2〉s〈L2 +N2
2 〉

α
2N

α
8
2 ||v̂N2,L2 ||L2

ξ,η,τ

)

× 〈L+N2〉− 1
2NN s||wN,L||L2

ξ,η,τ
.

By summing we obtain that:

J . ||u||
X

1
2−( 12−

α
2 ),s,0,1 ||v||X1/2,s,0,1 ||w||L2 . T µ||u||

X
1
2 ,s,0,1 ||v||X1/2,s,0,1 ||w||L2 ,

where µ = 1
2 − α

2 > 0. This completes the proof. �

5. Proof of Theorem 2.2

5.1. Existence result. 5 Let φ ∈ Hs1,0 with s1 > −1/2. For T ≤ 1, if u is
a solution of the integral equation (2.13), then u solve KPB − I- equation
on [0, T/2]. We first prove the statement for T = T (||ϕ||Hs1 ,0).

Now we are going to solve (2.13) in a ball of the space X
1/2,s1,0,1
T .

By Proposition 3.1 and Proposition 3.2, it results that,

(5.1) ||L(u)||
X

1/2,s1 ,0,1
T

≤ C||φ||Hs1,0 + C||∂x(u2)||X−1/2,s1,0,1
T

.

By the Proposition 4.4, we can deduce

(5.2) ||L(u)||
X

1/2,s1 ,0,1
T

≤ C||φ||Hs1,0 + CT µ||u||2
X

1/2,s1,0,1
T

.

Noticing that ∂x(u
2)− ∂x(v

2) = ∂x[(u− v)(u+ v)], in the same way we get

(5.3) ||L(u)− L(v)||
X

1/2,s1 ,0,1
T

≤ CT µ||u− v||
X

1/2,s1,0,1
T

||u+ v||
X

1/2,s1,0,1
T

.
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Now take T = (4C2||φ||Hs1,0)
−1/µ we deduce from (5.2) and (5.3) that L

is strictly contractive on the ball of radius 2C(||φ||Hs1,0) in X
1
2
,s1,0,1

T . This

proves the existence of a unique solution u1 to (2.13) in X
1/2,s1,0,1
T with

T = T (||φ||Hs1,0).

Note that our space X
1
2
,s1,0,1

T is embedded in C([0, T ],Hs1,0), thus u belongs
C([0, T1],H

s1,0).

5.2. Uniqueness. The above contraction argument gives the uniqueness of
the solution to the truncated integral equation (2.13). We give here the
argument of [15] to deduce easily the uniqueness of the solution to the integral
equation (2.12).

Let u1, u2 ∈ X
1/2,s1,0,1
T be two solution of the integral equation (2.13) on the

time interval [0, T ] and let ũ1 − ũ2 be an extension of u1 − u2 in X1/2,s1,0,1

such that ũ1 − ũ2 = u1 − u2 on [0, γ] and

||ũ1 − ũ2||X1/2,s1,0,1 ≤ 2||u1 − u2||X1/2,s1,0,1
γ

with 0 < γ ≤ T/2. It results by Proposition 3.1 and 3.2 that,
||u1 − u2||X1/2,s1 ,0,1

γ

≤ ||ψ(t)L[∂x
(

ψ2
γ(t

′)
(

ũ1(t
′)− ũ2(t

′)
)(

u1(t
′) + u2(t

′)
))

]||X1/2,s1,0,1

≤ C||∂x
(

ψ2
γ(t)

(

ũ1(t)− ũ2(t)
)(

u1(t) + u2(t)
)

)

||X−1/2,s1,0,1

≤ Cγµ/2||ũ1 − ũ2||X1/2,s1,0,1 ||u1 + u2||X1/2,s1,0,1
T

for some µ > 0. Hence

||u1−u2||X1/2,s1,0,1
γ

≤ 2Cγµ/2
(

||u1||X1/2,s1,0,1
T

+||u2||X1/2,s1,0,1
T

)

||u1−u2||X1/2,s1,0,1
γ

.

Taking γ ≤
(

4C(||u1(t)||X1/2,s1 ,0,1
T

+ ||u2(t)||X1/2,s1 ,0,1
T

)
)−µ/2

, this forces u1 ≡
u2 on [0, γ]. Iterating this argument, one extends the uniqueness result on
the whole time interval [0,T]. �

Now proceeding exactly (with (4.12) in hand ) in the same way as above
but in the space

Z = {u ∈ X1/2,s1,0
T / ‖u‖Z = ‖u‖

X
1/2,β,0,1
T

+
‖ϕ‖Hβ,0

‖ϕ‖Hs1,0

‖u‖
X

1/2,s1 ,0,1
T

< +∞} ,

where β is such that β ∈]−1
2 ,min(0, s1)[, we obtain that for T1 = T1(‖ϕ‖Hβ,0),

L is also strictly contractive on a ball of Z. It follows that there exists a

unique solution ũ to KPBI in X
1/2,s1,0,1
T . If we indicate by T∗ = Tmax the

maximum time of the existence in X1/2,s1,0,1 then by uniqueness, we have
u = ũ on [0,min(T1, T∗)[ and this gives that T∗ ≥ T (||φ||Hβ,0).

The continuity of map φ 7−→ u from Hs1,0 to X1/2,s1,0,1 follows from classical
argument, and in particular the map is continuous fromHs1,0 to C([0, T1],H

s1,0).
The analyticity of the flow-map is a direct consequence of the implicit func-
tion theorem. �
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5.3. Global existence . Recalling that T = T (||φ||Hδ,0) with δ ∈]−1
2 ,min(0, s)],

and u ∈ X1/2,s,0,1 ⊂ L2
tH

s+1,0, s+1 > 0, it follows that there exists t0 ∈]0, T [
such that u(t0) ∈ L2. Taking u(t0) ∈ L2 as initial data, it is easy to show
that ||u(t)||L2 ≤ ||u(t0)||L2 , ∀t ≥ t0. Since the time of local existence T only
depends on ||φ||Hδ,0 , this clearly gives that the solution is global in time. By
iteration, we obtain that u ∈ C(R∗

+,H
∞,0). �

6. Proof of Theorem 2.3

Let u be a solution of (1.1), we have

(6.1) u(φ, t, x, y) =W (t)φ(x, y)− 1

2

∫ t

0
W (t− t′)∂x(u

2(φ, t′, x, y))dt′.

Suppose that the map is C2. Since u(0, t, x, y) = 0, it is easy to check that

u1(t, x, y) :=
∂u

∂φ
(0, t, x, y)[h] = w(t)h

u2(t, x, y) :=
∂2u

∂φ2
(0, t, x, y)[h, h]

= −
∫ t

0
W (t− t′)∂x(W (t′)h)2dt′.

The assumption of C2-regularity of the map solution implies that

(6.2) ||u1(t, ., .)||Hs,0 . ||h||Hs,0 , ||u2(t, ., .)||Hs,0 . ||h||2Hs,0 .

Now let P (ξ, η) = ξ3 + η2/ξ. A straightforward calculation reveals that

Fx 7→ξ,y 7→η(u2(t, ., .)) = (iξ)eitP (ξ,η)

∫

R2

φ̂(ξ1, η1)φ̂(ξ − ξ1, η − η1)

×e
−t(ξ21+(ξ−ξ1)2)eitχ(ξ,ξ1,η,η1) − e−ξ2t

−2ξ1(ξ − ξ1) + iχ(ξ, ξ1, η, η1)
dξ1dη1(6.3)

where χ(ξ, ξ1, η, η1) = P (ξ1, η1) + P (ξ − ξ1, η − η1) − P (ξ, η). Note that,
from the definition of P (ξ, η), we have that

χ(ξ, ξ1, η, η1) = 3ξξ1(ξ − ξ1)−
(ηξ1 − η1ξ)

2

ξξ1(ξ − ξ1)
.

Let us first recall the counter-example constructed in [10]. We define the
sequence of initial data (φN )N , N > 0 by

(6.4) φ̂N (ξ, η) = N−3/2−s(χAN
+ χBN

)

where AN , BN are defined by

AN = [N/2, N ] × [−6N2, 6N2], BN = [N, 2N ]× [
√
3N2, (

√
3 + 1)N2].

It is simple to see that ||φN ||Hs,0 ∼ 1. We denote by u2,N the sequence of
the second iteration u2 associated with φN . Hence it is readily seen that

||u2,N (t)||2Hs,0 ≥ CN−3−2s

[
∫

R2

|ξ|2(1+|ξ|2)s
∣

∣

∣

∣

∫

D(ξ,η)
K(t, ξ, ξ1, η, η1)dξ1dη1

∣

∣

∣

∣

2

dξdη

]1/2

.
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where

D(ξ, η) =
{

(ξ1, η1) : (ξ − ξ1, η − η1) ∈ AN , (ξ1, η1) ∈ BN

}

∪
{

(ξ1, η1) : (ξ1, η1) ∈ AN , (ξ − ξ1, η − η1) ∈ BN

}

:= D1(ξ, η) ∪D2(ξ, η).(6.5)

and

K(t, ξ, ξ1, η, η1) =
e−t(ξ21+(ξ−ξ1)2)eitχ(ξ,ξ1,η,η1) − e−ξ2t

−2ξ1(ξ − ξ1) + iχ(ξ, ξ1, η, η1)
.

Since we can write ξ = ξ1 + (ξ − ξ1), it follows that

||u2(t)||2Hs,0 ≥ CN−4s−6

∫ 3N

3N/2

∫ (
√
3+7)N2

(
√
3−6)N2

|ξ|2(1 + |ξ|2)s

×
∣

∣

∣

∣

∫

D(ξ,η)

e−t(ξ21+(ξ−ξ1)2)eitχ(ξ,ξ1,η,η1) − e−ξ2t

−2ξ1(ξ − ξ1) + iχ(ξ, ξ1, η, η1)
dξ1dη1

∣

∣

∣

∣

2

dξdη.(6.6)

We need to find a lower bound for the right-hand side of (6.6). We will prove
the following lemma:

Lemma 6.1. Let (ξ1, η1) ∈ D1(ξ, η) or (ξ1, η1) ∈ D2(ξ, η). For N >> 1 we
have

∣

∣χ(ξ, ξ1, η, η1)
∣

∣ . N3.

�

Proof of lemma 6.1. Let (ξ1, η1) ∈ D1(ξ, η) i.e. (ξ − ξ1, η − η1) ∈ AN

and (ξ1, η1) ∈ BN . Let ξ ∈ R such that (ξ − ξ1) ∈ [N/2, N ] and we fix
(ξ1, η1) ∈ BN . Let

Λ(ξ, ξ1, η1) = η1 +
(ξ − ξ1)(η1 −

√
3ξξ1)

ξ1
.

Thus
∣

∣Λ(ξ, ξ1, η1)− η1
∣

∣ ≤ |ξ − ξ1|
|ξ1|

∣

∣η1 −
√
3ξ21 −

√
3ξ1(ξ − ξ1)

∣

∣.

We recall that η1 ∈ [
√
3N2, (

√
3 + 1)N2] and ξ1 ∈ [N, 2N ]. Therefore, it

follows that √
3ξ21 ∈ [

√
3N2, 4

√
3N2]

and we have
∣

∣η1 −
√
3N2

∣

∣ ≤ 3
√
3N2.

Since |ξ1| ≤ 2N and |ξ − ξ1| ≥ N/2, it results that
∣

∣Λ(ξ, ξ1, η1)− η1
∣

∣ ≤ 1/4
(

3
√
3N2 + 2

√
3N2

)

≤ 6N2.

Now by the mean value theorem we can write

χ(ξ, ξ1, η, η1) = χ(ξ, ξ1,Λ(ξ, ξ1, η1), η1) +
(

η − Λ(ξ, ξ1, η1)
)∂χ

∂η
(ξ, ξ1, η̄, η1)

where η̄ ∈ [η,Λ(ξ, ξ1, η1)]. Note that χ(ξ, ξ1,Λ(ξ, ξ1, η1), η1) = 0. Hence

∣

∣χ(ξ, ξ1, η, η1)
∣

∣ =
∣

∣η − Λ(ξ, ξ1, η1)
∣

∣

∣

∣

∣

2ξ1(η̄ξ1 − η1ξ)

ξξ1(ξ − ξ1)

∣

∣

∣
.
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Since
∣

∣η − Λ(ξ, ξ1, η1)
∣

∣ ≤
∣

∣η − η1
∣

∣ +
∣

∣η1 − Λ(ξ, ξ1, η1)
∣

∣ ≤ CN2, it follows
that

∣

∣χ(ξ, ξ1, η, η1)
∣

∣ . |ξ1|
∣

∣η − Λ(ξ, ξ1, η1)
∣

∣

∣

∣

∣

(η̄ − η1)ξ1 − η1(ξ − ξ1)

ξξ1(ξ − ξ1)

∣

∣

∣

. N3

( |(η̄ − η1)ξ1|
|ξξ1(ξ − ξ1)|

+
|η1(ξ − ξ1)|
|ξξ1(ξ − ξ1)|

)

. N3

(

(
√
3 + 1)N2

N2
+ C

N2

N2

)

. N3.

In the other case where (ξ1, η1) ∈ D2(ξ, η) i.e. (ξ1, η1) ∈ AN and (ξ− ξ1, η−
η1) ∈ BN , follows from first case since we can write (ξ1, η1) = (ξ − (ξ −
ξ1), η − (η − η1)) ∈ AN and that

χ(ξ, ξ1, η, η1) = χ(ξ, ξ − ξ1, η, η − η1).

This completes the proof of the Lemma. �
We return to the proof of the theorem, note that for any ξ ∈ [3N/2, 3N ] and

η ∈ [(
√
3− 6)N2, (

√
3 + 7)N2], we have mes

(

D(ξ, η)
)

≥ CN3.
Now, for 0 < ǫ << 1 fixed, we choose a sequence of times (tN )N defined

by

tN = N−3−ǫ.

For N >> 1 it can be easily seen that

(6.7) e−ξ2tN ∼ e−N2tN > C.

By Lemma 6.1 we have
∣

∣−2ξ1(ξ−ξ1)+iχ(ξ, ξ1, η, η1)
∣

∣ ≤ N2+N3 ≤ CN3.
Hence

∣

∣

∣

∣

e

(

−2ξ1(ξ−ξ1)+itχ(ξ,ξ1,η,η1)
)

− 1

−2ξ1(ξ − ξ1) + iχ(ξ, ξ1, η, η1)

∣

∣

∣

∣

=
1

N3+ǫ
+O(

1

N3+2ǫ
).

By combining the relations (6.7) and (6.8), we obtain

∣

∣

∣

∣

∫

D(ξ,η)

e−ξ2t
[

e

(

−2ξ1(ξ−ξ1)+itχ(ξ,ξ1,η,η1)
)

− 1
]

−2ξ1(ξ − ξ1) + iχ(ξ, ξ1, η, η1)
dξ1dη1

∣

∣

∣

∣

(6.8) ≥ CN−ǫ.

It results that

1 ∼ ||φN ||2Hs,0 ≥ ||u2,N (tN )||2Hs,0 & N−4s−6

∫ 3N

3N/2

∫ (
√
3+7)N2

(
√
3−6)N2

|ξ|2(1 + |ξ|2)sdξdη ×N−2ǫ

& N−1−2ǫ−2s.

This leads to a contradiction for N >> 1, since we have −1 − 2ǫ − 2s > 0
for s ≤ −1/2 + ǫ. This completes the proof of Theorem 2.3. �
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