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A multivariate extension of Value-at-Risk and

Conditional-Tail-Expectation

Areski Cousin∗, Elena Di Bernardino†

5th November 2011

Abstract

In this paper, we introduce a multivariate extension of the classical univariate Value-
at-Risk (VaR). This extension may be useful to understand how solvency capital re-
quirement computed for a given financial institution may be affected by the presence
of additional risks. We also generalize the bivariate Conditional-Tail–Expectation
(CTE), previously introduced by Di Bernardino et al. (2011), in a multivariate set-
ting and we study its behavior. Several properties have been derived. In particular,
we show that these two risk measures both satisfy the positive homogeneity and
the translation invariance property. Comparison between univariate risk measures
and components of multivariate VaR and CTE are provided. We also analyze how
they are impacted by a change in marginal distributions, by a change in dependence
structure and by a change in risk level. Interestingly, these results turn to be con-
sistent with existing properties on univariate risk measures. Illustrations are given
in the class of Archimedean copulas.

Introduction

During the last decades, researchers joined efforts to properly compare, quantify
and manage risk. Regulators edict rules for bankers and insurers to improve their
risk management and to avoid crises, not always successfully as illustrated by recent
events.

Traditionally, risk measures are thought of as mappings from a set of real-valued
random variables to the real numbers. However, it is often insufficient to consider a
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single real measure to quantify risks created by business activities, especially if the
latter can be affected by other external risk factors. Let us consider for instance the
problem of solvency capital allocation for financial institutions with multi-branch
businesses confronted to risks with specific characteristics. Under Basel II and
Solvability II, a bottom-up approach is used to estimate a “top-level” solvency
capital. This is done by using risk aggregation techniques who may capture risk
mitigation or risk diversification effects. Then this global capital amount is re-
allocated to each subsidiaries or activities for internal risk management purpose
(“top-down approach”). Note that the solvability of each individual branch may
strongly be affected by the degree of dependence amongst all branches. As a result,
the capital allocated to each branch has to be computed in a multivariate setting
where both marginal effects and dependence between risks should be captured. In
this respect, the “Euler approach” (e.g., see Tasche, 2008) involving vector-valued
risk measures has already been tested by risk management teams of some financial
institutions.
Whereas the previous risk allocation problem only involves internal risks associated
with businesses in different subsidiaries, the solvability of financial institutions could
also be affected by external risks whose sources cannot be controlled. These risks
may also be strongly heterogeneous in nature and difficult to diversify away. One can
think for instance of systemic risk or contagion effects in a strongly interconnected
system of financial companies. In this regard, micro-prudential regulation has been
criticized because of its failure to limit the systemic risk within the system. This
question has been dealt with recently by among others, Gauthier et al. (2010) and
Zhou (2010) who highlights the benefit of a “macro-prudential” approach as an
alternative solution to the existing “micro-prudential” one (Basel II) which does
not take into account interactions between financial institutions.

In this paper, we introduce a multivariate extension of the classical univariate Value-
at-Risk (VaR). This extension may be useful to understand how solvency capital
requirement (SCR) computed for a given financial institution may be affected by
the presence of additional risks. We also study the multivariate extension of the
Conditional-Tail–Expectation (CTE), previously introduced by Di Bernardino et al.
(2011) in a bivariate setting. Several properties have been derived. In particular,
we show that these two risk measures both satisfy the positive homogeneity and the
translation invariance property. Comparison results between univariate risk meas-
ures and components of multivariate risk measures are provided. We also analyze
how they are impacted by a change in marginal distributions, by a change in de-
pendence structure and by a change in risk level. Interestingly, these results turn to
be consistent with existing properties on univariate risk measures. In particular, we
prove that, for different Archimedean families of copulas, an increase in dependence
amongst risks tends to lower the amount of solvency capital required for these risks.
At the extreme case where risks are perfectly dependent (i.e., comonotonic), each
component of the multivariate VaR (resp. CTE) are equal to the corresponding uni-
variate VaR (resp. CTE). If we think of univariate risk measures as solvency capital
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computed in a micro-prudential regulated system, this feature is in line with the
observation made by Zhou (2010): “When regulating a system consisting of similar
institutions, or in other words, the system is highly interconnected, considering a
micro-prudential regulation can be sufficient for reducing the overall systemic risk.”
(Zhou, 2010).
Furthermore, our multivariate risk measures can be considered as a “fair” allocation
of solvency capital with respect to individual risk-taking behavior in an economy
with d interconnected financial institutions. We prove that capital required for an
institution is affected both by its own marginal risk and by the degree to which its
business is connected to the activity of the other institutions. However, the solvency
capital required for one particular institution does not depend on the marginal risks
bearing by the others. This can be considered as an invariance property with re-
spect to a change in external risk’s marginal distributions, as far as the dependence
structure is being fixed.

From the years 2000 onward, much research has been devoted to risk measures and
many extension to multidimensional settings have been suggested (see, e.g., Jouini
et al., 2004 and Bentahar, 2006). Unsurprisingly, the main difficulty regarding mul-
tivariate generalizations of quantile-based risk measures (as the VaR and the CTE)
is the fact that vector preorders are, in general, partial preorders. Then, what
can be considered in a context of multidimensional portfolios as the analogous of
a “worst case” scenario and a related “tail distribution”? This is the first ques-
tion we shall address by suggesting a suitable definition of quantiles for multi-risk
portfolios. In the last decade, several attempts have been made to provide a multi-
dimensional generalization of the univariate quantile function. For example, Massé
and Theodorescu (1994) defined multivariate quantiles as half-planes and Koltch-
inskii (1997) provided a general treatment of multivariate quantiles as inversions of
mappings. Another approach is to use geometric quantiles (see for example Chaouch
et al., 2009). Along with the geometric quantile, the notion of depth function has
been developed in recent years to characterize the quantile of multidimensional dis-
tribution functions (for further details see, for instance, Chauvigny et al., 2011). We
refer to Serfling (2002) for a large review on multivariate quantiles. When it turns to
generalize the Value-at-Risk measure, Embrechts and Puccetti (2006), Nappo and
Spizzichino (2009) use the notion of quantile curve (formally introduced in Section
2). Contrarily to the latter approach, the multivariate Value-at-Risk proposed in
this paper quantifies multivariate risks in a more parsimonious and synthetic way.
This feature can be relevant from an operational point of view.

In the literature, several generalizations of the classical univariate CTE have been
proposed, mainly using as conditioning events the total risk or some univariate
extreme risk in the portfolio. This kind of measures are suitable to model prob-
lems of capital allocation in a portfolio of dependent risks. More precisely, let
X = (X1, . . . , Xd) be a risk vector, where, for any i = 1, . . . , d, the component
Xi denotes risk (usually claim or loss) associated with subportfolio i. Then, S =
X1+ · · ·+Xd corresponds to the total risk of this portfolio, X(1) = min{X1, ..., Xd}
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and X(d) = max{X1, ..., Xd} are the extreme risks. In capital allocation prob-
lems, we are not only interested in the “stand-alone” risk measures CTEα(Xi) =
E[Xi |Xi > QXi(α) ], where QXi(α) is the univariate quantile function of Xi at risk
level α, but also in

CTEsum
α (Xi) = E[Xi |S > QS(α) ], (1)

CTEmin
α (Xi) = E[Xi |X(1) > QX(1)

(α) ], (2)

CTEmax
α (Xi) = E[Xi |X(n) > QX(d)

(α) ], (3)

for i = 1, . . . , d. The interested reader is referred to Cai and Li (2005) for fur-
ther details. For explicit formulas of CTEsum

α (Xi) in the case of Fairlie-Gumbel-
Morgenstern family of copulas, see Bargès et al. (2009). Landsman and Valdez ob-
tain an explicit formula for CTEsum

α (Xi) in the case of elliptic distribution functions
(see Landsman and Valdez, 2003); Cai and Li in the case of phase-type distributions
(see Cai and Li, 2005). Furthermore, we recall that CTEsum

α (Xi) is a key tool to
calculate the amount of solvency capital in the “Euler approach” (see, e.g., Tasche,
2008).

The multivariate version of Conditional-Tail-Expectation, studied in this paper, is
essentially based on a “distributional approach”. It is constructed as the conditional
expectation of a multivariate random vector given that the latter is located in a par-
ticular set corresponding to the α-upper level set of the associated multivariate dis-
tribution function (in a bivariate setting see Di Bernardino et al., 2011). More pre-
cisely we consider a non-negative multivariate random vector X = (X1, . . . , Xd) and
the associated α-upper level set, i.e., L(α) = {x ∈ R

d
+ : FX(x) ≥ α}, for α ∈ (0, 1),

where FX is the multivariate distribution function of X. As the total information
of the vector X is completely described by its multivariate distribution function,
the set L(α) captures the information coming both from the marginal distributions
and from the multivariate dependence structure. Then contrarily to existing gen-
eralizations of the univariate CTE presented above, our CTEα(X) does not use an
arbitrary real-valued aggregate transformation (sum, min, max,. . .). Indeed, using
an aggregate procedure between the risks can be inappropriate to measure risks with
heterogeneous characteristics especially in an external risks problem. Moreover, as
opposed to our proposal of multivariate risk measures, the multivariate risk meas-
ures defined in (1)-(3) do not satisfy the invariance property with respect to a change
in external risk’s marginal distributions. This means that for a given risk compon-
ent i in the portfolio, changes in marginal distributions of the other risks lead to
changes in risk measures (1)-(3) for name i, even if the dependence structure does
not change.

The paper is organized as follows. In Section 1, we introduce some notations, tools
and technical assumptions. In Section 2, we propose a new multivariate general-
ization of Value-at-Risk. In Section 3, we generalize in a multivariate setting the
Conditional-Tail-Expectation, previously introduced by Di Bernardino et al. (2011)
in dimension two. We study the properties of our multivariate VaR and CTE in
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terms of Artzner et al. (1999)’s invariance properties of risk measures (see Sections
2.1 and 3.1). We also compare the components of these multivariate risk measure
with the associated univariate risk measures (see Sections 2.2 and 3.2). The behavior
of VaRα(X) (resp. CTEα(X)) with respect to a change in marginal distributions,
a change in dependence structure and a change in risk level α is discussed in Sec-
tions 2.3-2.5 (resp. Sections 3.3-3.4). Further illustrations in some Archimedean
copula cases, are presented both for the multivariate Value-at-Risk and for the
Conditional-Tail-Expectation. In the conclusion, we discuss possible directions for
future work.

1 Basic notions and preliminaries

In this section, we first introduce some notation and tools which will be used later
on.

Stochastic orders

From now on, let QX(α) be the univariate quantile function of a risk X at level
α ∈ (0, 1). More precisely, given an univariate continuous and strictly monotonic
loss distribution function FX , QX(α) = F−1

X (α), ∀α ∈ (0, 1). We recall here
the definition and some properties of useful univariate and multivariate stochastic
orders.

Definition 1 (Stochastic dominance order). Let X and Y be two random variables.
Then X is said to be smaller than Y in stochastic dominance, denoted as X �st Y ,
if the inequality QX(α) ≤ QY (α) is satisfied for all α ∈ (0, 1).

Definition 2 (Stop-loss order). Let X and Y be two random variables. Then X

is said to be smaller than Y in the stop-loss order, denoted as X �sl Y , if for all
t ∈ R, E[(X − t)+] ≤ E[(Y − t)+], with x+ := max{x, 0}.

Definition 3 (Increasing convex order). Let X and Y be two random variables.
Then X is said to be smaller than Y in the increasing convex order, denoted as
X �icx Y , if E[f(X)] ≤ E[f(Y )], for all non-decreasing convex function f such that
the expectations exist.

The stop-loss order and the increasing convex order are equivalent (see Theorem
1.5.7 in Müller and Stoyan, 2001). Note that stochastic dominance order implies
stop-loss order. For more details about stop-loss order we refer the interested reader
to Müller (1997). Moreover, a sufficient condition for the stop-loss order is the
dangerousness order relation as stated in the following lemma.

Lemma 1 (Ohlin, 1969). Let X and Y be random variables with finite means
such that E[X] ≤ E[Y ], and there exists some real number c such that FX(x) ≤
FY (x), for all x < c and FX(x) ≥ FY (x), for all x ≥ c. Then X precedes Y in
dangerousness order, written X �D Y , and this implies the stop-loss order X �sl Y .
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According to Bühlmann’s terminology, when X �D Y the distribution function FY

is said to be more dangerous than FX . This terminology is essentially related to
the variability of the random variables X and Y (see Section 3.4.2.2 in Denuit et
al., 2005). For further details, the reader is referred to Bühlmann et al. (1977).
Finally, we introduce the definition of supermodular function and supermodular
order for multivariate random vectors.

Definition 4 (Supermodular function). A function f : Rd → R is said to be super-
modular if for any x,y ∈ R

d it satisfies

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum respect-
ively.

Definition 5 (Supermodular order). Let X and Y be two d−dimensional random
vectors such that E[f(X)] ≤ E[f(Y)], for all supermodular functions f : Rd → R,
provided the expectation exist. Then X is said to be smaller than Y with respect to
the supermodular order (denoted by X �sm Y).

This will be a key tool to analyze the impact of dependence on our multivariate risk
measures.

Kendall distribution function

Let X = (X1, . . . , Xd) be a d−dimensional random vector, d ≥ 2. As we will see
later on, our study of multivariate risk measures strongly relies on the key concept of
Kendall distribution function (or multivariate probability integral transformation),
that is, the distribution function of the random variable F (X), where F is the mul-
tivariate distribution of random vector X. From now on, the Kendall distribution
will be denoted by K, so that K(α) = P[F (X) ≤ α], for α ∈ [0, 1]. We also denote
by K(α) the survival distribution function of F (X), i.e., K(α) = P[F (X) > α]. For
more details on the multivariate probability integral transformation, the interested
reader is referred to Capéraà et al., (1997), Genest and Rivest (2001), Nelsen et al.
(2003), Genest and Boies (2003), Genest et al. (2006) and Belzunce et al. (2007).

In contrast to the univariate case, it is not generally true that the distribution
function K of F (X) is uniform on [0, 1], even when F is continuous. Note also
that it is not possible to characterize the joint distribution F or reconstruct it from
the knowledge of K alone, since the latter does not contain any information about
the marginal distributions FX1 , . . . , FXd

(see Genest and Rivest, 2001). Indeed,
as a consequence of Sklar’s Theorem, the Kendall distribution only depends on
the dependence structure or the copula function C associated with X (see Sklar,
1959). Thus, we also have K(α) = P[C(U) ≤ α] where U = (U1, . . . , Ud) and
U1 = FX1(X1), . . . , Ud = FXd

(Xd).

Furthermore:
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• For a d−dimensional random vector X = (X1, . . . , Xd) with copula C, the
Kendall distribution function K(α) is linked to the Kendall’s tau correlation

coefficient via: τC = 2d E[C(U)]−1
2d−1−1

, for d ≥ 2 (see Section 5 in Genest and
Rivest, 2001).

• The Kendall distribution can be obtain explicitly in the case of multivariate
Archimedean copulas with generator φ. Table 1 provides the expression of
Kendall distributions associated with Archimedean, independent, comonotonic
and counter-monotonic d−dimensional random vectors (see Barbe et al., 1996).
Note that the Kendall distribution is uniform for comonotonic random vectors.

Copula Kendall distribution K(α)

Archimedean case α +
∑d−1

i=1 (−1)i φi(α)
i!

fi−1(α)

Counter-monotonic case 1

Independent case α + α
∑d−1

i=1

(

ln(1/α)i

i!

)

Comonotonic case α

Table 1: Kendall distribution in some classical d−dimensional dependence structure.

In Table 1, fi(α) stands for di−1φ−1(t)
dti+1 , evaluated at t = φ(α). For further

details the interested reader is referred to Section 2 in Barbe et al. (1996) and
Section 5 in Genest and Rivest (2001). For instance, in the bivariate case, the

Kendall distribution function is equal to α− φ(α)
φ′(α) , α ∈ (0, 1), for Archimedean

copulas with differentiable generator φ and α (1− ln(α)) , α ∈ (0, 1), for the
independence copula.

• It holds that α ≤ K(α) ≤ 1, for all α ∈ (0, 1), i.e., the graph of the Kendall
distribution function is above the first diagonal (see Section 5 in Genest and
Rivest, 2001). This is equivalent to state that, for any random vector U with
copula function C and uniform marginals, Ccc(Ucc) �st C(U) �st Cc(Uc)
where Ucc = (U cc

1 , . . . , U cc
d ) (resp. Uc = (U c

1 , . . . , U
c
d)) is a counter-monotonic

(resp. comonotonic) random vector with copula function Ccc (resp. Cc) and
uniform marginals.

This last property suggests that when the level of dependence between X1, . . . , Xd

increases, the Kendall distribution also increases in some sense. The following result,
using definitions of stochastic orders described above, investigates rigorously this
intuition.

Proposition 2. Let U = (U1, . . . , Ud) (resp. U∗ = (U∗
1 , . . . , U

∗
d )) be a random

vector with copula C (resp. C∗) and uniform marginals.

If U �sm U∗, then C(U) �sl C
∗(U∗).
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Proof: Trivially, U �sm U∗ ⇒ C(u) ≤ C∗(u), for all u ∈ [0, 1]d (see Section
6.3.3 in Denuit et al., 2005). Let f : [0, 1] → R be a non-decreasing and
convex function. It holds that f(C(u)) ≤ f(C∗(u)), for all u ∈ [0, 1]d, and
E[f(C(U))] ≤ E[f(C∗(U))]. Remark that since C∗ is non-decreasing and su-
permodular and f is non-decreasing and convex then f ◦ C∗ is a non-decreasing
and supermodular function (see Theorem 3.9.3 in Müller and Stoyan, 2001).
Then, by assumptions, E[f(C(U))] ≤ E[f(C∗(U))] ≤ E[f(C∗(U∗))]. This implies
C(U) �sl C

∗(U∗). Hence the result. ✷

From Proposition 2, we remark that U �sm U∗ implies an ordering relation
between corresponding Kendall’s tau : τC ≤ τC∗ . Note that the supermodular
order between U and U∗ does not necessarily yield the stochastic dominance order
between C(U) and C∗(U∗) (i.e., C(U) �st C

∗(U∗) does not hold in general).
For a bivariate counter-example, the interested reader is referred to, for instance,
Capéraà et al. (1997) or Example 3.1 in Nelsen et al. (2003).

Let us now focus on some classical families of bivariate Archimedean copulas. In
Table 2, we obtain analytical expressions of the Kendall distribution function for
Gumbel, Frank, Clayton and Ali-Mikhail-Haq families.

Copula θ ∈ Kendall distribution K(α, θ)

Gumbel [1,∞) α
(

1− 1
θ
lnα

)

Frank (−∞,∞) \ {0} α + 1
θ

(

1− eθα
)

ln
(

1−e−θ α

1−e−θ

)

Clayton [−1,∞) \ {0} α
(

1 + 1
θ

(

1− αθ
))

Ali-Mikhail-Haq [−1, 1) α−1+θ+(1−θ+θα)(ln(1−θ+θ α)+lnα)
θ−1

Table 2: Kendall distribution in some bivariate Archimedean cases.

Remark 1. Bivariate Clayton copulas can be extended to d-dimensional copulas with
d > 2 as far as the underlying dependence parameter is such that θ > − 1

d−1 (see
Example 4.27 in Nelsen, 1999). Frank copulas can be extended to d-dimensional
copulas (d > 2) for θ > 0 (see Example 4.24 in Nelsen, 1999).

Note that parameter θ governs the level of dependence amongst components of
the underlying random vector. Indeed, it can be shown that, for all Archimedean
copulas in Table 2, an increase of θ yields an increase of dependence in the sense
of the supermodular order, i.e., θ ≤ θ∗ ⇒ U �sm U∗ (see further examples in Joe,
1997 and Wei and Hu, 2002). Then, as a consequence of Proposition 2, the following
comparison result holds

θ ≤ θ∗ ⇒ C(U) �sl C
∗(U∗). (4)

In fact, a stronger comparison result can be derived for Archimedean copulas of
Table 2, as shown in the following remark.
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Remark 2. For copulas in Table 2, one can check that ∂K(α,θ)
∂θ ≤ 0, for all α ∈ (0, 1).

This means that, for these classical examples, the associated Kendall distributions
actually increase with respect to the stochastic dominance order when the depend-
ence parameter θ increases, i.e.,

θ ≤ θ∗ ⇒ C(U) �st C
∗(U∗). (5)

In order to illustrate this property we plot in Figure 1 the Kendall distribution
function K(·, θ) for different choices of parameter θ in the bivariate Clayton copula
case and in the bivariate Gumbel copula case.

Figure 1: Kendall distribution K(·, θ) for different values of θ in the bivariate Clayton copula

case (left) and the bivariate Gumbel copula case (right). The dark full line represents the first

diagonal and it corresponds to the comonotonic case.
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2 Multivariate Value-at-Risk

From the usual definition in the univariate setting we know that the quantile func-
tion QX(α) provides a point which accumulates a probability α to the left tail and
1 − α to the right tail. The univariate quantile function QX is used in risk theory
to define an univariate risk measure: the Value-at-Risk. This measure is defined as

VaRα(X) = QX(α), ∀ α ∈ (0, 1).

In the recent literature, an intuitive and immediate generalization of the VaR
measure in the case of a d−dimensional loss distribution function F is repres-
ented by its α-quantile curves. More precisely, let F : R

d
+ → [0, 1] be a par-

tially increasing multivariate distribution function1 and for, any α ∈ (0, 1), let
L(α) = {x ∈ R

d
+ : F (x) ≥ α} be the upper α-level set of F . Tibiletti (1993), Em-

brechts and Puccetti (2006) and Nappo and Spizzichino (2009) propose to define
the multivariate Value-at-Risk as ∂L(α), for α ∈ (0, 1), where ∂L(α) denotes the
boundary associated with the set L(α).

In the following, we will consider non-negative absolutely-continuous random vec-
tor2 X = (X1, . . . , Xd) (with respect to Lebesgue measure λ on R

d) with par-
tially increasing multivariate distribution function F and such that E(Xi) < ∞, for
i = 1, . . . , d. These conditions will be called regularity conditions.

However extensions of our results in the case of multivariate distribution function
on the entire space R

d or in the presence of plateau in the graph of F are possible.
Starting from these considerations, we introduce here a multivariate generalization
of the VaR measure.

Definition 6. Consider a random vector X satisfying the regularity conditions. For
α ∈ (0, 1), we define the multidimensional Value-at-Risk at probability level α by

VaRα(X) = E[X|X ∈ ∂L(α)] =







E[X1 |X ∈ ∂L(α) ]
...

E[Xd |X ∈ ∂L(α) ]






.

Analogously

VaRα(X) = E[X|F (X) = α] =







E[X1 |F (X) = α ]
...

E[Xd |F (X) = α ]






,

where ∂L(α) is the boundary of the α-level set of F .

1A function F (x1, . . . , xd) is partially increasing on R
d
+ \ (0, 0) if the functions of one variable

g(·) = F (x1, . . . , xj−1, ·, xj+1, . . . , xd) are increasing. About properties of partially increasing multivariate
distribution functions we refer the interested reader to Rossi (1973), Tibiletti (1991).

2We restrict ourselves to R
d
+ because, in our applications, components of d−dimensional vectors cor-

respond to random losses and are then valued in R+.
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From now on, we denote by VaR1
α(X), . . ., VaRd

α(X) the components of the vector
VaRα(X). If X is an exchangeable vector, then VaRi

α(X) = VaRj
α(X), for i, j =

1, . . . , d. Furthermore, given a random variable X, since E[X |X = VaRα(X)] =
QX(α), for all α in (0, 1), Definition 6 can be viewed as a natural multivariate version
of the univariate one. Moreover, the proposed generalization of Value-at-Risk for
multivariate portfolio can be seen as a more parsimonious and synthetic measure
compared to the Embrechts and Puccetti (2006)’s approach. Indeed, instead of
considering the whole hyperspace ∂L(α) corresponding to the boundary of the α-
level set of F , we only focus on the particular point in R

d
+ that match the expectation

of X given that X falls in ∂L(α). The latter feature could be relevant on practical
grounds.

Note that, under the regularity conditions, ∂L(α) = {x ∈ R
d
+ : F (x) = α} has

Lebesgue-measure zero in R
d
+ (e.g., see Property 3 in Tibiletti, 1990). Then we

make sense of Definition 6 using the limit procedure in Feller (1966), Section 3.2:

E[Xi |F (X) = α ] = lim
h→0

E[Xi |α < F (X) ≤ α+ h ]

= lim
h→0

∫∞

QXi
(α) x

(

∫ α+h
α f(Xi,F (X))(x, y) dy

)

dx
∫ α+h
α fF (X)(y) dy

, (6)

for i = 1, . . . , d.

Dividing numerator and denominator in (6) by h, we obtain, as h → 0

E[Xi |F (X) = α] = VaRi
α(X) =

∫∞

QXi
(α) x f(Xi,F (X))(x, α) dx

K ′(α)
, (7)

for i = 1, . . . , d, where K ′(α) = dK(α)
dα is the Kendall distribution density function.

This procedure gives a rigorous sense to our VaRα(X) in Definition 6. Remark that
the existence of f(Xi,F (X)) and K ′ in (7) is guaranteed by the regularity conditions
(for further details, see Proposition 1 in Imlahi et al., 1999 or Proposition 4 in
Chakak and Ezzerg, 2000).

Bivariate Archimedean copula case

In the bivariate case, the VaR introduced in Definition 6 can be computed analytic-
ally for random couple with an Archimedean copula dependence structure. Indeed,
using a simple change of variable, formula (7) can be rewritten, for i = 1, as

VaR1
α(X,Y ) =

∫∞

QX(α) x f(U,C(U,V ))(FX(x), α) dx

K ′(α)
,

where f(U,C(U,V )) is the density associated with the random vector (U,C(U, V )). In
the bivariate Archimedean case, the latter density can be obtained analytically by
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using a change of variable transformation3 from (U, V ) to (U,C(U, V )):

F(U,C(U,V ))(s, t) = t−
φ(t)

φ′(t)
+

φ(s)

φ′(t)
, (8)

for 0 < t < s < 1. The previous change of variable involves a Jacobian matrix and it
can be generalized to dimension d ≥ 2 using a multivariate transformation. There-
fore, in the class of Archimedean copulas, our multivariate extension of the VaR can
be computed analytically, either through a closed-form formula (see, for instance,
the bivariate Clayton example below) or at least by using numerical quadratures.

Let us now consider the Clayton family of bivariate copulas. This family is interest-
ing since it contains the counter-monotonic, the independence and the comonotonic
copulas as particular cases. Let (X,Y ) be a random vector distributed as a Clayton
copula with parameter θ ≥ −1. In particular, the marginal distribution of X and
Y are uniform. Then, the distribution function Cθ of (X,Y ) is such that

Cθ(x, y) = (max{x−θ + y−θ − 1, 0})−1/θ, for θ ≥ −1, (x, y) ∈ [0, 1]2. (9)

Since X and Y are exchangeable, the two components of the multivariate VaR are
identical. Table 3 gives analytical expressions for the first (equal to the second)
component of the VaR, i.e., VaR1

α,θ(X,Y ). Note that the latter can be repres-
ented as a function of the risk level α and the dependence parameter θ. For
θ = −1 and θ = ∞ we obtain the Fréchet-Hoeffding lower and upper bounds:
W (x, y) = max{x+ y− 1, 0} (counter-monotonic random variables) and M(x, y) =
min{x, y} (comonotonic random variables) respectively. The settings θ = 0 and
θ = 1 correspond to degenerate cases. For θ = 0 we have the independence copula
Π(x, y) = x y. For θ = 1, we obtain the copula denoted by Π

Σ−Π in Nelsen (1999)

where Π
Σ−Π(x, y) =

x y
x+y−x y .

Copula θ VaR1
α,θ(X, Y )

Clayton Cθ (−1,∞) θ
θ−1

αθ−α
αθ−1

Counter-monotonic W −1 1+α
2

Independent Π 0 α−1
lnα

Π
Σ−Π

1 α lnα
α−1

Comonotonic M ∞ α

Table 3: VaR1
α,θ(X,Y ) for different copula dependence structures.

Interestingly, one can readily show that
∂VaR1

α,θ

∂α ≥ 0 and
∂VaR1

α,θ

∂θ ≤ 0, for θ ≥ −1
and α ∈ (0, 1). This proves that, for Clayton-distributed random couples, the

3In the book by Nelsen (1999) (Corollary 4.3.5), a geometrical argument is used instead to obtain the
distribution function of (U,C(U, V )).
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components of our multivariate VaR are increasing functions of the risk level α and
decreasing functions of the dependence parameter θ. Note also that the multivariate
VaR in the comonotonic case corresponds to the vector composed of the univariate
VaR associated with each component. These properties are illustrated in Figure 2
where VaR1

α,θ(X,Y ) is plotted as a function of the risk level α for different values of
the parameter θ. Observe that an increase of the dependence parameter θ tends to
lower the VaR up to the perfect dependence case where VaR1

α,θ(X,Y ) = VaRα(X) =
α. These empirical behaviors will be formally confirmed in next sections.

Figure 2: Behavior of VaR1
α,θ(X,Y ) = VaR2

α,θ(X,Y ) with respect to risk level α for differ-

ent values of dependence parameter θ. The random vector (X,Y ) follows a Clayton copula

distribution with parameter θ.
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2.1 Invariance properties

Our aim in the present section is to analyze the multivariate Value-at-Risk intro-
duced in Definition 6 in terms of classical invariance properties of risk measures (we
refer the interested reader to Artzner et al., 1999). The following proposition proves
positive homogeneity and translation invariance for VaRα(X).

Proposition 3. Consider a random vector X satisfying the regularity conditions.
For α ∈ (0, 1), VaRα(X) satisfies the following properties:

Positive Homogeneity: ∀ c ∈ R
d
+,

VaRα(cX) = cVaRα(X) =







c1 E[X1 |F (X) = α ]
...

cd E[Xd |F (X) = α ]






.

Translation Invariance: ∀ c ∈ R
d
+,

VaRα(c+X) = c+VaRα(X) =







c1 + E[X1 |F (X) = α ]
...

cd + E[Xd |F (X) = α ]






.

The proof is based on invariance properties of level sets. We refer the interested
reader to Proposition 1 in Tibiletti (1993).

Proof: Let h : Rd
+ → R

d
+, with h(x1, x2, . . . , xd) = (h1(x1), h2(x2), . . . , hd(xd)) and

h1, h2, . . . , hd be increasing functions. Then we obtain

∂Lh(X)(α) = {x ∈ R
d
+ : Fh(X)(x) = α} = {x ∈ R

d
+ : F(h1(X1),h2(X2),...,hd(Xd))(x) = α}

= {h(x) ∈ R
d
+ : FX(x) = α} = {(h1(x1), h2(x2), . . . , hd(xd)) ∈ R

d
+ : FX(x) = α} =

h(∂L(α)).

In particular we take h(x) = c+x, with c ∈ R
d
+. Then ∂L(c+X)(α) = {(c+x) ∈ R

d
+ :

FX(x) = α}. Analogously with h(x) = cx, with c ∈ R
d
+, ∂L(cX)(α) = {(cx) ∈

R
d
+ : FX(x) = α}. Then,

E[ ci +Xi | (c+X) ∈ ∂L(c+X)(α) ] = ci + E[Xi |h(X) ∈ ∂Lh(X)(α) ]
= ci + E[Xi |h(X) ∈ h(∂LX)(α) ] = ci + E[Xi |h

−1(h(X)) ∈ ∂LX(α) ],

for i = 1, . . . , d. Hence the result. ✷

2.2 Comparison of univariate and multivariate VaR

Note that, using a change of variable, each component of the multivariate Value-at-
Risk can be represented as an integral transformation of the associated univariate
Value-at-Risk. Let us denote by FXi the marginal distribution functions of Xi for
i = 1, . . . , d and by C the copula associated with X. Thanks to Sklar’s theorem we
have F (x1, . . . , xd) = C(FX1(x1), . . . , FXd

(xd)) (see Sklar, 1959). Then the random
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variables Ui defined by Ui = FXi(Xi), for i = 1, . . . , d, are uniformly distributed
and their joint distribution is equal to C. Using these notations, we get:

VaRi
α(X) =

1

K ′(α)

∫ 1

α
VaRγ(Xi)f(Ui,C(U))(γ, α) dγ, (10)

for i = 1, . . . , d, where f(Ui,C(U)) is the density function associated with the mul-
tivariate vector (Ui, C(U)). The following proposition allows us to compare univari-
ate and multivariate Value-at-Risk.

Proposition 4. Consider a random vector X satisfying the regularity conditions.
Assume that its multivariate distribution function F is a quasi concave4. Then, for
all α ∈ (0, 1), the following inequality holds

VaRi
α(X) ≥ VaRα(Xi), (11)

for i = 1, . . . , d.

Proof: Let α ∈ (0, 1). From the definition of the accumulated probability, it is easy
to show ∂L(α) is inferiorly bounded by the marginal univariate quantile functions.
Moreover, recall that L(α) is a convex set in R

d
+ from the quasi concavity of F

(see Section 2 in Tibiletti, 1995). Then, for all x = (x1, . . . , xd) ∈ ∂L(α), x1 ≥
VaRα(X1), · · · , xd ≥ VaRα(Xd) and trivially, VaRi

α(X) is greater than VaRα(Xi),
for i = 1, . . . , d. Hence the result. ✷

Proposition 4 states that the multivariate VaRα(X) is a more conservative meas-
ure than the vector composed with the univariate α-Value-at-Risk of marginals.
Furthermore, we can prove that the previous lower bound in (11) is reached for
comonotonic random vectors.

Proposition 5. Consider a comonotonic non-negative random vector X. Then, for
all α ∈ (0, 1), it holds that

VaRi
α(X) = VaRα(Xi),

for i = 1, . . . , d.

Proof: Let α ∈ (0, 1). If X = (X1, . . . , Xd) is a comonotonic non-negative random
vector then there exist a random variable Z and d increasing functions g1, . . . , gd
such that X is equal to (g1(Z), . . . , gd(Z)) in distribution. So the set {(x1, . . . , xd) :
F (x1, . . . , xd) = α} becomes {(x1, . . . , xd) : min{g−1

1 (x1), . . . , g
−1
d (xd)} = QZ(α)},

where QZ is the quantile function of Z. Then, trivially, VaRi
α(X) = E[Xi |F (X) =

α ] = QXi(α), for i = 1, . . . , d. Hence the result. ✷

4A function F is quasi concave if the upper level sets of F are convex sets. Tibiletti (1995) points
out families of distribution functions which satisfy the property of quasi concavity. For instance all the
Archimedean copulas are quasi concave functions (see Nelsen, 1999).
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Remark 3. Using (8) for bivariate independent random couple (X,Y ), formula (10)
becomes

VaR1
α(X,Y ) =

1

− ln(α)

∫ 1

α

VaRγ(X)

γ
dγ,

then, obviously, in this case the X-related component only depends on the marginal
behavior of X.

2.3 Behavior of the multivariate VaR with respect to

marginal distributions

In this section we study the behavior of our risk measure with respect to a variation
of marginals. Results presented below provide natural multivariate extensions of
some classical results in the univariate setting (see, e.g., Denuit and Charpentier,
2004).

Proposition 6. Let X and Y be two d–dimensional continuous random vectors

satisfying the regularity conditions and with the same copula structure C. If Xi
d
= Yi

then it holds that

VaRi
α(X) = VaRi

α(Y), for all α ∈ (0, 1).

The proof of the previous Proposition directly comes down from formula (10). From
Proposition 6, we remark that, for a fixed copula structure C, the i-th component
VaRi

α(X) does not depend on marginal distributions of the other components j with
j 6= i.

In order to derive the next result, we use the definitions of stochastic orders presen-
ted in Section 1.

Proposition 7. Let X and Y be two d–dimensional continuous random vectors
satisfying the regularity conditions and with the same copula structure C. If Xi �st

Yi then it holds that

VaRi
α(X) ≤ VaRi

α(Y), for all α ∈ (0, 1).

The proof comes down from formula (10) and Definition 1. Note that, the result
in Proposition 7 is consistent with the one-dimensional setting (see Section 3.3.1
in Denuit et al., 2005). Indeed, as in dimension one, a stochastic order on the
coordinates implies an order relation on the coordinates of Value-at-Risk.

As a result, in an economy with several interconnected financial institutions, capital
required for one particular institution is affected by its own marginal risk. But, for a
fixed dependence structure, the solvency capital required for this specific institution
does not depend on marginal risks bearing by the others. Then, our multivariate
VaR implies a “fair” allocation of solvency capital with respect to individual risk-
taking behavior. In other words, individual financial institutions may not have to
pay more for risky business activities undertook by the others.
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2.4 Behavior of multivariate VaR with respect to the

dependence structure

In this section we study the behavior of our risk measure with respect to a variation
of the dependence structure, with unchanged marginal distributions.

Proposition 8. Let X and X∗ be two d–dimensional continuous random vectors
satisfying the regularity conditions and with the same margins FXi and FX∗

i
, for

i = 1, . . . , d, and let C (resp. C∗) denote the copula function associated with X (resp.
X∗). Let Ui = FXi(Xi), U

∗
i = FXi

∗(X∗
i ), U = (U1, . . . , Ud) and U∗ = (U∗

1 , . . . , U
∗
d ).

If [Ui|C(U) = α] �st [U
∗
i |C

∗(U∗) = α] then VaRi
α(X) ≤ VaRi

α(X
∗).

Proof: Let U1
d
= [Ui|C(U) = α] and U2

d
= [U∗

i |C
∗(U∗) = α]. We recall that

U1 �st U2 if and only if E[f(U1)] ≤ E[f(U2)], for all non-decreasing function f , such
that the expectations exist (see Denuit et al., 2005; Proposition 3.3.14). We now
choose f(u) = QXi(u), for u ∈ (0, 1). Then we obtain

E[QXi(Ui)|C(U) = α ] ≤ E[QXi(U
∗
i )|C

∗(U∗) = α ],

But the right-hand side of the previous inequality is equal to E[QX∗

i
(U∗

i )|C
∗(U∗) =

α ] since Xi and X∗
i have the same distribution. Finally, from formula (10) we obtain

VaRi
α(X) ≤ VaRi

α(X
∗). Hence the result. ✷

We now provide an illustration of Proposition 8 in the case of bivariate Archimedean
copulas.

Example 1. We consider a bivariate Archimedean copula with differentiable gene-
rator φ. In this case, using formula (8) we obtain

P[U > u |C(U, V ) = α] =
φ (u)

φ (α)
, for 0 < α < u < 1. (12)

Let Cθ and Cθ∗ be two Archimedean copula with dependence parameter θ and
θ∗. We consider that (X,Y ) and (X∗, Y ∗) are two bivariate continuous random
vectors with the same marginals FX and FY and with copula Cθ and Cθ∗ re-
spectively. Let U = FX(X), V = FY (Y ), U∗ = FX(X∗) and V ∗ = FY (Y

∗). It
can be shown that an increase of dependence (θ ≤ θ∗) yields a decrease of the
bivariate VaR (VaR1

α(X
∗, Y ∗) ≤ VaR1

α(X,Y )). Using formula (12), the condition
[U∗|Cθ(U

∗, V ∗) = α] �st [U |Cθ(U, V ) = α] is equivalent to

φθ∗ (u)

φθ∗ (α)
≤

φθ (u)

φθ (α)
, for 0 < α < u < 1. (13)

Interestingly, the previous condition is satisfied for all Archimedean families for
which the relation θ ≤ θ∗ ⇒ Cθ(U, V ) �st Cθ∗(U

∗, V ∗) holds (see, e.g., copulas in
Table 2). Indeed, starting from the expression of Kendall distribution function for
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Archimedean copulas (see Table 1), one can readily show that the previous relation
yields (13). As a result, from Proposition 8, we have

θ ≤ θ∗ ⇒ VaR1
α(X

∗, Y ∗) ≤ VaR1
α(X,Y ). (14)

Then, for copulas in Table 2, the multivariate VaR is non-increasing with respect to
the dependence parameter θ (coordinate by coordinate). In particular, this means
that limit behaviors of dependence parameters are associated with bounds for our
multivariate risk measure in the case of Archimedean copula. For instance, if we
denote by VaR1

(α,θ)(X,Y ) the first component of the bivariate VaR for a vector

(X,Y ) with a Clayton dependence structure with parameter θ, we get from Table
3 the following comparison result:

VaR1
(α,∞)(X,Y ) ≤ VaR1

(α,θ)(X,Y ) ≤ VaR1
(α,−1)(X,Y ), (15)

for all α ∈ (0, 1) and all θ ∈ (−1,∞). Note that the lower bound corresponds to
comonotonic random variables, so that VaR1

(α,∞)(X,Y ) = VaRα(X) = α for random

variables X,Y with uniform margins (see Table 3). The upper bound corresponds
to counter-monotonic random variables, so that VaR1

(α,−1)(X,Y ) = 1+α
2 for random

variables X,Y with uniform margins, which turns to be also equal to CTEα(X) in
that case, where CTE stands for the univariate Conditional-Tail-Expectation defined
in Section 3 (see (17)).

2.5 Behavior of multivariate VaR with respect to risk

level

In order to study the behavior of the multivariate Value-at-Risk with respect to
risk level α, we need to introduce the positive regression dependence concept. For
a bivariate random vector (X,Y ) we mean by positive dependence that X and Y

are likely to be large or to be small together. An excellent presentation of positive
dependence concepts can be found in Chapter 2 of the book by Joe (1997). A posit-
ive dependence concept that will be useful in the following was called by Lehmann
(1966) positive regression dependence (PRD) but most of the authors use the term
stochastically increasing (SI) (see Nelsen, 1999; Section 5.2.3).

Definition 7 (Positive regression dependence). A bivariate random vector (X,Y )
is said to admit positive regression dependence with respect to X, PRD(Y |X), if

[Y |X = x1] �st [Y |X = x2], ∀x1 ≤ x2. (16)

Clearly condition in (16) is a positive dependence notion (see Section 2.1.2 in Joe,
1997). In the following, a few examples are used to illustrate the dependence concept
in Definition 7.
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Let f(x1, x2) =
1

(2π)(1−ρ2)1/2
e

−
1
2 (x21+x22−2ρ x1 x2)

(1−ρ2) , be the bivariate normal density with

ρ ∈ (−1, 1). Then if ρ > 0 we obtain PRD(X2|X1) (see Example 2.1 in Joe,
1997).

We consider the bivariate copula (4.2.6) in Table 4.1 in Nelsen (1999): C(u, v) =

1− [(1−u)θ+(1−v)θ− (1−u)θ (1−v)θ]
1
θ , with θ ∈ [1,∞). Then PRD(V |U),

for each θ ∈ [1,∞) (see Example 2.3 in Joe, 1997).

From Definition 7, it is straightforward to derive the following result.

Proposition 9. Consider a d–dimensional random vector X, satisfying the regu-
larity conditions, with marginal distributions FXi, for i = 1, . . . , d, and copula C.
Let Ui = FXi(Xi) and U = (U1, . . . , Ud). Then it holds that :

If (Ui, C(U)) is PRD(Ui|C(U)) then VaRi
α(X) is a non-decreasing function of α.

The proof of Proposition 9 essentially comes down from formula (10) and Definition
7.

Proof: We have [Ui|C(U) = α1] �st [Ui|C(U) = α2], ∀α1 ≤ α2. As in the proof
of Proposition 8,

E[QXi(Ui)|C(U) = α1 ] ≤ E[QXi(Ui)|C(U) = α2 ].

Then VaRi
α1
(X) ≤ VaRi

α2
(X), for α1 ≤ α2. Then VaRi

α(X) is a non-decreasing
function of α. ✷

Note that behavior of the multivariate VaR with respect to a change in the risk
level does not depend on marginal distributions of X.

Here is an illustration of Proposition 9 in the bivariate Archimedean case.

Remark 4. Note that each component of VaR is increasing with respect to α for all
random couples with an Archimedean copula dependence structure. Indeed, from
formula (12), it is straightforward to show that P[U > u|C(U, V ) = α] is a non-
decreasing function of α, for all u, then PRD(U |C(U, V )) and PRD(V |C(U, V ))
properties are satisfied in the bivariate Archimedean case.

3 Multivariate Conditional-Tail-Expectation

As well as in the univariate case, the multivariate VaR at a predetermined level α
does not give any information about the thickness of the upper tail of the distribution
function. This is a considerable shortcoming of the VaR measure because in practice
we are not only concerned with the frequency of the default but also with the severity
of loss in case of default. In order to overcome this problem, another risk measure
has recently received growing attentions in the insurance and finance literature: the
Conditional-Tail-Expectation (CTE). Following Artzner et al. (1999) and Dedu and
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Ciumara (2010), for a continuous loss distribution function FX the CTE at level α
is defined by

CTEα(X) = E[X |X ≥ VaRα(X) ], (17)

where VaRα(X) is the univariate Value-at-Risk introduced above. For a compre-
hensive treatment and for references to the extensive literature on VaRα(X) and
CTEα(X) one may refer to Denuit et al. (2005).

In the following, we propose a multivariate generalization of the bivariate Conditional-
Tail-Expectation, previously introduced by Di Bernardino et al. (2011).

Definition 8. Consider a d–dimensional random vector X satisfying the regu-
larity conditions. For α ∈ (0, 1), we define the multivariate α-Conditional-Tail-
Expectation by

CTEα(X) = E[X|X ∈ L(α)] =







E[Xi |X ∈ L(α) ]
...

E[Xd |X ∈ L(α) ]






.

Analogously,

CTEα(X) = E[X|F (X) ≥ α] =







E[X1 |F (X) ≥ α ]
...

E[Xd |F (X) ≥ α ]






.

From now on, we denote by CTE1
α(X), . . ., CTEd

α(X) the components of the vec-
tor CTEα(X). Note that this multivariate Conditional-Tail-Expectation is a nat-
ural extension of the univariate one. Moreover, if X is an exchangeable vector,
CTEi

α(X) = CTEj
α(X), for i, j = 1, . . . , d.

From Definition 8 and formula (7) we write, for α ∈ (0, 1)

CTEi
α(X) =

∫

x∈L(α)
xi

fX(x1, . . . , xd)

K(α)
dx1 · · · dxd

=

∫ 1
α

(

∫∞

QXi
(γ) xf(Xi,F (X))(x, γ)dx

)

dγ
∫ 1
α K ′(γ)dγ

. (18)

Formula (18) will be useful in Proposition 12 and Corollary 16 below.

Bivariate Archimedean copula case

We consider here a random couple (X,Y ) which follows a Clayton copula distri-
bution with parameter θ ≥ −1 as in (9). In that case, X and Y are uniformly
distributed. We obtain in Table 4 a closed-form expression for the multivariate
CTE in that case.
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Copula θ CTE1
α,θ(X, Y )

Clayton Cθ (−1,∞) 1
2

θ
θ−1

θ−1−α2(1+θ)+2α1+θ

θ−α(1+θ)+α1+θ

Counter-monotonic W −1 1
4

1−α2+2 lnα
1−α+lnα

Independent Π 0 1
2

(1−α)2

1−α+α lnα

Π
Σ−Π

1 1
2

1+α2(2 lnα−1)

(1−α)2

Comonotonic M ∞ 1+α
2

Table 4: CTE1
α,θ(X,Y ) for different copula dependence structures.

Interestingly, one can readily show that
∂CTE1

α,θ

∂α ≥ 0 and
∂CTE1

α,θ

∂θ ≤ 0, for θ ≥ −1
and α ∈ (0, 1). This proves that, for Clayton-distributed random vectors, the
components of our CTE are increasing functions of the risk level α and decreasing
functions of the dependence parameter θ. Note also that, in the comonotonic case,
our CTE corresponds to the vector composed of the univariate CTE associated with
each component. These properties are illustrated in Figure 3 where CTE1

α,θ(X,Y )
is plotted as a function of the risk level α for different values of θ. Note that we
obtained exactly the same feature for the multivariate VaR (see Figure 2). The
previous empirical behaviors will be formally investigated in next sections.
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Figure 3: Behavior of CTE1
α,θ(X,Y ) = CTE2

α,θ(X,Y ) with respect to risk level α for differ-

ent values of dependence parameter θ. The random vector (X,Y ) follows a Clayton copula

distribution with parameter θ. The horizontal line corresponds to E[X ] = 1
2 .

3.1 Invariance properties

As in Section 2.1, we analyze here the multivariate Conditional-Tail-Expectation
in terms of classical invariance properties of risk measures (we refer the interested
reader to Artzner et al., 1999). The following proposition proves positive homogen-
eity and translation invariance for CTEα(X).

Proposition 10. Consider a random vector X satisfying the regularity conditions.
For α ∈ (0, 1), CTEα(X) satisfies the following properties:

Positive Homogeneity: ∀ c ∈ R
d
+,

CTEα(cX) = cCTEα(X) =







c1 E[X1 |F (X) ≥ α ]
...

cd E[Xd |F (X) ≥ α ]






.

Translation Invariance: ∀ c ∈ R
d
+,

CTEα(c+X) = c+CTEα(X) =







c1 + E[X1 |F (X) ≥ α ]
...

cd + E[Xd |F (X) ≥ α ]






.

Arguments completely analogous to those in the proof of Proposition 3 are used to
prove Proposition 10.
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Remark 5. For α = 0, using both the definition of CTEα(X) and the definition of
the α-upper level set L(α), we obtain

CTE0(X) =







E[X1 ]
...

E[Xd ]






= E[X].

Then, as in the univariate case, the multivariate CTE is equal to the expected value
of the underlying random vector for α = 0.

3.2 Comparison with VaR and univariate CTE

In the following, we prove a comparison result between CTEα(X) and univariate
Value-at-Risk (see Proposition 11).

Proposition 11. Consider a d–dimensional random vector X satisfying the regu-
larity conditions. Assume that its multivariate distribution function F is quasi
concave. Then, for any i = 1, . . . , d, the following inequality holds:

CTEi
α(X) ≥ VaRα(Xi), for all α ∈ (0, 1).

The proof is completely analogous to the proof of Proposition 4.

Let us now compare multivariate CTE (see Definition 8) with multivariate VaR (see
Definition 6).

Proposition 12. Consider a d–dimensional random vector X satisfying the reg-
ularity conditions. If VaRi

α(X) is a non-decreasing function of α, then it holds
that

CTEi
α(X) ≥ VaRi

α(X), for all α ∈ (0, 1).

Proof: Let us remark that, as in the univariate case, the multivariate Conditional-
Tail-Expectation can be represented as an integral transformation of the multivariate
Value-at-Risk :

CTEi
α(X) =

1

K(α)

∫ 1

α
K ′(γ)VaRi

γ(X)dγ. (19)

Since K ′ is non-negative and VaRi
γ(X) is assumed to be non-decreasing with respect

to γ, we obtain

CTEi
α(X) ≥ 1

K(α)

∫ 1
α K ′(γ)VaRi

α(X)dγ = K(1)−K(α)

K(α)
VaRi

α(X) = VaRi
α(X),

for α ∈ (0, 1). ✷

Analogously to Proposition 5, we can prove that, for comonotonic random vectors,
components of the multivariate CTE are equal to univariate CTE of the correspond-
ing marginals.
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Proposition 13. Consider a comonotonic non-negative d–dimensional random vec-
tor X. Then, for all α ∈ (0, 1), it holds that

CTEi
α(X) = CTEα(Xi),

for i = 1, . . . , d.

Proof: Let α ∈ (0, 1). If X = (X1, . . . , Xd) is a comonotonic non-negative random

vector then there exist a random variable Z and d increasing functions g1, . . . , gd
such that X is equal to (g1(Z), . . . , gd(Z)) in distribution. So the set {(x1, . . . , xd) :
F (x1, . . . , xd) ≥ α} becomes {(x1, . . . , xd) : min{g−1

1 (x1), . . . , g
−1
d (xd)} ≥ QZ(α)}.

Then, trivially, CTEi
α(X) = E[Xi |Xi ≥ QXi(α) ], for i = 1, . . . , d. Hence the result.

✷

Remark 6. Consider a random couple (X,Y ) with standard uniform marginals and
independent copula. For all α ∈ (0, 1), it holds that

CTE1
α(X,Y ) ≥ CTEα(X), (20)

CTE2
α(X,Y ) ≥ CTEα(Y ). (21)

Indeed CTE1
α(X,Y )− CTEα(X) = −1

2
α (−2α+α lnα+2+lnα)

−α+α lnα+1 ≥ 0, for all α ∈ (0, 1).

Then in this particular case, coordinate by coordinate, CTEα(X,Y ) is a more con-
servative measure than the usual univariate CTE of marginals.

3.3 Behavior of multivariate CTE with respect to mar-

ginal distributions

In this section we study the behavior of the multivariate Conditional-Tail-Expectation
in Definition 8 with respect to a variation of marginals. Results presented below
provide a natural multivariate extension of results in the univariate setting (see,
e.g., Denuit and Charpentier, 2004).

Analogously to Proposition 6, we can state the following result.

Proposition 14. Let X and Y be two d–dimensional random vector satisfying the

regularity conditions and with the same copula structure C. If Xi
d
= Yi, then it holds

that

CTEi
α(X) = CTEi

α(Y), for all α ∈ (0, 1).

Proof: Let F1(x) = F1(x1, . . . , xd) = C(FX1(x1), . . . , FXd
(xd)). We recall that

CTEi
α(X) =

∫

x∈L(α)
xi

fX(x1, . . . , xd)

K(α)
dx1 · · · dxd.

We remark that K(α) depends solely on the copula structure (for further details see
Theorem 9 in Belzunce et al., 2007). Then, for a fixed copula C, K(α) is invariant
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to a change of marginals (see Section 1). Let u := (u1, . . . , ud). Using a change of
variables, we obtain:

CTE1
α(X) =

(

∫

u:C(u)≥α
QXi(ui)

∂d

∂1 · · · ∂d
C(u) du

)

1

K(α)
,

for α ∈ (0, 1). Hence the result. ✷

In the following we analyze how the CTEα(X) behaves when the marginal random
variables increase with respect to some particular stochastic orders (see, e.g., Section
3.3 in Denuit et al., 2005). Using Definitions 1-2 and Lemma 1 in Section 1 we can
state the following result.

Proposition 15. Let X and Y be two d–dimensional random vector satisfying the
regularity conditions and with the same copula structure C. If Xi �D Yi then it
holds that

CTEi
α(X) ≤ CTEi

α(Y), for all α ∈ (0, 1). (22)

Proof: Let us consider the function ∆ defined by

α 7→ ∆(α) = K(α) (CTEi
α(Y)− CTEi

α(X))

=

(

∫

u:C(u)≥α
(QYi(ui)−QXi(ui))

∂d

∂1 . . . ∂d
C(u) du

)

1

K(α)
,

for α ∈ (0, 1). Since Xi �D Yi yields E[Xi] ≤ E[Yi] then ∆(0) = E[Yi] − E[Xi] ≥ 0
and obviously limt→1∆(t) = 0. Furthermore, from the definition of the danger-
ousness order relation, we observe that there exists some real number c such that
QXi(t) ≥ QYi(t), for all t ∈ (0, FXi(c)) and QXi(t) ≤ QYi(t), for all t ∈ (FXi(c), 1).
So ∆ first increases on (0, FXi(c)) and then decreases on (FXi(c), 1). It thus remains
non-negative and ensures that CTEi

α(X) ≤ CTEi
α(Y), for all α ∈ (0, 1). Hence the

result. ✷

From Proposition 15, if we analyze the marginal behavior without varying the de-
pendence structure we have that CTEα(X) associated with a more dangerous mar-
ginal distribution will be greater. This means that this measure induces a greater
coverage in the case of more dangerous risk (in the sense of the dangerousness or-
der). Note that if Xi �D Yi for all i = 1, . . . , d, we obtain CTEα(X) ≤ CTEα(Y),
for all α ∈ (0, 1).

In the following example we provide an illustration of Propositions 14 and 15.

Example 2. We consider a bivariate Clayton copula with parameter 1 and five
different bivariate random vectors (X,Yi), for i = 1, . . . , 5. Let X ∼ Exp(1), Y1 ∼
Exp(2), Y2 ∼ Burr(2, 1), Y3 ∼ Exp(1), Y4 ∼ Fréchet(4) and Y5 ∼ Burr(4, 1). We
assume the same copula structure for all vectors. We calculate CTEα(X,Yi), for
i = 1, . . . , 5. The results are gathered in Table 5. As proved in Proposition 14
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we obtain an invariant property on the first coordinate of all CTEα(X,Yi), for
i = 1, . . . , 5.

Remark that CTEα(X,Y3) is a case of an exchangeable continuous random vector
then we have CTE1

α(X,Y3) = CTE2
α(X,Y3). Furthermore, as QX(α) = 2QY1(α),

then CTE1
α(X,Y1) = 2CTE2

α(X,Y1), for α ∈ (0, 1) (see Table 5).

Since Y1 �D Y5 �D Y4 �D Y2, then, for any level α ∈ (0, 1),

CTE2
α(X,Y1) ≤ CTE2

α(X,Y5) ≤ CTE2
α(X,Y4) ≤ CTE2

α(X,Y2). .

Notice that the relation �D is not transitive, since if F and G cross once, and G

and H cross once, then F and H may cross twice. However, in the simple cases
considered in Example 2, this situation does not happen and therefore the transitive
relation is valid. Conversely Y3, Y4 and Y3, Y5 are not ordered in dangerousness
sense, and also (CTE2

α(X,Y3),CTE
2
α(X,Y4)) and (CTE2

α(X,Y3), CTE
2
α(X,Y4)) are

not ordered for any level α ∈ (0, 1). As before we can also verify that CTEα(X,Y1)
≤ CTEα(X,Y3) ≤ CTEα(X,Y2), for any level α ∈ (0, 1).

α CTEα(X, Y1) CTEα(X, Y2) CTEα(X, Y3) CTEα(X, Y4) CTEα(X, Y5)

0.10 (1.188, 0.594) (1.188, 1.838) (1.188, 1.188) (1.188, 1.315) (1.188, 1.229)

0.24 (1.449, 0.724) (1.449, 2.218) (1.449, 1.449) (1.449, 1.431) (1.449, 1.366)

0.38 (1.727, 0.864) (1.727, 2.661) (1.727, 1.727) (1.727, 1.555) (1.727, 1.506)

0.52 (2.049, 1.025) (2.049, 3.235) (2.049, 2.049) (2.049, 1.704) (2.049, 1.667)

0.66 (2.454, 1.227) (2.454, 4.074) (2.454, 2.454) (2.454, 1.902) (2.454, 1.876)

0.80 (3.039, 1.519) (3.039, 5.591) (3.039, 3.039) (3.039, 2.219) (3.039, 2.202)

0.90 (3.768, 1.884) (3.768, 8.175) (3.768, 3.768) (3.768, 2.675) (3.768, 2.665)

0.99 (6.102, 3.059) (6.102, 26.59) (6.102, 6.102) (6.102, 4.813) (6.102, 4.811)

Table 5: CTEα(X,Yi), for i = 1, . . . , 5, with the same copula Clayton copula with parameter 1,

X ∼ Exp(1) and Y1 ∼ Exp(2); Y2 ∼ Burr(2, 1); Y3 ∼ Exp(1); Y4 ∼ Fréchet(4); Y5 ∼ Burr(4, 1).

3.4 Behavior of multivariate CTE with respect to risk

level

As in Section 2.5 we study the behavior of the multivariate Conditional-Tail-Expectation
with respect to risk level α. Also in this case the relationship between CTEα(X)
and the level α will be connected to some positive dependence concepts.

Corollary 16. Consider a d–dimensional random vector X satisfying assumptions
of Proposition 12, then CTEi

α(X) is a non-decreasing function of risk level α.
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Proof: Let us consider the i-th coordinate CTEi
α(X). From (19) we have

d

dα
CTEi

α(X) =
K ′(α)

K(α)

[

CTEi
α(X)−VaRi

α(X)
]

.

Using Proposition 12 the latter expression is non-negative for any level α ∈ (0, 1).
✷

Corollary 16 is consistant with the univariate risk measure theory. Indeed in the con-
tinuous univariate framework, the Conditional-Tail-Expectation is non-decreasing
with respect to α (see, e.g., Denuit and Charpentier, 2004).

Proofs of Proposition 12 and Corollary 16 use direct calculations. We get below an
alternative approach based to the positive dependence concepts (see Joe, 1997).

Definition 9 (Right-tail increasing). A bivariate random vector (X,Y ) is right-tail
increasing with respect to X, RTI(Y |X), if

[Y |X > x1] �st [Y |X > x2], ∀x1 ≤ x2. (23)

Remark that in (23), Y is more likely to take large values if X increases.

Definition 10 (Right conditional increasing). A bivariate random vector (X,Y ) is
right conditional increasing with respect to X, RCI(Y |X), if

[Y |X = x] �st [Y |X > x], ∀x.

For more details on these positive dependence concepts, the reader is referred to
Belzunce et al. (2007). In particular in the case of absolutely continuous random
vector (X,Y ) it holds that

PRD(Y |X) ⇒ RTI(Y |X) ⇐⇒ RCI(Y |X), (24)

(see Lemma 15 in Belzunce et al., 2007). Then, using Definitions 9-10, we can
alternatively prove Proposition 12 and Corollary 16.

Remark 7. We note that, if (X,Y ) has one of the positive dependence proper-
ties mentioned above, then all random vectors with the same copula than (X,Y )
have also the same property (see Nelsen, 1999; Corollary 5.2.11). For instance, if
PRD(Y |X) then also PRD(a2(Y )|a1(X)), for some increasing functions a1 and a2.

In the univariate setting the Conditional-Tail-Expectation contains a safety loading
i.e., CTEα(X) ≥ E[ X ], ∀α ∈ (0, 1) (see Section 2.4.3.3 in Denuit et al., 2005). The
safety loading should cover the fluctuations of loss experience. Corollary 17 below
provides a similar property also for our multivariate CTE.

Corollary 17. Under assumptions of Corollary 16, for all α ∈ (0, 1), it holds that

CTEi
α(X) ≥ E[Xi],
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Remark 8. To summarize, under assumptions of Proposition 4 and Proposition 9 it
holds that

CTEi
α(X) ≥ VaRi

α(X) ≥ VaRα(Xi),

for α ∈ (0, 1), with CTEi
α(X,Y ) and VaRi

α(X,Y ) non-decreasing functions of α.
We remark that this non-decreasing property of our measures depends only on the
dependence structure and not on the marginal distribution functions. Furthermore,
from Remark 4 we know that, in the bivariate Archimedean class of copulas, these
assumptions are automatically satisfied.

In the following we provide illustrations of Remark 8 in some particular bivariate
Archimedean cases: Frank and Ali-Mikhail-Haq copulas (see Figures 4 and 5).

Figure 4: Frank copula with standard uniform marginals, parameter θ = 2 (left), parameter

θ = −10 (right).
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Figure 5: Ali-Mikhail-Haq copula with standard uniform marginals, parameter θ = −0.7 (left),

parameter θ = 0.99 (right).

Conclusion and perspectives

In this paper, we proposed an extension of the classical Value-at-Risk and
Conditional-Tail-Expectation risk measures for continuous random vectors. As in
the Embrechts and Puccetti (2006)’s approach, the introduced risk measures are
based on multivariate generalization of quantiles but they are able to quantify risks
in a much more parsimonious and synthetic way: the risk of a d-dimensional port-
folio is evaluated by a point in R

d
+. Multivariate risk measures may be useful for

some applications where risks are heterogeneous in nature or because they cannot
be diversify away by an aggregation procedure.

We analyzed our multivariate risk measures in several directions. Interestingly, we
shown that many properties satisfied by the univariate VaR and CTE can be trans-
lated to our proposed multivariate versions under some conditions. In particular, the
proposed VaR and CTE both satisfy the positive homogeneity and the translation
invariance property which are parts of the classical axiomatic properties of Artzner
et al., 1999. Thanks to the theory of stochastic orders, we also analyzed the effect
of some risk perturbations on these measures. In the same vein as for the univariate
VaR and CTE, we proved that an increase of marginal risks yield an increase of our
multivariate VaR and CTE. We also gave the condition under which an increase
of the risk level tends to increase components of the multivariate extensions and
we show that these conditions are satisfied for bivariate families of Archimedean
copulas. We also study the effect of dependence between risks on individual con-
tribution to the multivariate risk measure and we prove that for different bivariate
families of Archimedean copulas, an increase of the dependence parameter tends to
lower the components of the VaR and the CTE. At the extreme case where risks
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are perfectly dependent or comonotonic, our multivariate risk measures is equal to
the vector composed of univariate risk measures associated with each component.
This feature is in line with the observation made by Zhou (2010): “When regu-
lating a system consisting of similar institutions, or in other words, the system is
highly interconnected, considering a micro-prudential regulation can be sufficient for
reducing the overall systemic risk.” (Zhou, 2010).

In a future perspective, it should be interesting to discuss the possible extensions
of our risk measures to the case of discrete distribution functions, using “discrete
level sets” as multivariate definitions of quantiles. For further details the reader is
referred, for instance, to Laurent, 2003. Another subject of future work should be
to compare our multivariate Conditional-Tail-Expectation and Value-at-Risk with
existing multivariate generalizations of these measures, both theoretically and ex-
perimentally.
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A Gumbel copula case

We consider Gumbel bivariate family of copulas:

Cθ(x, y) = e−((− lnx)θ+(− ln y)θ)
1
θ
,

for θ ∈ [1,∞), (x, y) ∈ [0, 1]2 (e.g. see Section 3.3.1 in Nelsen, 1999) and X, Y
standard uniform marginals. For θ = 1 we have the independent copula C1(x, y) =
Π(x, y) = x y; for θ = ∞ the Fréchet bound M(x, y) = min{x, y} (comonotonic
random variables). In this case we get

CTEα(X,Y ) =

(

t(α, θ)
t(α, θ)

)

,

with

t(α, θ) = 1
2

lnα(θ+θ2−α2θ−α2θ2)+2α
3
2 (− lnα)−

θ
2 +2WM( 1

2
θ, 1

2
θ+ 1

2
,− lnα)+2α2(lnα)2+2α2(lnα)2θ

(1+θ) lnα(θ−α θ+α lnα) ,

whereWM is the Whittaker functionWM(µ, ν, z) = exp−
1

2
z z

1

2
+νHpy( 12 + ν − µ, 1 + 2ν; z)

and Hpy is the Kummer’s confluent hypergeometric function.

Remark thatX and Y are exchangeable, then obviously CTE1
α,θ(X,Y ) = CTE2

α,θ(X,Y ).

Furthermore
∂CTE1

α,θ

∂α ≥ 0 and
∂CTE1

α,θ

∂θ ≤ 0, for θ ≥ 1 and α ∈ (0, 1). In analogy
with Figure 3, in Figure 6 we propose a graphical illustration of CTE1

α,θ(X,Y ), in
Gumbel copula case, for different values of the dependence parameter θ and with
respect to risk level α.
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Figure 6: Behavior of CTE1
α,θ(X,Y ) = CTE2

α,θ(X,Y ) with respect to risk level α for differ-

ent values of dependence parameter θ. The random vector (X,Y ) follows a Gumbel copula

distribution with parameter θ. The horizontal line corresponds to E[X ] = 1
2 .
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