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In this paper, we study a variant of the Matching Pursuit named Matching Pursuit Shrinkage. Similarly to the Matching Pursuit it seeks for an approximation of a datum living in a Hilbert space by a sparse linear expansion in an enumerable set of atoms. The difference with the usual Matching Pursuit is that, once an atom has been selected, we do not erase all the information along the direction of this atom.

Doing so, we can evolve slowly along that direction. The goal is to attenuate the negative impact of bad atom selections.

We analyse the link between the shrinkage function used by the algorithm and the fact that the result belongs to an l p space.

I. INTRODUCTION

A. Recollection on sparse approximation

Finding a sparse approximation of a data in a Hilbert space is a reccurent problem in applied science.

The problem is to approximate a datum v ∈ H (H is a Hilbert space of finite or infinite dimension) by a linear expansion in a dictionary of known atoms (ψ i ) i∈I :

v ∼ i∈I λ i ψ i ,
where (λ i ) i∈I ∈ R I . The approximation is needed because v is usually corrupted by noise. Also, it is sometimes preferable to search for an approximation which is coarser than the noise requires. Doing so we favors desired/expected properties of the coordinates (λ i ) i∈I .

Moreover, the dictionary is usually overcomplete. This offers the freedom to select among all the possible sets of coordinates one of those agreeing with some prior knowledge or desired property of the coordinates. The property receiving most of the attention is sparsity. Heuristically, we select the set of coordinates offering the "simplest" explanation of the datum. Rigorously, for a given accuracy after reconstruction, we want l 0 ((λ i ) i∈I ) def = #{i ∈ I, λ i = 0}, to be as small as possible, where # denotes the cardinality of a set.

Unfortunately, problems similar to    minimize l 0 ((λ i ) i∈I )

under the constraint i∈I λ i ψ i -v ≤ τ (1) 
where τ > 0 and . is the norm associated with the scalar product of the considered Hilbert space, are known to be NP-Hard in general (see [START_REF] Davis | Adaptive greedy approximations[END_REF]).

As a conclusion, solving [START_REF] Davis | Adaptive greedy approximations[END_REF] is both an open and interesting problem. It receives a lot of attention and it is impossible to list all the contributions to its resolution. Before describing the most popular technics, we give in the next section the algorithm studied in this paper. It will then be simpler to motivate our proposal.

B. The Matching Pursuit Shrinkage

The Matching Pursuit Shrinkage (MPS) is very similar to the usual Matching Pursuit (MP) algorithm (see [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]). The main difference is that it uses a shrinkage 1 function θ : R → R . We describe the algorithm in Table I.

• Input : A datum v, a dictionary (ψi)i∈I , a shrinkage function θ and α ∈ [0, 1]

• Output : Coordinates (sn, γn) n∈N

• The algorithm

-Initialize R 0 v = v -Repeat until convergence (loop in n)
1) Select a well correlated atom ψγ n such that

| ψγ n , R n v | ≥ α sup i∈I | R n v, ψi |; (2) 
2) Evolve along ψγ n

R n v = snψγ n + R n+1 v, (3) 
where Several convergence criterion might be considered but, for simplicity, we always assume that the algorithm stops whenever s n = 0.

sn = θ(Mn) with Mn = R n v, ψγ n . (4) 
Whenever they exist, we can construct coordinates

λ i = n∈N:γn=i s n , ∀i ∈ I (5)
from the result of the MPS. We also consider (when they exist)

u = i∈I λ i ψ i = +∞ n=0 s n ψ γn .
Notice that if we sum (3) for n = 0 . . . N -1, we obtain

v = N -1 n=0 s n ψ γn + R N v. (6) 
This explains the name "residual error" for R N v.

C. Other algorithms promoting sparsity

One of the oldest and simplest algorithm for building a sparse approximation is the Matching Pursuit (MP) [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] or Projection Pursuit [START_REF] Friedman | Projection pursuit regression[END_REF]. It corresponds to the algorithm of Table I when θ is the identity (i.e.

s n = M n ).
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In finite dimension (see [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]) and in infinite dimension but under restrictive conditions on the dictionary and the signal (see [START_REF] Gribonval | On the exponential convergence of matching pursuits in quasi-incoherent dictionaries[END_REF]), the MP is known to converge exponentially. When no hypotheses are made on the dictionary, we only know that the MP converges (see [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]). Some examples show that we cannot expect a "good" converge rate in the most general setting (see [START_REF] Devore | Some remarks on greedy algorithms[END_REF]). Though the MP and the best k-term approximation have a similar convergence, when the dictionary is "quasi-orthogonal" (see [START_REF] Temlyakov | Greedy algorithms and m-term approximation with regard to redundant dictionaries[END_REF]).

There exists "fast" variants of the MP (see [START_REF] Gribonval | Harmonic decomposition of audio signals with matching pursuit[END_REF]). Also, a real-time implementation of the MP is available for audio signal processing (see [START_REF] Krstulovic | MPTK: Matching Pursuit made tractable[END_REF]). The improved performance are obtained by carefully optimizing the structures, algorithms and their implementation. In particular, the update of ( R n v, ψ i ) i∈I and the computation of γ n satisfying (2) (in Table I) are implemented in a very efficient way. Each iteration of the MP is typically of complexity O(log(#I)). These optimization are possible because one coordinate only is updated. If K coordinates are modified at each iteration, we obtain a complexity O(K +log(#I)).

This might be less favorable when K is large. Althought its approximation performances are not as good as most modern models/algorithms, these acceleration make the MP a usefull algorithm.

The accelerations decribed in [START_REF] Krstulovic | MPTK: Matching Pursuit made tractable[END_REF] can be applied to the MPS, as described in Table I. The potential advantage of introducing a shrinkage function θ is to attenuate the mistakes in the selection of a coordinate γ n . Let us underline that avoiding wrong selection of coordinates is one of the key ingredient of modern variants of the MP such as CoSaMP [START_REF] Needell | Cosamp: Iterative recovery from incomplete and inaccurate samples[END_REF], Subspace Pursuit [START_REF] Dai | Subspace pursuit for compressive sensing signal reconstruction[END_REF] and Iterative Hard Thresholding [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF].

However, especially when the solution we are looking for is moderately sparse, those algorithms are more computationaly intensive.

Let us go back in time. The most famous variant of the MP is the Orthogonal Matching Pursuit (OMP)

(see [START_REF] Pati | Orthogonal matching pursuit : Recursive function approximation with applications to wavelet decomposition[END_REF]). In Table I, it replaces the update rule (3) by an orthogonal projection onto the subspace generated by the selected atoms. It is known to provide sparser solutions than the regular MP. From the computational point of view, it has two drawbacks. Firstly, although several attemps have been made to optimize it (see [START_REF] Mallat | Adaptive time frequency decompositions[END_REF], [START_REF] Cotter | Forward sequential algorithms for best basis selection[END_REF]), the orthogonal projection is computationaly expensive and often requires too much memory. Secondly, every selected coordinate is modified. As a consequence, the adaptation of the optimization performed in [START_REF] Krstulovic | MPTK: Matching Pursuit made tractable[END_REF] would only be efficient when the result is very sparse. Algorithms such as the Gradient Pursuit (see [START_REF] Blumensath | Gradient pursuits[END_REF]) approximately solve the OMP at a cost more similar to the cost of the MP. However, at each iteration, they typically update all the selected coordinates. The computational cost of the Gradient Pursuit is therefore more important than the cost of a fast implementation of the MP, when the solution is moderetely sparse.

Finally, the l 1 regularization (also named Basis Pursuit and Basis Pursuit Denoising, see [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] 

λ i ψ i 2 + β i∈I |λ i |
and it is very efficient for providing sparse approximations of v ∈ H. However, its resolution remains (and will probably remain in a near futur) a challenge for large scale problems. A famous (and representative) solver of the l 1 regularization problem is the Iterative Soft Thresholding (see [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]). It updates all the coordinates at each iteration and often requires many iterations before it reaches a suitable convergence level. It is interesting to notice that, in this context, the impact of the choice of the shrinkage function is well understood (see [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF]): Every proximal threholding function corresponds to a different objective function.

Inspired by the l 1 regularization problem, a "coordinatewise optimization algorithms" has been proposed in [START_REF] Friedman | Pathwise coordinate optimization[END_REF]. It performs a soft thresholding, sequencially on each coordinate. The "greedy coordinate descent" proposed in [START_REF] Wu | Coordinate descent algorithms for lasso penalized regression[END_REF] is similar but selects the coordinates according to a criteria similar to the MP. Because they only update one coordinate at each iteration, these algorithms can benefit from the optimization proposed in [START_REF] Krstulovic | MPTK: Matching Pursuit made tractable[END_REF].

D. Notations

The following notations and hypotheses hold all along the paper.

The datum v belongs to a Hilbert space H. The space H might be of finite or infinite dimension. For any two elements u and w in H, their scalar product is denoted by u, w . As usual, the norm of u ∈ H is defined by

u def = u, u . The dictionnary (ψ i ) i∈I is made of atoms ψ i ∈ H, such that ψ i = 1, for all i ∈ I.
We sometimes denote the dictionary by D. For simplicity, we assume that I is enumerable. In particular, the supremum in (2) may not be reached. In such a case, the MPS is only defined for α < 1.

For any u ∈ H, we denote u

D def = sup i∈I | u, ψ i |. We denote def = Span{D} (7) 
the closed linear span of the elements of D. We denote V ⊥ the orthogonal complement of V in H. We denote the orthogonal projection onto V and V ⊥ by P V and P V ⊥ .

The sequences (s n ) n∈N , (γ n ) n∈N , (R n v) n∈N are always defined according to Table I. The coordinates (λ i ) i∈I are according to [START_REF] Devore | Some remarks on greedy algorithms[END_REF].

We also use the standard notations : sgn(t) = 1, if t ≥ 0 and -1, if t < 0; # denotes the cardinal of a set; ⌊.⌋ is the floor function.

July 8, 2009 DRAFT

E. Overview

In Section II, we define shrinkage, thresholding and gap functions. We also illustrate these definitions by several examples. In section III, we prove that as soon as θ is a shrinkage function: (R n v) n∈N converges and n∈N s n ψ γn exists. We also prove that (s n ) n∈N is square summable. In Section IV, we prove that when θ is a thresholding function, (s n ) n∈N is absolutely summable. This implies in particular that (λ i ) i∈I exists and is absolutely summable. In Section V, we prove that when θ is a gap function, the sequence (s n ) n∈N is finite. Again, this implies that (λ i ) i∈I exists and is finite. Finally, in Section VI, we evaluate n∈N s n ψ γn -P V v D , when θ is a shrinkage function.

II. GENERAL SHRINKAGE FUNCTIONS

A. Definitions Definition 1: A function θ(•) : R → R is called a shrinkage function if and only if it satisfies:

1) θ(•) is nondecreasing, i.e, ∀t, t ′ ∈ R, t ≤ t ′ =⇒ θ(t) ≤ θ(t ′ ); 2) θ(•) shrinks the amplitude, i.e, ∀t ∈ R, |θ(t)| ≤ |t|.
Notice that this implies

θ(0) = 0, and 
θ(-t) ≤ 0 ≤ θ(t), ∀t ≥ 0. (8) 
Therefore, for any shrinkage function θ(•) and any t ∈ R, we know that:

if t ≥ 0, 0 ≤ θ(t) ≤ t and 0 ≤ θ(t)(t -θ(t)), if t ≤ 0, 0 ≥ θ(t) ≥ t and 0 ≤ θ(t)(t -θ(t)).
As a conclusion,

∀t ∈ R, θ(t)(t -θ(t)) ≥ 0. (9) 
The inequality (8) also garantees that 

∀t ∈ R, |t| |θ(t)| = tθ(t). (10 
τ -> 0, i.e. ∃τ > 0, ∀x ∈ R, |x| ≤ τ ⇒ θ(x) = 0. (11) 
If θ(•) is a thresholding function, we trivially have

0 < τ -≤ τ + .
The internal and external thresholds are illustrated on Figure 1. 

t 0 y y = θ(t) y = t -τ + τ -
gap(θ) def = inf t:θ(t) =0 θ 2 (t) + 2θ(t)(t -θ(t)). (12) 
If gap(θ) > 0, we call θ a gap shrinkage function and, if gap(θ) = 0, the function is called a non-gap shrinkage function.
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The following relation exists between the gap and the internal threshold of a shrinkage function. It proves in particular that any gap shrinkage function is a thresholding function.

Proposition 1: For any gap function θ(•), we have

gap(θ) ≤ τ -
where τ -is the internal threshold of θ(•).

Proof: The proof is given in Appendix.

B. Examples

Let us illustrate the above definitions through some examples.

1) For τ > 0, the soft thresholding function ρ τ (•) defined by

ρ τ (t) = sgn(t) • max(|t| -τ, 0).
is a thresholding function and it is a non-gap shrinkage function, i.e., gap(ρ τ ) = 0.

2) For τ > 0, the hard thresholding function defined by

h τ (t) =    t , if |t| > τ, 0 , otherwise. 
is a thresholding function and it is a gap shrinkage function with gap τ .

3) The identity function defined as:

i(t) = t, ∀t ∈ R, (13) 
is not a thresholding function and it is a non-gap shrinkage function.

4) For τ > 0, the Non-Negative Garrote threshold function (see [START_REF] Gao | Wavelet shrinkage denoising using the non-negative garrote[END_REF]) defined as:

δ G τ (t) = t max 0, 1 - τ 2 t 2 , ∀t ∈ R, (14) 
is a thresholding function and it is non-gap.

5) For 0 < τ 1 < τ 2 , the firm shrinkage function (see [START_REF] Gao | Waveshrink with firm shrinkage[END_REF]) defined as:

δ τ1,τ2 (t) =          0, if |t| ≤ τ 1 ; sgn(t) τ2(|t|-τ1) τ2-τ1 if τ 1 < |t| < τ 2 ; t, if |t| ≥ τ 2 , (15) 
is a thresholding function and it is non-gap.
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δ p τ (t) =    t, if |t| ≤ τ ; t -τ p t p-1 (sgn(t) p ), if |t| > τ, (16) 
a thresholding function and it is non-gap.

III. CONVERGENCE OF THE MP SHRINKAGE FOR A SHRINKAGE FUNCTION

This section is devoted to prove that under mild condition, the MP shrinkage algorithm converges.

Proposition 2: Let (ψ i ) i∈I be a normed dictionary, v ∈ H and θ(•) be a shrinkage function. For any M > 0 and any v ∈ H, the quantities defined in Table I satisfy:

v 2 = M -1 n=0 s 2 n + 2s n (M n -s n ) + R M v 2 . ( 17 
)
As a consequence, we have

v 2 ≥ M -1 n=0 s 2 n + R M v 2 , ( 18 
) +∞ n=0 s 2 n < +∞, (19) 
+∞ n=0 |s n | |M n | < +∞, ( 20 
) ( R n ) n∈N is nonincreasing. ( 21 
)
Proof: We can deduce from

R n+1 v = R n v -s n ψ γn ,
and ψ γn , ψ γn = 1 that

R n+1 v 2 = R n v 2 -2s n R n v, ψ γn + s 2 n = R n v 2 -2s n (M n -s n ) -s 2 n .
Summing these equalities for all n = 0, . . . , M -1, we obtain after simplification

R M v 2 = R 0 v 2 - M -1 n=0 (s 2 n + 2s n (M n -s n )).
We then obtain (17

) from R 0 v = v.
Using (9), we know that

s n (M n -s n ) = θ(M n )(M n -θ(M n )) ≥ 0.
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Together with [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] this leads to [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF].

Notice that this also provides [START_REF] Gao | Wavelet shrinkage denoising using the non-negative garrote[END_REF]. Moreover, [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF] garantees that ( M n=0 s 2 n ) M ∈N is a bounded increasing sequence. It converges and ( 19) holds. We also have

2 M -1 n=0 |s n | |M n | = 2 M -1 n=0 s n M n from (10) = v 2 -R M v 2 + M -1 n=0 s 2 n from (17) ≤ v 2 + +∞ n=0 s 2 n .
This ensures that (20) holds.

Now we can prove the convergence of the MP algorithm.

Theorem 1: Let (ψ i ) i∈I be a normed dictionary, v ∈ H and θ(•) be a shrinkage function. The sequences defined in (4) satisfy:

(R n v) n∈N converges.
As a consequence, +∞ n=0

s n ψ γn exists.

We denote the limit of (R n v) n∈N by R +∞ v and we trivially have

v = +∞ n=0 s n ψ γn + R +∞ v.
Proof: The proof is based on Jones' proof for the convergence of projection pursuit regressions (see [START_REF] Huber | Projection pursuit[END_REF]) and the proof of Theorem 1 in [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF].

First notice that the statement of the proposition is trivial for v = 0. We further assume that v = 0.

In order to prove the theorem, we prove that the sequence (R n v) n∈N is a Cauchy sequence. Before doing so, let us start with some preliminaries.

Notice first that for all w 1 , w 2 ∈ H, we have:

w 1 -w 2 2 = w 1 2 -w 2 2 -2 w 2 , w 1 -w 2 ≤ ≤ w 1 2 -w 2 2 + 2| w 2 , w 1 -w 2 |. (22) 
Moreover, for N 2 > N 1 ≥ 0, from (6) we have

R N1 v -R N2 v = N2-1 n=N1 s n ψ γn . ( 23 
)
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| R m v, s n ψ γn | = |s n | | ψ γn , R m v | ≤ |s n | sup i∈I | ψ i , R m v | ≤ 1 α |s n | |M m |. ( 24 
)
Let us now consider N 2 > N 1 ≥ 0. Using ( 22), ( 23) and ( 24), we obtain

R N1 v -R N2 v 2 ≤ R N1 v 2 -R N2 v 2 + 2| R N2 v, N2-1 n=N1 s n ψ γn | ≤ R N1 v 2 -R N2 v 2 + 2 α |M N2 | N2-1 n=N1 |s n |. ( 25 
)
Using ( 21) of Proposition 2, we know that the sequence ( R n v ) n∈N is non-negative and nonincreasing. Therefore, it converges to some value R ∞ and for any ǫ > 0, there exits

K > 0 such that for all m > K, R 2 ∞ ≤ R m v 2 ≤ R 2 ∞ + ǫ 2 .
As a consequence, for any

N 2 > N 1 ≥ K, R N1 v -R N2 v 2 ≤ ǫ 2 + 2 α |M N2 | N2 n=N1 |s n | (26) 
Using [START_REF] Wu | Coordinate descent algorithms for lasso penalized regression[END_REF] • The first one is that: +∞ n=0 |s n | < +∞. In this case, we know that there is K ′ > 0 such that for any

N 2 > N 1 ≥ K ′ N2 n=N1 |s n | ≤ α 2 v ǫ 2 .
Moreover, from [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] we know that

|M N2 | = | R N2 v, ψ γN 2 | ≤ R N2 v ≤ v .
So [START_REF] Candes | The dantzig selector: Statistical estimation when p is much larger than n[END_REF] becomes : for any ǫ > 0 there are K and K ′ > 0 such that for any

N 2 > N 1 ≥ max(K, K ′ ) R N1 v -R N2 v 2 ≤ ǫ 2 + ǫ 2 .
As a conclusion (R n v) n∈N is a Cauchy sequence.
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• The second one is that: lim inf q→+∞ |M q | q n=0 |s n | = 0. In this case, let ǫ > 0 and let p > 0 be an integer. We are going to estimate R m v -R m+p v , for m > K (K is such that (26) holds).

First, there is q > m + p such that

|M q | q n=0 |s n | ≤ α 2 ǫ 2 . ( 27 
)
Moreover, we can decompose

R m v -R m+p v ≤ R m v -R q v + R m+p v -R q v .
Applying [START_REF] Candes | The dantzig selector: Statistical estimation when p is much larger than n[END_REF] with N 1 = m and N 2 = q and using ( 27) we obtain

R m v -R q v 2 ≤ ǫ 2 + ǫ 2 .
Similarly, applying [START_REF] Candes | The dantzig selector: Statistical estimation when p is much larger than n[END_REF] for N 1 = m + p and N 2 = q and using ( 27) we obtain

R m+p v -R q v 2 ≤ ǫ 2 + ǫ 2 .
Hence, we finally obtain

R m v -R m+p v ≤ 2 √ 2ǫ, which proves that (R n v) n∈N is a Cauchy sequence.
As a conclusion, (R n v) n∈N converges. The second statement directly follows from (6).

Proposition 2 ensures that

+∞ n=0 |s n | 2 (28) exists. 
IV. l 1 NORM BOUNDS In general, when H is an infinite dimensional space, we have no guarantee that

+∞ n=0 |s n | (29) 
exists. A simple counter example consists in considering (ψ i ) i∈I a Riesz basis (for definition, see [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF])

of H, v = i∈I s i ψ i ∈ H such that i∈I |s i | diverges and θ(t) ≡ t.
Below, we prove that (29) exists, whatever v ∈ H and whatever the dictionary, as soon as θ is a thresholding function.
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+∞ n=0 |s n | ≤ v 2 -R +∞ v 2 τ - ≤ v 2 τ -, (30) 
where τ -> 0 denotes the internal threshold as defined in the Definition 2.

Proof: Let M ∈ N fixed. Using [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF], we know that

M -1 n=0 s 2 n ≤ v 2 -R M v 2 .
Together with [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF], this leads to

M -1 n=0 s n M n = 1 2 v 2 + M -1 n=0 s 2 n -R M v 2 ≤ v 2 -R M v 2 .
Using [START_REF] Dai | Subspace pursuit for compressive sensing signal reconstruction[END_REF] and the fact that θ(•) is a thresholding function, for any n ∈ N, we have:

s n M n = |s n ||M n | ≥ τ -|s n |,
where the last inequality is obtained via the discussing on two cases: s n = 0 or s n = 0.

As a conclusion for all M ∈ N we have

M -1 n=0 |s n | ≤ v 2 -R M v 2 τ - . (31) 
Letting M go to infinity, we obtain (30).

Remark 1:

The above upper bound does not depend on the dictionary (ψ i ) i∈I . It holds for any v ∈ H.

We therefore do not expect this bound to be tight in any dedicated or applicative context.

Remark 2: As a side effect, the above proposition garantees that the coordinates λ i exist for all i ∈ I (see [START_REF] Devore | Some remarks on greedy algorithms[END_REF]). We even know that

i∈I |λ i | < +∞. V. l 0 BOUNDS If θ(•)
is a gap shrinkage function the MP shrinkage stops automatically after a finite number of iterations.

Proposition 4: Let (ψ i ) i∈I be a normed dictionary, v ∈ H and θ(•) be a gap shrinkage function (i.e.

gap(θ) > 0). The sequence (s n ) n∈N defined in Table I satisfies:

#{n|s n = 0} ≤ ⌊ v 2 gap(θ) 2 ⌋.
Proof: Suppose that the sequence (s n ) n∈N contains M non-zero terms. Observing Definition 3, for each s n = 0, we have:

s 2 n + 2s n (M n -s n ) ≥ gap(θ) 2 ,
where we recall that M n = R n v, ψ γn , s n = θ(M n ).

From [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF], we know that:

v 2 ≥ n∈N:sn =0 s 2 n + 2s n (M n -s n ) ≥ M • gap(θ) 2 .
Noting that M is integer, we have:

M ≤ ⌊ v 2 gap(θ) 2 ⌋.
Remark 3: An interesting consequence of the proposition is that

#{i ∈ I, λ i = 0} ≤ ⌊ v 2 gap(θ) 2 ⌋.
In words, v is approximated with less than ⌊ v 2 gap(θ) 2 ⌋ non-zero coordinates.

VI. BOUND ON THE RESIDUAL ERROR

In this section, we are interested in the residual error norm. The result concerns shrinkage functions.

Before stating the result, let us give the following lemma:

Lemma 1: Let (ψ i ) i∈I be a normed dictionary, v ∈ H and θ(•) be a shrinkage function. The sequence (M n ) n∈N defined in Eq.( 4) satisfies: The latter statement is impossible since, from [START_REF] Friedman | Pathwise coordinate optimization[END_REF], we know that lim n→+∞ s n = 0. This proves (32).

lim sup n→+∞ M n ≤ sup t:θ(t)=0 t, (32) 
The proof of (33) is similar.

In particular, if the external threshold of θ(•) is zero (i.e. τ + = 0),

lim n→+∞ M n = 0, since sup t:θ(t)=0 t = inf t:θ(t)=0 t = 0.
Recall that we have defined the semi-norm on H as

u D def = sup i∈I | u, ψ i |, ∀u ∈ H.
Notice that • D is a norm as soon as D generates H. Geometrically,

{u ∈ H, u D ≤ τ } is a polyhedron, for τ ≥ 0.
Recall that in [START_REF] Gribonval | Harmonic decomposition of audio signals with matching pursuit[END_REF] we denote V def = Span((ψ i ) i∈I ), the closure of vector space spanned by the dictionary (ψ i ) i∈I , V ⊥ its orthogonal complement and we denote the orthogonal projection onto V and V ⊥ by P V and P V ⊥ respectively.

Proposition 5: Let (ψ i ) i∈I be a normed dictionary, v ∈ H and θ(•) be a shrinkage function. The limits defined in Theorem 1 satisfy

+∞ n=0 s n ψ γn -P V v D = R +∞ v -P V ⊥ v D ≤ τ + α ,
where τ + is the external threshold of θ(•), as defined in Definition 2.

Proof: Let ǫ > 0, from Lemma 1, we know that for any k ≥ 0 there is

n k ≥ k inf t:θ(t)=0 t -ǫ ≤ M nk ≤ sup t:θ(t)=0 t + ǫ.
Given the definition of τ + , we therefore know that

-τ + -ǫ ≤ M nk ≤ τ + + ǫ.
We rewrite

|M nk | ≤ τ + + ǫ.
Moreover, since P V is contractive and given the construction of M nk , we know that

|M nk | ≥ α sup i∈I | R nk v, ψ i | ≥ α sup i∈I | P V (R nk v), ψ i |.
Therefore, for all i ∈ I,

| P V (R nk v), ψ i | ≤ τ + α + ǫ α .
Since (R nk v) k∈N converges to R +∞ v (see Theorem 1), we finally have

| P V (R +∞ v), ψ i | ≤ τ + α + ǫ α ,
for all i ∈ I. Since the above inequalities hold for any ǫ > 0, we obtain

P V (R +∞ v) D ≤ τ + α .
Moreover, using Theorem 1, we know that

P V ⊥ R +∞ v = P V ⊥ (v) -P V ⊥ +∞ n=0 s n ψ γn = P V ⊥ (v) .
We therefore obtain

R +∞ v -P V ⊥ v D = P V (R +∞ v) D ≤ τ + α .
Using Theorem 1 (again), we also know that

+∞ n=0 s n ψ γn = P V +∞ n=0 s n ψ γn = P V (v) -P V (R +∞ v) Therefore, +∞ n=0 s n ψ γn -P V (v) D = P V (R +∞ v) D ≤ τ + α .
This finishes the proof of the theorem.

Remark 4: A consequence of the above proposition is that when the MPS is used with a thresholding function, it provides a feasible point for the "Dantzig selector" (see [START_REF] Candes | The dantzig selector: Statistical estimation when p is much larger than n[END_REF]). The "Dantzig selector" consists in the optimization problem:

min (λi)i∈I |λ i | subject to i∈I λ i ψ i -P V v D ≤ τ + α .
From Proposition 3, we know that the MPS provides a set of coordinates (λ i ) i∈I (see [START_REF] Devore | Some remarks on greedy algorithms[END_REF]) such that min Xiaolong (Peking Univ.) for the helpful discussions. We would also like to thank all the anonymous reviewers as their comments and suggestions contributed greatly to the quality of the paper.

APPENDIX

Proof of Proposition 1

Proof of gap(θ) ≤ inf t:θ(t) =0 |t|. Let t 0 ∈ R be such that t 0 > inf t:θ(t) =0 |t|. We cannot simultaneously have θ(t 0 ) = 0 and θ(-t 0 ) = 0, since θ(•) is nondecreasing. Let us denote

t =    t 0 , if θ(t 0 ) = 0 -t 0 , if θ(t 0 ) = 0
We have θ(t) = 0 and given the definition of the gap, we know that gap(θ) |t|.

Lemma used in the proof of Theorem 1

This lemma is a variation on the Lemma used for the proof of Theorem 1 in [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]. x k y k < +∞.

One of the following alternatives holds : x k = 0.

Proof: First, since (y k ) k∈N is a sequence of nonnegative real numbers, its inferior limit always exists.

We

• either have lim inf k→+∞ y k > 0,

• or lim inf k→+∞ y k = 0

Let us first assume that lim inf k→+∞ y k > 0.

There exists ǫ > 0 and n > 0 such that for any k ≥ n, y k ≥ ǫ. Therefore, we have As a conclusion, for any ǫ > 0 and any m ≥ 0, there is j ≥ m such that y j j k=0

x k < ǫ.

This means that the second alternative holds.

Fig. 1 .Definition 3 :

 13 Fig. 1. Example of a thresholding function θ. It is non-gap. Its internal and external thresholds are not equal.
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  λi)i∈I |λ i | is finite. Proposition 5 garantees that the constraint is satisfied. July 8, 2009 DRAFT ACKNOWLEDGEMENT We would like to thank Prof. Alain Trouvé (ENS-Cachan), Prof. Michael Ng (HKBU) and Dr. Li

Lemma 2 :

 2 Let (x k ) k∈N and (y k ) k∈N be two sequences such that∀k ∈ N, 0 ≤ x k ≤ y k(34)and +∞ k=0

  consider ǫ > 0 and m ≥ 0.Since +∞ k=0 x k y k < +∞, there is n ≥ m such that +∞ k=n x k y k < ǫ 2 . (35)Since lim inf k→+∞ y k = 0, there is p ≥ 0 such that j ∈ {n, . . . n + p} be such that y j ≤ y k , ∀k ∈ {n, . . . n + p}. k from (36) and (34)< ǫ from (35).

TABLE I THE

 I 

MATCHING PURSUIT SHRINKAGE (MPS).

  , we know that +∞ n=0 |M n ||s n | < +∞. Moreover, 0 ≤ |s n | ≤ |M n | for all n ∈ N. So Lemma 2 (see Appendix) can be applied with x n ≡ |s n | and y n ≡ |M n |. Two situations might occur :

  Let us prove the first statement. If sup t:θ(t)=0 t = +∞ the statement is trivial. We therefore focus on the case sup t:θ(t)=0 t < +∞. Let us assume that (32) does not hold. Then there exists ǫ > 0 and an increasing sequence (k n ) n∈N ∈ N N such that So there exists an increasing sequence (k n ) n∈N ∈ N N such that s kn = θ(M kn ) ≥ θ( sup

	This means that			
	lim sup n→+∞	s n > 0.
	and			
	inf t:θ(t)=0	t ≤ lim inf n→+∞	M n .	(33)
	Proof: M kn ≥ sup t:θ(t)=0	t + ǫ, ∀n ∈ N.
					t + ǫ) > 0
				t:θ(t)=0
	July 8, 2009				DRAFT

The rigorous definition of shrinkage functions is given in Section II.July 8, 
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