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Abstract

The present work aims to provide support in the diagnosis of hydrocephalus, which
requires an assessment to the volumes of the cerebrospinal fluid (CSF) within its total,
ventricular and subarachnoid spaces. In this paper we describe a fully automatic method
to estimate the CSF volumes from a new 3D whole body MR imaging sequence. The
method was developed using image properties as well as anatomical and geometrical features,
completed with a topological assumption on the CSF shape. Experiments on phantoms and
clinical data were performed and evaluated by comparing our assessments of volumes with
those derived from a segmentation controlled by expert physicians. Then we show that a
robust distinction between pathological cases and healthy adult people can be achieved by
a linear discriminant analysis on volumes of the ventricular and intracranial subarachnoid
spaces. We also find that healthy adults maintain a proportional relationship between these
volumes.

Keywords: cerebrospinal fluid, hydrocephalus, 3D segmentation, topology preservation,
computer-aided diagnosis

1 Introduction

Hydrocephalus is caused by an abnormal accumulation of the cerebrospinal fluid (CSF) into
cerebral ventricles and/or subarachnoid cisterns of the brain (see [23] for more details). Obviously
the measurement of mechanical features such as CSF pressures or volumes may be of great interest
for assisted diagnosis and therapeutic [21, 16].

As MRI is a reference technique for the CSF imaging, a new sequence that significantly
highlights the CSF, has recently been developed for intracranial images [9] and is also tested for
whole body images. Due to the poor dynamic of the luminance perception of the human visual
system, such images appear to be binary but in fact they are not (see Fig. 3, 4), and furthermore
they are disturbed by noise and artifacts.

For now, the volume assessment of the CSF spaces is achieved by expert physicians by ex-
tracting the total volume through thresholding and interactive removal of noise and unwanted
structures. Next, this volume is separated into its ventricular, spinal and intracranial subarach-
noid spaces. This leads to a functional parameter calculated by the ratio between the ventricular
CSF space volume and the intracranial subarachnoid one. This ratio could be efficient to discrim-
inate healthy adults from patients affected by an hydrocephalus. However, it should be pointed
out that most of the previous steps used to be manually performed and that the overlapping of
ratio ranges between healthy people and patients may result to misclassification.

In order to solve these problems, we first propose to fully automate the above segmentation
and separation steps, and then to refine the classification by applying a linear discriminant
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analysis to the ventricular and intracranial subarachnoid CSF volumes. We also show that
healthy adults maintain a proportional relationship between these volumes.

To solve the segmentation and separation problems, we do not only use image properties,
but also anatomical and geometrical features as well as a topological assumption about the CSF
shape. The topological assumption becomes necessary because of both, the complex geometry of
the CSF shape as shown in Fig. 1 (left), and the numerous image artifacts (especially motion arti-
facts), which can lead to changes in its topology. Benefits of associating topological constraints to
medical image segmentation methods are shown in [29]. These constraints may prevent from any
change in the topology of the anatomical structures to be extracted, such as unwanted created
connections and/or holes. From a topological point of view, each anatomical structure including
the CSF may be considered as a simple object such as a filled or a hollow sphere [1, 20, 25].
Several works have successfully added such constraints to their approach in order to preserve the
topology of anatomical objects throughout the segmentation process (deformable surface with
an energy minimization goal [18, 22], level set [8], fast marching [1], discrete deformable model
[20], morphological operators [5, 25], statistical an topological atlases registration approach [2]).

Here, from a topological point of view, the CSF space is considered as a filled sphere as
shown in Fig. 1 (right). This property, used as a refinement constraint, brings both accuracy
and robustness to our segmentation method.

The paper is organized as follows. Section 2 describes the segmentation methodology for
the whole CSF. The separation of the CSF volume into its ventricular, intracranial and spinal
subarachnoid sub-volumes is presented in section 3. In section 4, we report experiments on
phantoms and clinical dataset. Concluding remarks are given in section 5.

2 Segmentation of the whole CSF

The total CSF volume is segmented by using image properties with the hypothesis that its shape
is topologically equivalent to a filled sphere as shown in Fig. 1 (right). The segmentation is
performed as follows:

1. Extract an inner object (Cinner) that is within the whole CSF as close as possible to its
actual borders and has the same topology.

2. Extract an outer object of the CSF (Clim) that includes the whole CSF but do not neces-
sarily have the same topology.

3. Homotopically thicken Cinner preserving its topology as long as it remains within Clim. The
transformation is guided by a priority function based on a distance criterion.

Note that obtaining both, inner and outer objects, as close as possible to the object of interest,
allows to speed up significantly the processing time.

2.1 Extraction of an inner object of the CSF

An inner object is extracted by applying the moment-preserving thresholding described in [33]
on the initial image followed by a larger connected component extraction (Fig. 4–b).

2.1.1 Moment-preserving thresholding

This method is suited to “binary nature” images with a low contrast. When the histogram
presents an excessive overlapping between classes, the moment-preserving method becomes more
efficient than conventional clustering-based or entropy-based methods.
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Figure 1: The CSF around the brain is considered as topologically equivalent to a filled sphere (right).
In an axial cross-section of the spinal chord, the CSF has a disk topology (left).

The moment preservation assumes that statistical moments on original and thresholded im-
ages are identical. Let F = {fijk} be a 3D image of L intensity levels. For each intensity level z,
its associated normalized histogram is given by p(z) and the statistical moment M of order m

for m = 1, 2, 3 is defined as: Mm =
∑L−1

z=0 p(z) z
m.

The resulting thresholded image G = {gijk} may be considered to be composed of two
gray levels z0 and z1 (z0 < z1). The optimal threshold Tinner is obtained such that first three
moments for F , the mean M1, the variance M2 and the skewness M3, are equals to those for G
when gijk = z0 (resp. gijk = z1) if fijk ≤ Tinner (resp. fijk > Tinner).

Let P0 and P1 be the percentages of voxels of G on both sides of Tinner, the statistical moment
Bm of order m is: Bm =

∑1
l=0 Plz

m
l . Moments preservation leads to solve the system:

1∑

l=0

Plz
m
l =

L−1∑

z=0

p(z) zm, (1)

with the constraint P0 + P1 = 1 for m = 1, 2, 3. Equation (1) has four unknowns z0, z1, P0 and
P1, whose solution can be found in [33] and leads to a value for Tinner that is given by:

P0 =
1

L

Tinner∑

z=1

p(z). (2)

Figure 2 shows an histogram with the threshold Tinner (= 38) obtained from the moment-
preserving method, which allows to retrieve the inner CSF. Tlim (= 13) is the threshold using the
triangle thresholding, which is presented in Section 2.2 and allows to retrieve the outer object of
the CSF. For comparison, the Otsu threshold TOtsu (= 53) is also shown.

In Tab. 1, the results obtained by the other thresholding methods reviewed in [31], for the
histogram on Fig. 2, are also presented for comparison to that of the moment-preserving and
result in more distant threshold values.

2.1.2 Retrieval of the inner object

Since G contains several thresholded objects, a connected component labeling is performed to
extract the three largest connected components (the inner object Cinner and both eyeballs E1 and
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Figure 2: Image histogram sample from the clinical dataset and its zooming (vertical log scale) at the
upper-right corner.

Table 1: Threshold values obtained on the histogram from Fig. 2 using various methods also reviewed
in [31].

Method Threshold

Attribute_Huang [10] 1
Cluster_Kittler [12] 5
Cluster_Ridler [24] 52
Entropy_Kapur [11] 43
Entropy_Li [15] 4
Entropy_Sahoo [26] 43
Entropy_Shanbag [32] 241
Entropy_Yen [35] 53

E2). E1 and E2 are retained to determine a region of interest in Section 3.1. If Cinner has holes,
then Tinner is automatically adjusted by increasing its value until the topological assumption is
satisfied (E1 and E2 are not affected by this operation due to their intensity). By extracting
the largest components (Fig. 4–b), residual noise as well as other small objects such as salivary
ducts are also removed.

2.2 Thresholding of an outer object of the CSF

To extract an outer object of the CSF, another histogram-based thresholding method is carried
out on the initial image as described in [36]. It is followed by a largest connected component
extraction to retrieve an outer object of the CSF (Clim).

The triangle thresholding algorithm in [36] is suitable for bimodal images for which the
object to extract has a small amplitude and a large variance relatively to the background. Let
p(z) be the histogram function for gray levels z. Maximum and minimum values, pmax and pmin,
are determined from p(z) with their z values, zmin and zmax, and the points (zmin, pmin) and
(zmax, pmax) are connected by a line segment δ. Let de(a, b) be the Euclidean distance between
two points a and b. For each point a = (z, p(z)), we can define the minimum distance from the
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line segment δ such that: dmin(z, p(z)) = min
b∈δ
{de(a, b)}. The optimal threshold Tlim is obtained

such that:
Tlim = argmax

z
{dmin(z, p(z))}. (3)

Clim is the object obtained as the largest connected component of the thresholded image.

2.3 Homotopic thickening of the inner object

An homotopic thickening is carried out on the inner object Cinner. The thickening is guided by
a priority function Ψ that is related to Clim and based on a distance criterion.

2.3.1 Priority function

The priority function Ψ = {ψijk} controls the order in which voxels are processed and eventually
added to Cinner. This function uses an Euclidean distance map denoted by D = {dijk}, which is
calculated by the linear algorithm proposed in [27]. The value ψijk of each voxel (i, j, k) in the
outer object Clim is its distance to the nearest non-zero voxel of Cinner such that:

ψijk =

{
dijk if (i, j, k) ∈ Clim

+∞ otherwise.
(4)

2.3.2 Guided homotopic thickening

Guided by the previous priority function Ψ, an homotopic thickening is applied to the inner
object Cinner by adding simple points.

A point is simple if its addition to or its removal from a binary object C does not change
the topology of the object and of the background. Therefore, removing simple points does not
change the number of connected components and holes (cavities and/or tunnels) of C and its
complement C. It is shown in [3] that a simple point x is locally characterized by two topological
numbers denoted by Tn(x,C) and Tn̄(x,C) for (n, n̄) ∈ {(6, 26), (26, 6)}, such that Tn(x,C) = 1
and Tn̄(x,C) = 1. An efficient computation of Tn(x,C) and Tn̄(x,C) that only involves the
26-neighborhood is also described in [3].

Let ∂C inner denotes the boundary of Cinner such that ∂C inner = {x ∈ (C inner ∩ Clim) |Nn(x) ∩
Cinner 6= ∅}, where C inner is the complement of Cinner and Nn(x) is the n–neighborhood of x
with n ∈ {6, 26}. The thickening process consists to add to Cinner simple points from ∂C inner

as presented in Algorithm 1. It shows that boundary points (i.e. voxels) of ∂C inner are chosen
iteratively, according to their priorities, and are incorporated into Cinner if they are simple. The
resulting thickened object is illustrated in Fig. 3–d and 4–c, d.

3 Separation into CSF volumes

The separation of the CSF spaces is required to analyze the relationship between the ventricular
and intracranial subarachnoid volumes. First, the spinal and intracranial regions are separated
using geometrical and topological properties of the CSF at their interface. Second, to retrieve the
ventricular space volume from that of the intracranial subarachnoid one, the cerebral aqueduct
must be detected because we use it as a morphological reconstruction marker.

5



Algorithm 1: Guided homotopic thickening

Input: Cinner, Ψ
Output: Cinner

Make a priority queue Q from ∂C inner using ψijk in the ascending order
while Q 6= ∅ do

Poll x = (i, j, k) from Q ;
if x is simple for Cinner then

Cinner ← Cinner ∪ {x} ;
Add new points of ∂C inner around x to Q ;

end if

end while

(a) (b) (c) (d)

Figure 3: Segmentation process (axial cross-section), which is easily observed in the red square region.
(a) original image; (b) contrast-enhanced original image; (c) inner object image; (d) homotopic thickened
image.
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(a) (b) (c) (d)

Figure 4: Segmentation process (sagittal cross-section). In each figure, the red rectangular region is
zoomed in the bottom for more details. (a) original image; (b) inner object image; (c) homotopic
thickened image; (d) 3D reconstruction after thickening. [inverted grayscale used to improve printing]
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Figure 5: Separation of intracranial and spinal regions in the ROI R. The resulting cut-off plane
(z = 168) is close to that goes through the foramen magnum (FM plane). The axial cross-sections
around the cut-off plane are also illustrated (right).

3.1 Separation of spinal and intracranial spaces

Expert physicians usually perform the disconnection of the spinal and intracranial spaces by
tracking the foramen magnum (the hole in the bottom of the skull through which the spinal cord
passes in order to be connected to the brain), which is even for an expert, difficult to detect
on this type of images. The separation into spinal and intracranial spaces requires to locate
the closest axial cross-section plane to that of the foramen magnum. Thus, the disconnection is
achieved by browsing the 2D connected component on each axial plane from the spinal part, and
by detecting any change in its topology (see the axial cross-section in Fig. 5). A region of interest
(ROI) is first determined to reduce the processing time as well as to improve the robustness.

3.1.1 Determination of the ROI

An ROI R is used on one hand to locate the cutting axial cross-section, and on the other hand
to retrieve the cerebral aqueduct in order to separate the intracranial space into its ventricular
and subarachnoid spaces (Section 3.2). Apart from pathological cases, the eyeballs typically face
the cerebral aqueduct in the axial plane. We consider the ROI forming a rectangular cuboid,
each of whose edge is parallel to one of the i-, j-, k-axes of the image and such that:

• The ROI is located in the i-axis direction between the coronal plane that passes through the
maximum posterior boundary of E1 and E2, and the last coronal plane that still contains
non-zero voxels.

• Let D be the larger diameter of E1 and E2. The height of the ROI is set empirically to be
8D, such that the top face of the ROI is located with the distance 2D above the eyeballs
and the bottom face is located with the distance 5D below the eyeballs. The height may
be interactively resized to fit human variations.

• The depth is determined by the two sagittal planes between the medial boundaries of E1

and E2.

3.1.2 Determination of the cut-off plane

2D connected components are counted on each axial plane from the bottom to the top of the
ROI R. The first axial plane that shows a change in the topology of the connected components
is the plane just above that of the searched cut-off (Fig. 5).
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1

infundibular recess

2

Figure 6: Proximity of the interpeduncular cistern (1) to the infundibular recess of the third ventricle
(2). The small rectangular part in the left figure is zoomed in the right figure.

3.2 Intracranial volumes separation

The process to extract the ventricular space may fail because of some subarachnoid regions that
are very close to the third and fourth ventricles. Figure 6 shows, for instance, the proximity
between the interpeduncular cistern and the infundibular recess of the third ventricle.

To overcome this problem we first detect a specific tubular object. The cerebral aqueduct is
a thin tubular structure (diameter: 1 to 3 mm; length: ∼14 mm) located in the median sagittal
plane, which connects the third and fourth ventricles. It is also the longest tubular structure with
the highest intensity range in the most median sagittal planes of the ROI R. Its enhancement
is performed by a vessel segmentation method (see [14]). Finally, ventricles are recovered by a
morphological reconstruction [34] using the cerebral aqueduct as a marker.

3.2.1 Detection of the cerebral aqueduct

Several methods to enhance vessel-like structures in 2D and 3D grayscale images are reviewed
in [14]. Some efficient methods are based on properties of eigenvalues of the Hessian matrix H
[17, 28, 7, 13, 19]. These multi-scale methods operate in a Gaussian scale space on which they
calculate second-order derivatives, build the Hessian matrix H, and decompose it depending on
its eigenvalues λ1, λ2 and λ3 such that |λ1| < |λ2| < |λ3|. The eigenvalues are analyzed to
determine the likelihood for each voxel (i, j, k) to belong to a curvilinear structure. This analysis
is based on the following assumptions: 1) λ1 ≈ 0; 2) λ2 ≈ λ3 < 0; and 3) |λ1| ≪ |λ2|.

The tubular structure filter implemented in [7] is used to enhance the cerebral aqueduct. Let
Fσ = {fσijk} the filter in [7] such that:

fσijk =

{
0 if λ2 > 0 or λ3 > 0,

(1− e−
R

2
A

2α2 )e
−

R
2
B

2β2 (1− e−
S
2

2c2 ) otherwise,
(5)

where RA = |λ2| / |λ3|, RB = |λ1| /
√

|λ2λ3|, S =
√

λ21 + λ22 + λ23, with some weights α ∈ [0, 1],
β ∈]0, 1] and c ∈ [0, 500]. Figure 7 compares extracted curvilinear structures in the ROI R using
methods from [28] (Fig. 7-b) and [7] (Fig. 7-c). It shows that unlike the filter in [28], that in
[7] allows to dissociate strict tubular structures from others. The cerebral aqueduct part has
more highlighted values in Fig. 7-c by adjusting the filter with a higher weight to detect lines
(α = 0.7). The aqueduct is the longest connected component found in the most median sagittal
planes.
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(a) (b) (c)

Figure 7: Detection of the cerebral aqueduct in the ROI R (median plane cross-section). From left to
right: (a) original thickened image; (b) filtered image by [28] (σ = 0.5); (c) filtered image by [7] using 5
scale spaces σ from 0.4 to 0.9 and with α = 0.7, β = 0.2 and c = 200.

3.2.2 Ventricles reconstruction

Considering the cerebral aqueduct part as the marker, we would like to reconstruct all the
ventricles. For this problem, methods such as fast marching [30], level set [30] or active contour
models [4] are well known. However, the following two problems may hinder the reconstruction by
the above methods: 1) the cerebral aqueduct part is too small as a marker to initialize a model;
2) motion artifacts may generate significant intensity inhomogeneities even in the ventricular
spaces.

Grayscale reconstruction [34] is a very useful operator from mathematical morphology that

provides satisfactory results here. Let δ
(1)
f,Bd

(g) be the elementary geodesic dilation of a grayscale

image g inside f (g is called the marker image and f is the mask) such that δ
(1)
f,Bd

(g) = (g⊕Bd)∧f ,
where ∧ stands for the point-wise minimum and g⊕Bd is the geodesic dilation of g by an isotropic
structuring element Bd chosen as the unit ball. The geodesic dilation of size n ≥ 0 is obtained
by:

δ
(n)
f,Bd

(g) = δ
(1)
f,Bd
◦ δ

(1)
f,Bd
◦ · · · ◦ δ

(1)
f,Bd

(g)
︸ ︷︷ ︸

n times

. (6)

The grayscale reconstruction by dilation ρf,Bd
(g) of f from g is calculated by iterating geodesic

dilations of g inside f until idempotence such that:

ρf,Bd
(g) = ∨

n≥1
δ
(n)
f,Bd

(g) , (7)

where ∨ stands for the point-wise maximum.
The ventricular space volume is retrieved by dilation of the previously detected cerebral

aqueduct used as the marker image, using the parallel reconstruction algorithm proposed in [34].
Figure 8 shows the result of such a reconstruction using a 6-connectivity.

4 CSF volumes analysis

As the ground truth is not available for clinical data, the segmentation method for the total
volume assessment was first validated on phantom MR images. Experiments were carried out on
four phantoms of known volume (image size: 250× 250× 128 voxels) and 17 clinical MR images
(image size: ∼ 260× 790× 160 voxels).
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(a) (b)

Figure 8: Ventricular space retrieving using a grayscale reconstruction by dilation of the cerebral aque-
duct inside the original image: (a) the original image (the mask) and the cerebral aqueduct (the marker)
colored in red; (b) result of the grayscale reconstruction.

4.1 Images acquisition

MR images were acquired in the sagittal plane on a 1.5 T system (Magnetom Avanto; Siemens
Medical Solutions, Erlangen, Germany). The MR sequence in [9], called SPACE (Sampling
Perfection with Application optimized Contrast using different flip-angle Evolution), is a variant
of the T2-weighted turbo spin echo sequence with variable flip-angles. The sequence was as
follows: repetition time TR (ms)/echo time TE (ms), 2400/762; turbo factor of 141; 250 × 250
mm field of view; 256×256 acquisition matrix; 1 mm isotropic resolution; number of excitations
1.4; 160 slices; acquisition time, 3 min [9].

4.2 Complexity and computation time

The complexity in time is dominated by the homotopic thickening step and is O(n log n) where
n is the number of points in C inner ∩ Clim. It may be reduced to be linear by parallelizing the
homotopic thickening process. The total computation time for segmentation and separation was
performed from 3 to 6 minutes on an Intel Pentium Dual Core 1.60 GHz / 2 GB for each clinical
MR image.

4.3 Validation on phantoms

Images were acquired from blood bags and synthetic resin phantoms with various shapes and
volumes (see an example in Fig. 9). Phantoms 1 and 2 have regular shape while phantoms 3 and
4 have more tortuous one.

It has been observed (Fig. 10) that both segmentations, the semi-manual by an expert as
explained in [9] and the grayscale reconstruction [34], have resulted in an overestimation. Instead,
the methods of homotopic thickening and level set initialized by a fast marching have produced
underestimated but close results. The guided homotopic thickening on phantoms has resulted in
an accuracy of 98.5%± 1.8 against 94.6%± 4.0 for the semi-manual segmentation by an expert.

4.4 Statistical analysis on clinical data

Clinical images were acquired from different subjects (ages between 25 and 84 years): seven
healthy volunteers, two patients with a communicating hydrocephalus just two days after their
surgery, and eight patients among which seven communicating hydrocephalus (CH) and one
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Figure 9: Example of a synthetic resin phantom MR image. Cross-section of the phantom (left). The
3D reconstruction of the rectangular region is shown in the right figure.

non-communicating hydrocephalus (NCH). Due to the limited number of clinical images, the
CH and NCH patients have not been distinguished. In addition, the two patients who just have
undergone their surgery were removed from the analysis because according to physicians, the
CSF has not had enough time to reach the whole subarachnoidian space.

4.4.1 Classification of clinical data

Following the proposal in [9] to use ratios to classify data, a linear discriminant analysis [6]
was first performed on the clinical dataset using volumes of the ventricular and intracranial
subarachnoid spaces as the input variables. Let TP, FP, TN and FN the respective numbers
of true positives, false positives, true negatives and false negatives. The sensitivity Se and the
specificity (or recall) Sp are respectively defined as Se = TP/(TP+FN) and Sp = TN/(TN+FP).
The additional F1-score metric is also used to validate the classifier. It is defined as F1 =
2pSe/(p + Se) where p stands for the precision, defined by p = TP/(TP + FP). The predicted
classification on the clinical data results in a sensitivity/specificity/F1-score of 100%, which is a
suitable result to discriminate between healthy people and pathological cases (Fig. 11). A similar
observation was made on data from [9].

This first result appears to confirm such as in [9] that the relationship between the ventricular
CSF space volume and the intracranial subarachnoid could be an efficient functional parameter
to distinguish healthy people from pathological cases.

4.4.2 Linear regression model for healthy adults

Observing the previous result has provided us the idea of carrying out a linear regression on the
healthy people subset that results from the linear discriminant analysis step. Let VV and VS the
respective volumes of the ventricular and intracranial subarachnoid spaces. We use the linear
model: VS = β0 + β1VV + ǫ, and optimize the intercept β0 and the slope β1 by minimizing the
residual error ǫ. We obtain β0 = 0 and β1 = 0.1071, namely:

VV = 0.1071VS (8)

Table 2 includes some statistics about the model: 1) the coefficient of determination R2

(= 98.43%) indicates that the predictor explains rather well the answer; 2) the F statistic (=
312.8) and the p-value (= 1.06e-05 ≪ 0.05) show further that the null hypothesis (β1 = 0) can
be rejected with a strong presumption. In addition, the graphical residuals analysis reinforces
the linear regression assumptions (Fig. 12).
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Table 2: Optimal linear regression model from the clinical data set.

Model R2 σ2
Standard Error F p-value

VV = 0.1071VS 0.9843 12.25 0.0061 312.8 1.06e-05

The left figure of Fig. 13 shows the distribution of ventricular and intracranial subarachnoid
volumes with the model obtained from (8). The right figure illustrates the same model with the
distribution of the data from [9].

5 Conclusion

This work uses a new sequence of whole body MRI and succeeds in providing good estimations
of the volumes of the CSF. The volumes are automatically retrieved through segmentation and
separation steps, which use image properties, anatomical and geometrical features, as well as
topological assumptions on the CSF. The proposed method seems to confirm the assumption
that the proportional relationship between the ventricular and intracranial subarachnoid volumes
allows to discriminate healthy and pathological cases. As the database is currently in expansion,
our tool facilitates the refinement of these results in future work.

This new ability to quantify CSF volumes, which is a main parameter for the diagnosis, for
the treatment decisions, for the monitoring of patients, and finally for clinical research, may
represent an important breakthrough in the field of computer-aided neuro-imaging.
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Figure 10: Comparisons of the total volume assessment of phantoms for different methods. Top: total
volume measurement for objects that result from: the semi-manual segmentation by an expert as de-
scribed in [9]; the initial inner object extraction (Section 2.1); the homotopic thickening process (Section
2.3); a grayscale reconstruction method [34] and a fast marching followed by a level set method [30], both
using the inner object as a marker. Bottom: errors on the total volume measurement for the previous
methods.
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Figure 11: Resulting partition plots on clinical data by using a linear discriminant analysis considering
two classes: “Healthy (H) and Pathological (C)”.

Figure 12: Residual plots from the linear regression on clinical data.
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Figure 13: Linear model on VV ∼ VS distributions. Top: the resulting linear regression on the healthy
people subset of the clinical dataset; bottom: the linear model fitted on the healthy people subset of the
dataset from [9].

18


	1 Introduction
	2 Segmentation of the whole CSF
	2.1 Extraction of an inner object of the CSF
	2.1.1 Moment-preserving thresholding
	2.1.2 Retrieval of the inner object

	2.2 Thresholding of an outer object of the CSF
	2.3 Homotopic thickening of the inner object
	2.3.1 Priority function
	2.3.2 Guided homotopic thickening


	3 Separation into CSF volumes
	3.1 Separation of spinal and intracranial spaces
	3.1.1 Determination of the ROI
	3.1.2 Determination of the cut-off plane

	3.2 Intracranial volumes separation
	3.2.1 Detection of the cerebral aqueduct
	3.2.2 Ventricles reconstruction


	4 CSF volumes analysis
	4.1 Images acquisition
	4.2 Complexity and computation time
	4.3 Validation on phantoms
	4.4 Statistical analysis on clinical data
	4.4.1 Classification of clinical data
	4.4.2 Linear regression model for healthy adults


	5 Conclusion

