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A STATIONARY FREE BOUNDARY PROBLEM MODELING ELECTROSTATIC MEMS

PHILIPPE LAURENCOT AND CHRISTOPH WALKER

ABSTRACT. A free boundary problem describing small deformations meanbrane based model of electro-

statically actuated MEMS is investigated. The existencgtatfonary solutions is established for small voltage
values. A justification of the widely studied narrow-gap rebid given by showing that steady state solutions
of the free boundary problem converge toward stationarytieols of the narrow-gap model when the aspect
ratio of the device tends to zero.

1. INTRODUCTION

Microelectromechanical systems (MEMS) have become keypoorants of many commercial systems,
including accelerometers for airbag deployment in autaiasbink jet printer heads, optical switches,
micropumps, chemical sensors and many others. IldealizetmdVEMS devices often consist of two
components: a rigid ground plate and a thin and deformabktielmembrane that is held fixed along its
boundary above the rigid plate, and its design is based oimtéaction of electrostatic and elastic forces.
More precisely, when a voltage difference is applied betwibe two components, a Coulomb force is in-
duced which is varied in strength by varying the appliedagdtand gives rise to deformations of the elastic
membrane. Perhaps the most ubiquitous nonlinear phenonamsociated with electrostatically actuated
MEMS devices is the so-called “pull-in” instability limitg the effectiveness of such devices. In this insta-
bility, when voltages are applied beyond a certain critfuall-in voltage, there is no longer a steady-state
configuration of the device where the two components remgarate. This possible touchdown of the
membrane on the ground plate affects the design of the deaEd severely restricts the range of stable
operation. The understanding and control of the pull-irtage instability are thus of great technological
importance: in this connection, a large number of MEMS dewvighich rely on electrostatic actuation have
been investigated both experimentally and through nuraksimulations and several mathematical models
describing these devices have been set up.

We consider here a simple membrane based model of an etatictaly actuated MEMS device as de-
picted in Figure 1 and refer the reader e.g. to [19, 20, 22]thedeferences therein for a more detailed
account of the physical background and the modeling aspéatedern MEMS devices. In this simplified
situation, we assume that the applied voltage and the pesityibf the membrane are constant (normalized
to one) and that there is no variation in the horizontal dioecorthogonal to the:-direction of both the
(dimensionless) electrostatic potentiahnd the displacementof the membrane. Under appropriate scal-
ings, the rigid ground plate is at= —1 and the undeflected membranezat 0 is fixed at the boundary
x = —1 andx = 1, see Figure 1. Denoting the aspect ratio of the device,herdtio of the undeformed
gap size to the device length, before scalingbthe dimensionless electrostatic potentia: v (z, z) is
supposed to satisfy Laplace’s equation

202 + 02 =0 (1.1)
in the region
Qu) :=={(z,2) € (-1,1) x (-1,00) : =1 <z <u(x)}

2010Mathematics Subject ClassificatioB5R35, 35J57, 35B30, 74F15.
Key words and phrasesMEMS, free boundary problem, small-aspect ratio limit.

1



2 PHILIPPE LAURENCOT AND CHRISTOPH WALKER

A
z
z=0—~— — — — — - - - = = — — - —
w L|J=1

=1+z Yy=1+z
Y Q(u)
z=-1 0 >

Y= X
-1 1

FIGURE 1. Idealized electrostatic MEMS device.

between the rigid ground plate at= —1 and the deflected membranezat u. The boundary conditions
are then

Yv=0 on z=-1 (1.2)
and

Yv=1 on z=u. (1.3)
As for the deformation of the membrane, it results from a ibedabetween dynamic, electrostatic, and
elastic forces and the membrane displacementu(t, z) € (—1, c0) evolves according to Newton’s law

@?0fu+ Opu — 2u = —X (2 |00 (z, u)|* + |00 (z, u)|) (1.4)

with clamped boundary conditions
u=0 at z==1. (1.5)

In (1.4), the termd,u and the right-hand side account for a damping force and thetrebtatic force,
respectively, while the termi?u describes the deformation due to stretching. The lattebiained after
linearization resulting from the assumption of small defations. The contribution to deformation due to
bending may also be included in (1.4) by adding a fourth-otelen BoZu, B > 0, to the left-hand side

of (1.4) but is neglected here. The parameter 0 characterizes the relative strengths of electrostatic and
mechanical forces. It acts as a control parameter propattio the applied voltage. The coefficient> 0

is indirectly proportional to the damping coefficient.

Observe that (1.1) is a free boundary problem as the domaimeke the rigid ground plate and the
elastic membrane changes with time. Due to this, equatibi$ &nd (1.4) are strongly coupled. However,
a common assumption made in all mathematical analysisrhittsea small aspect ratio Formally, sending
¢ to zero allows one to solve explicitly (1.1)-(1.3) for thet@otialy) = 1)y, i.€.

1+2

po(x, 2) = Tu(m) , (x,2) € Qu), (1.6)
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thus reducing the free boundary problem to the small aspéotmodel, that is, to an evolution equation
A
(1+wu)?’

subject to (1.5) solely involving the displacementNote that the boundary conditions (1.2), (1.3) suffice
to determinea), which then satisfies on the lateral boundarnies +1

Yo(£1l,2) =142, z€(-1,0), (1.8)

due to (1.5). The small aspect ratio model (1.7) with (1.5 Wwalely been investigated in the recent past
(with possibly an additional fourth-order term accountfogthe deformation due to bending as already
discussed) and also variants thereof, e.g. in higher dilmesa®r with additional permittivity profiles or
non-local terms. An obvious difficulty arising in the studfy(@.7) is the singularity of the source term
—\/(1 + u)? asu approaches-1 which corresponds to the aforementioned touchdown phenomfor

the MEMS device. Concerning the dynamic behavior of smalkasratio models we refer the reader to
[5, 13, 15] for the hyperbolic case > 0 and to [6, 8, 11, 12, 14, 19] for the corresponding parabolic
equation witha = 0 when damping or viscous forces dominate over inertial @ioethe system. The
dynamic behavior of a membrane evolving according to (1)) is determined by a pull-in voltage
A« > 0,seee.qg. [3,7,17, 19]. More precisely)if A, there are a stable and an unstable steady state (i.e.
time independent) solution of (1.7) subject to (1.5), tkabf

A
O = —
lu (1 +U)2 b
and solutions to the dynamical problem (1.7) starting ooinfiz = 0 converge toward the stable steady
state. Steady states cease to exist for voltage valaesve\, and solutions to the dynamic problem touch
down on the ground plate in finite time, that is, a pull-in &istity occurs. We refer the reader to [4, 5, 20]

for a review of these results and references as well as tq 3,8 11, 12, 19, 21] and the references therein
for further details on small aspect ratio models.

Q?0u+ O — O2u = — (t,z) € (0,00) x (—1,1), (1.7)

ze(-1,1), u(+l)=0, (1.9)

To the best of our knowledge, the original model without $rgab assumption has not been tack-
led so far from an analytical point of view. The aim of this pajs to make a step in this direction
by studying the stationary free boundary problem. More igedg, we shall focus on finding functions

u:[—1,1] = (—1,00) andy : Q(u) — R satisfying the coupled system of elliptic equations

e2024(z,2) + 02(2,2) = 0, (x,2) € Qu), (1.10)
(x,2) =14z, (x,2z) € 0Qu), (1.11)

Ozu(r) = Me?|0xt(x, u())* + 10:9(2, u(2))[?) | ve(-1,1), (112

u(z) =0, r==+1, (1.13)

where the domain of definitiof(u) of ¢ is
Qu) =={(z,2); ~1<z<1,-1<z<u(z)},

that is, the two-dimensional region between the rigid gtbptate and the membrane with deflection
Obviously,Q2(u) is a domain and possesses four corners provided the valdles obntinuous and convex
(see (1.12)) functiom satisfying (1.13) stay away from1. Let then

D(u) := 0Qu) \ {(£1, 1), (£1,0)}

denote the boundary 6f(«) without corners. System (1.10)-(1.13) is exactly the tim#ependent version
of (1.1)-(1.5) subject to the lateral boundary conditiorBfiwhich is imposed to make the system well-
posed. This particular choice of a continuous boundary itimmdis made mainly for simplicity and we
point out again that this condition is satisfied #y from (1.6) in the small aspect ratio limit. For the
stationary free boundary problem we shall show existensenafoth solutions for small voltage valugs
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Theorem 1.1. There exists\, > 0 independent of € (0, 1) such that(1.10)}(1.13)admits for each
A € (0, \o] a solution

ue C*([-1,1]), ¥ e Wi (Qu))NC(Qu) NC*T(Qu) Ul (),
wherea € [0, 1) is arbitrary. The function: is even, convex, and satisfies
0>u(z)>-14+kKky, ze€(-1,1), (1.14)

1
lullwz (—11) < —, (1.15)
Ko
for somer € (0,1) independent of. Moreovery = v (z, z) is even with respectto € (—1,1).

We refer to Section 2 for the proof of Theorem 1.1 which is dasea transformation to a fixed domain
and on an application of Schauder’s fixed point theorem. €oricg the latter, given a displacement
u € W2 (—1,1) with values in(—1, 0), we first construct in Lemma 2.2 the corresponding solutigrio
(1.10)-(1.11) by using an equivalent formulation on a regta. Of particular importance is the regularity
of the trace of the gradient af,, on the upper boundaryz = u} as stated in Lemma 2.4 which plays an
important role in the subsequent analysis of (1.12)-(1.I&)eed, it is used as a source term to construct
a solutionS(u) to (1.12)-(1.13) withy,, instead ofy, see Lemma 2.5. Restricting suitably the set of
admissible displacemenis the mapS turns out to enjoy the properties needed to apply Schaufibeztd
point theorem.

In particular, for values. < \g, Theorem 1.1 provides for eaehe (0, 1) a solution(u., ¥.) to (1.10)-
(1.13) satisfying the bounds (1.14), (1.15) uniformly wigspect tc= € (0, 1). This property allows us
to give a rigorous justification of the small aspect ratio eidd.7), (1.5) by showing thatu., V- ). (0,1
converges toward a solution to that modetadsnds to zero. More generally, we have:

Theorem 1.2. Let A > 0 and let(u.,:).c(0,1) be a family of solutions t¢1.10)(1.13)satisfying the
bounds(1.14)and (1.15) Then there are a sequeneg \, 0 and a (smooth) solutiom, to the time-
independent small aspect ratio equatidn9) such that

Ue, —>ug in WL(-1,1)

and
’l/JEk ].Q(usk) — wolg(u[}) in LQ((*L 1) X (0, 1)) (116)
ask — oo, whereyy is the corresponding potentiél.6)with u = ug.

The proof of Theorem 1.2 is performed in Section 3 by using mpactness argument. Since (1.10)
becomes degenerate elliptic in the limit— 0, the regularity ofy. is no longer the same in the and
z-directions and a cornerstone of the proof is to obtain egtsfor the trace a¥, . on{z = u.}.

2. EXISTENCE FOR SMALL VOLTAGE VALUES. PROOF OFTHEOREM 1.1

We first prove Theorem 1.1. Since the domain of definition efggbtentiak) in (1.10) depends on the
displacement; of the membrane, we use an alternative formulation by tranghg the problem on a fixed
domain, that is, on the rectandle:= (—1,1) x (0,1). More precisely, given a functiom € W2 (-1, 1)
taking values in—1, co) and satisfying the boundary condition&t1) = 0, we define a diffeomorphism
T, = Q(u) — Q by setting

142 —
Tu(x,2) = (m, m) , (z,2) € Qu) . (2.1)

Clearly,

T, (z,n) = (:1:, (1 +wu(z))n — 1) , (x,n) €, (2.2)
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and it readily follows that problem (1.10)-(1.11) is equérs to

¢(x,n) =n, (x,n) €, (2.4)
for ¢ = ¢ o T,1, theu-dependent differential operatgr, being defined by

292 o Ozu(r) 1+ 52772(5:0“(17))2 2
Lyw =e"0w — 2¢ ey u(w)am&,w + 1+ u(2))? 0,w
O u(x) 2 0%u(x)
weto2(00) T |

Moreover, (1.12), (1.13) become
o2u(e) = ) [FEE O 1o o re(-1,1), (25)
u(z) =0, T ==+1, (2.6)

where we have used

8z¢($,1) :05 HAS (7151)7 (27)

sinceg(z,1) = 1forz € (—1,1) by (2.4).
Our goal is to solve (2.3)-(2.6) by means of Schauder’s fixeidttheorem. Fixing¢ € (0,2), we
introduce the set

C={ueWi(-1,1)NWip(—1,1) : u isevenand) < d;u <ro} ,

where
W2p(=1,1):=={ueW;(-1,1) : u(£1) =0}, g€ [l,o0].
Let us first collect some properties ©f

Lemma2.1. Cis a closed, convex, and bounded subsétgf—1,1) for eachq € [1, oc] and
02u(1:)2—%0>—1, ze(-1,1), uecC. (2.8)

Proof. Clearly,C is convex and closed iW2 (-1, 1) and thus weakly closed W2 (-1, 1). ThereforeC
is convex and closed i/ (—1, 1) for eachg € [1, o). Next, foru € C, integrating the equality

Opu(z) = dpu(y) + /m DPu(z)dz, (z,y) € (—1,1) x (—1,1),

with respect tgy on (-1, 1), we find:
|Opu(x)] <219, xe€(—-1,1). (2.9)

Sinceu(+1) = 0, we deduce from (2.9) thau(x)| < 2ry for z € [—1,1] andC is thus bounded in
W2 (—1,1). Next, the convexity of: and the boundary values+1) = 0 clearly ensure that < 0.
Finally, if v attains a negative minimum at some paint € (—1, 1), we may assume,, € [0, 1) without
loss of generality since is even. Thed, u(z,,) = 0 and

w(Tm) / dauly [(y—w)azu(y)}zzim—/z (y—2)02u(y) dy = /m (x—y)dZu(y) dy .

4 m

Thus, sinceu(1)

1
r
“ulem) = [ (1= pRut)dy < T
from which (2.8) follows. " O

Next we study the existence and properties of the soluti¢@.®)-(2.4) when: € C is given.
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Lemma2.2. Givenu € C there is a unique solution, € W3 () to (2.3)}(2.4). Moreover, = ¢, (z,n)
is even with respect to,

n(l+u@) <¢u(z,n) <1, (z,n) e, wecC, (2.10)
and
[¢ullwz) < e, uecl, (2.11)
for some constant; = ¢ (rg,e) > 0.

Proof. We claim that the operator L, is elliptic for v € C given. To see this, choose an arbitraryg C
and let

22 7528zu(:r)77
1+ u(x)
A=
PO 1+ (Oeu()
T+ u() " 1+ u(@)?
denote the principal part of £, for fixed (x, ) € Q with tracet and determinant given by
ti=e?+ Lt e (O u(x))” d:= 752 .
(1 +u(@)* - (1+u(x))?
Then the two eigenvalues df are
1
Hiizi(ti\/ﬂ‘*4&
and since
1+e2<t<e?+ ——— (1+4e%2 > g2
+er<t<e +(27T0)2(+5r0), d>e*,
by (2.8) and (2.9),
d 62(2 — T0)2
>p_ > - >
Ho=h-=7 = e2(2 —rp)?2 + 4+ 16e2r3 >0

Consequently;-L,, is elliptic with a positive ellipticity constant depending ro ande but not onu € C.
Next observe that (2.3)-(2.4) is equivalent to

(Lu®) (2, ) = —fulz,m), (z,m) €, (2.12)
O(x,n) =0, (x,n) € 0, (2.13)

by setting®(x,7n) := ¢(x,n) —n, (z,1) € Q, wheref, € Lo.() is defined as

dpu(z) \>  02u(x)
. _ 2 - T
i) = Lan = |2 (L2485 ) - B o e, (214)
and satisfies
3212 27
< g2 0 0 .
1ol < ((27’0)2 27’0) (2.19)

by (2.9) and Lemma 2.1. Noticing that, thanks to Lemma 2li;a#fficients ofZ,,, written in divergence
form

O u(x) O u(z) 1+ &2n?(0,u(r))?
_ 2 2 2
Low =0, (5 Opw — € 7771 () a,]w) + 0y ( € 771 n u(z)azw + 0+ u(@)? Opgw

Oyu(z) Oz u(x) 2
2 _ 2
+571+u($)8zw En(l—i—u(x) Ohw ,
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as well asf,, have norms inL..(€2) uniformly bounded with respect to € C, we may apply [16, Chapt. 3,
Thm. 9.1& Thm. 10.1] to obtain the existence and uniqueness of a ealdtj € WQQ,D(Q) to (2.12)-(2.13)
satisfying

[Pullwz) < c(l|PullLa) +1) (2.16)

with a constant depending om, ande but not onu € C. Settingg,, (x,n) = @, (z,n) +n for (z,7) € Q,
the functiong,, obviously solves (2.3)-(2.4) and, owing to (2.16), the tab(f111) readily follows provided
we can verify (2.10). For this we take = 1 and note that,w = 0 in Q while w(n) =1 > n = ¢, (x,n)
for (z,n) € Q. The comparison principle then ensures< 1 in Q). Takingv(z,n) := n(1 + u(zx)) for
(z,n) € Q, we havel,v = 0in Q andv(x,n) < n = ¢,(z,n) for (z,n) € Q. We conclude thap, > v
in © again by the comparison principle, and (2.10) and (2.119vol It remains to check that,, is even.
Howeveru being evend,.u is odd andb?« is even, and it is easily seen th?ta(tr, n) := ¢u(—x,n) satisfies
(2.3)-(2.4) as well, whencé = ¢, by uniqueness. O

We next turn to the continuity property of, with respect ta: € C.

Lemma2.3. The mapping(u — ¢>u) : C — WZ(Q) is continuous whed is endowed with the topology
of W3(—1,1).

Proof. Let C be endowed with the topology a¥2(—1,1). Givenu € C, we define a bounded linear
operatorA(u) € L(W3 (), L2(£2)) by

Aw)® = —L,0, eW;pH(Q),

and note thatd is continuous fronC in £ (WiD(Q),LQ(Q)), thanks to the continuous embedding of
W3(—1,1) in WL (—1,1) and the boundedness 6fin W2 (—1,1). Then [16, Chapt. 3, Thm. 9.&
Thm. 10.1] (see the proof of Lemma 2.2) warrants thét) is invertible for each: € C. Owing to the
continuity (in fact: analyticity) of the inversion map— ¢~ of bounded linear operators, we conclude that

C— L(Ls(Q), W3 5(Q)), urs A(u)™!

is continuous. One then checks that> f, is continuous fronC to Ly (), wheref, is given in (2.14).
Consequently,

(u — P, = A(u)_l(*fu)) :C— W;D(Q)

is continuous. Recalling that, (z,n) = ®,(z,n) + n for (z,n) € Q gives the claim. O

To obtain estimates on solutions to (1.12)-(1.13) we netichates on the gradient gf, on the boundary
n = 1 as provided by the following lemma.

Lemma 2.4. There is a constant, > 0 depending only omy € (0,2) ande € (0, 1) such that, given
u € C, the corresponding solution, € W3 () to (2.3)(2.4)satisfies

10n¢u (s Dllyparz_y ) < 2 (2.17)

and
0 < 0ypu(z,1) <1+2%, z€(-1,1). (2.18)

Proof. According to [18, Chapt. 2, Thm. 5.4] there is a positive ¢ant: depending only o2 such that

Haﬁ(bu(a 1)||W21/2(—1,1) <c H(bUHW;(Q)
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from which (2.17) readily follows by (2.11). Next, set,(n) := n'*® for n € [0,1] anda > 0. Then
wa(n) < n = du(z,n) for (z,n) € 902 and
5 deu \? B 0u
14w 1+4+u

140,

LW, a(l+a)n*t +e%(a+ 1)t

(1+wu)?
a—1 2
I
1+Oé a—1 1+a a—1
> Lo : +)Z)2 [0 — 2P (14 u) 0] > LT 5 +);7)2 o — 22

in ©2, where we used < 0 and0 < 9%u < 79 < 2 to obtain the last inequality. Consequently, choosing
a = 22, we realize that,w,.> > 0in 2, and we infer from the comparison principle that

Gu(®,1) > wae2(n),  (z,m) €.
In particular, forp € (0,1),

L Gul@m) — dulw.1)) = —— (Bulan) — 1) < —— (wne (1) — wae2 (1)) |

n—1 n—1 n—1
whenced, ¢, (z,1) < d,ws.2(1) =1 + 2% for z € (—1,1). Sincep, < 1in Q andg,(z,1) = 1, we also
haved, ¢, (z,1) > 0forz € (—1,1). O

Next, givenu € C, we set

_ 1+e*(0su(2))? D2 ze(—

and observe that Lemma 2.1 and (2.18) guaranteejthat L..(—1,1). Thus, for each\ > 0 there is a
unique solutiorv = S(u) in Wfo_’D(—l, 1) to the linear problem
D2v(x) = Agu(x) , xe(-1,1), (2.20)
v(z) =0, x==+l. (2.21)
Actually, we have:

Lemma 2.5. If C is endowed with the topology &3 (—1,1), thenS : ¢ — W37 (—1,1) is continuous
for eacho € [0,1/2), and there is a positive constant(c) depending onlyy, €, ando such that

||S(U)||W22+a(7171) <Aesz(o), uwecC. (2.22)
Moreover,S(u) is even and convex far € C.

Proof. Lemma 2.3 together with [18, Chapt. 2, Thm. 5.4] and (2.1 flynthatw — 9, ¢, (-, 1) is contin-
uous and bounded as a mappthg- W21/2(—1, 1). In the following, given two Banach spacé&sandY
of real-valued functions, we writ&d — Y to indicate thatX is continuously embedded i¥i and we set
X -Y:={fg: (f,9) € X xY}. Let0 < o < g1 < 1/2. Since pointwise multiplication
Wy 2(=1,1) - Wy (= 1,1) = W (=1,1)
is bilinear and continuous according to [2, Thm. 4.1 & Rer@(d)], we infer that: +— 9,6, (-, 1)|? defines
a bounded and continuous mappthg— W' (—1,1). Noticing that
1+e2(0pu(z))?
(1 +u(z))?

is continuous and bounded as well by Lemma 2.1 and that

W21(715 1) ! VV2U1 (715 1) — WQU(*L 1)

C— WJH(~1,1), (2.23)
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by [2, Thm. 4.1 & Rem. 4.2(d)], we see that— g, is continuous and bounded froénto W (-1, 1).
ConsequentlyS : C — W37(—1,1) is continuous and satisfies (2.22). Cleaflyy) is even foru € C
sinceu andg,, (-, 1) are even by Lemma 2.2, asu) is convex sincé?S(u) > 0 by (2.19) and (2.20). O

We are now in a position to construct solutions to (2.3)Xfh6small values of\ by applying Schauder’s
fixed point theorem to the mag.

Proposition 2.6. There exists\, > 0 independent of € (0, 1) such that(2.3)(2.6) admits for each
A € (0, \o] a solution
(u, ¢u) € WE(=1,1) x W3(Q)
satisfying
0> u(x) > —%0 >—1 and 0<du(z)<ry, x€(-1,1).

Moreoveru is even and belongs #7317 (—1, 1) for anyo € [0,1/2).

Proof. To prove thatS maps the closed and convex sulef W3 (—1, 1) into itself note that (2.9), (2.18)
together with Lemma 2.1 ensure

1+ e(0pu(z))? 5 1+4e%r3
Ty e =R

for u € C. Thus there is\g = A\o(r9) > 0 sufficiently small and independent efc (0, 1) such that
0 < 92S(u) < 7o for A € (0, o] andu € C, so it follows from Lemma 2.5 that indeed map€ into
itself. SincelWZ"7(—1,1) embeds compactly ifZ(—1,1) for o € (0,1/2), Lemma 2.5 implies that
S : C — Cis continuous and compact and thus has a fixed poiatC enjoying the properties stated in
Lemma2.1. O

0<92S(u) = A (1+2¢?) (2.24)

Clearly, a positive lower bound oXy can be obtained by optimizing its choice according to (2.24)

To finish off the proof of Theorem 1.1 it remains to improve thgularity of(u, ¢,,) and to pull it back
on the domaif2(u) by means of the transformatidn, from (2.1).

Coroallary 2.7. If (u, ¢,) is the solution t0(2.3)(2.6) for A € (0, \¢] provided by Proposition 2.6, then
(u, ) with ¢ := ¢,, o T}, is a solution to(1.10)(1.13)with regularity

ue CH([-1,1]), ¥ e Wi (Q(w) NC(Qu)) NC?H(Qu) UT(u)) ,
for eacha € [0, 1).

Proof. From ¢, € W$(2) and (2.1) we readily deducg = ¢, o T, € WZ(Q(u)) and solves (1.10)
in Q(u). Moreover, since(u) is a Lipschitz domain, the trace of is well defined as an element of
W,/?(99(u)) according to [18, Chapt. 2, Thm. 5.5] and (1.11) follows frafi-1) = 0 and (2.4). Also,
since( satisfies the exterior cone condition at every point of itsrimtary and, € W2 (-1, 1), it follows
from [9, Thm. 9.30] thats, € C({). Recalling thaf, € C (W; Q), we deduce thap € C (W)
Finally, ¢ is even inx due to Lemma 2.2 and the fact thats even.

We next improve the regularity af with the help of [10, Thm. 5.2.7]. To this end, we note that,
sinceu € W2 (—1,1), the boundary)$2(u) of Q(u) is a curvilinear polygon of class™! in the sense of
[10, Definition 1.4.5.1] with four vertice§(—1, —1), (1, —1),(—1,0), (1,0)} connected by¥ 2 -smooth
curves. In order to apply [10, Thm. 5.2.7], we have to studyemrecisely the behaviour of the operator
€202 + 0?2 at these four vertices. Actually, since the operat@l? + 92 coincides with its principal part and
has constant coefficients, we only have to compute the measuof the angle at each vertéx of Q(u).
Obviously,w+1,-1) = /2 while

= arccos —(awu(il))Q T
YELo) = <1 n (8xu(j:1))2> < (0’ 2) :
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Sincewy € (0,7/2] for V. e {(-1,-1),(1,-1),(-1,0),(1,0)}, it follows from [10, Thms. 5.2.2
and 5.2.7] that no singularity occurs at the vertices and ¢tha& W?((u)) for all p € (2,00). The
classical Sobolev embedding then implies that C'+*(Q(u)) for all a € (0,1). Combining this reg-
ularity with that ofu gives thatr — &2 |0, (x, u(z))|* + 0.1 (z, u(x))|* belongs toC*([—1,1]) and
Schauder estimates applied to (2.5) guaranteett@C? (|1, 1]) for a € (0,1).
Furthermore, since € C?T<([—1, 1)), itis easy to check th&(u) satisfies an exterior sphere condition

at each boundary point € 99Q(u). So [9, Thm. 6.13] applied to (1.10)-(1.11) yieldse C(Q(u)) N
C?T(Q(u)). Finally, asI'(u) surely is aC*** boundary portion 08 (u), we may invoke [9, Lem. 6.18]

to deduce that € C?*™*(Q(u) UT (u)). O

The proof of Theorem 1.1 is thus complete.

3. THE VANISHING ASPECT RATIO LIMIT: PROOF OFTHEOREM 1.2

We now prove Theorem 1.2 and thus consider a family of saistia., ¢ ).c(0,1) to (1.10)-(1.13)
satisfying the bounds (1.14) and (1.15) for some fixed 0.
Fore € (0,1), we set

ORES ¢7u5 =0 Tu_sl
with 7, from (2.2) and

q)ﬁ(zan) = d’s(xﬂ])*ﬁ, ($,7])EQ.

We first derive estimates ob. which are uniform with respectto€ (0,1). In the following, K denotes
an arbitrary positive constant depending only)oandx.

Lemma 3.1. There exists a positive constalij depending only on\ andx, such that, foe € (0,1),

[Pelli@ < 1, (3.1)
[P, < Kive, (3.2)
10y Pcllra) < Kie, (3.3)
|\3727q>s||L2(Q) < K& (3.4)

Proof. Since0 < ¢. < 1 by (2.10), we readily obtain (3.1). We next introduce

flwm) = ful,) = <2 () - ff;ffg%) C @men,

and observe that (1.14) and (1.15) ensure that

2e2 g2
[ fell Lo () < <K—é + K—%> . (3.5)
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Now, it follows from (2.12)-(2.13) that
Je @ d(xvn) =&’ /
Q

Q
1+ &% (9pue)?

+/Q (1+u8)2
oeue \2>  9%u
2 x We o x We
: /Qn <2<1+U5) 1+U5> ®e an‘l)ed(ﬂﬁm)
Dyt ? |8, . |2
= g2 —p == AT Tel
=¢ /Q (81@8 U 3n<1>e> d(ﬂﬂ,n)Jr/Q I+ ) d(x,n)

0,1 2 0%u
2 2 == ) — == $_.9,d.d )
+e /Qn< [ T | ®eOn®e (z,m)

We deduce from (1.14), (1.15), (3.1), and the above idetiiday

222 Q2 22 |Qt/2
[recaen = 100 - (25 + SE5) 100
while (3.1) and (3.5) ensure that

Ko 0
2
[ gt < ( )|Q|

(1-¢?) ||677q)8||%2(9) - K¢,
Combining the above two inequalities gives (3.3). Nextnitsto (2.13) and (3.1), we have

[l e = [ / 0,.(0,1) dy|

d(z,m) < // |0, @< (2, y)* dy d(z, n)
Q] 10517, (q) »

and (3.2) readily follows from the previous inequality aBd3)).
Finally, setting(. := 8%@8 andw; := 0,0, ®., we infer from (2.12)-(2.13) that

2,2 2
/Q[MC?*‘EQ%‘I’ECE_QW wa] (z,m) /f‘E ) e d(z,m).

(14 ue)?
/ 55‘1)8 Ce d(l’ﬂ?) = / w? d(l’ﬂ?)
Q Q
by [10, Lem. 4.3.1.2; 4.3.1.3], the above identity also reads

2 ) .
/Q (quisu)Q—’—&j (wg_nliuu g)] 5577 /fa gs ( ).

Consequently, owing to (1.14), (3.3) and (3.5), we dedumefthe above identity that

CQ
¢z 0 < /Q REDBE +8u 2 d(z,n) < [[fell Lo (|Q|l/2 + Han(I)EHLg(Q)) 1Cell Lo ()
i

< K& [|¢llnye

Ope
0, P 0,P. 2778z<1+ua> <I)€8nq)g] d(z,n)

[|a%o1>€|2 — o 1‘9 vlle

Ot 2
|(977(I)6|2 —+ 27752 <1+—;) b, (%fb!| d(l’, 77)
€

Y

Y

IN

Since

11

whence (3.4). O

In order to pass to the limit as— 0 in (2.5), we need to control the trace @f®. on (—1,1) x {1}.

For that purpose, the following lemma will be adequate.
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Lemma 3.2. Givend € WZ(Q), we have
1099(, Dl za(=1,1) < V2 (1009l Lo() + 1029] Lo() -

Proof. We first assume that € C*°(2). Forz € (—1,1) andn € (0,1), we have

1
Oyd(z, 1) :8,719(1:,77)—1-/ 29(x,y) dy.
n

Integrating this identity with respect ipover (0, 1) gives

1 1 1
éwwnzéawwmm+4/aw@w@m,
n

and thus

1099, 1) < N10y0(2, | 2200,1) + 1059, | 2200,1)
Raising both sides of the above identity to the square ardjiating with respect to over(—1, 1) gives
the claimed estimate for smooth functions. The general frdksvs by a density argument, see, e.g., [1,
Thm. 3.18] or [18, Chapt. 2, Thm. 3.1]. O

A control on the trace of,®. on(—1,1) x {1} follows at once from Lemma 3.1 and Lemma 3.2.
Corollary 3.3. There exists a positive constakit depending only ot and x, such that, foe € (0, 1),
H&](I)E(.,I)HLZ(_LD S KQE. (36)

Proof of Theorem 1.2By (1.15) and the Arzela-Ascoli theorem, there are a secgien,);>1 and a func-
tionug € W2 (—1,1) such that, — 0in (0,1) and

Ue, — Up in WL(-1,1), (3.7)
Ue, — U in W2 (~1,1). (3.8)
Owing to (1.14), (3.6), (3.7), and the definition®f, we have
0> ug(x) >kKo—1, xe[-1,1], (3.9)
and
% |0y e, (-, 1)]> —> m i Ly(—1,1). (3.10)

Combining (3.8) and (3.10), we may pass to the limitas— 0 in (2.5) and conclude that, is a solution
to the small aspect ratio equation (1.9), whegé+1) = 0 is guaranteed by (2.6) and (3.7).
Also, by (3.2),

11m/|¢5kx7]—77| d(z,n) =0,

and, since
1 Ue (I) 2
9 k 14z dzdx
, — d y = ) -
[ toatam = s = [ [ o | T
uey, (@) 1+2

> d dz,

> /’/ Verle2) ~ Ty 2
we readily obtain (1.16), wherg, is given by (1.6) withu = wq. O
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