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800,1, route des Luci.oles, B.P. 93, 
06902 Sophia-Antipolis cedex, .France 

E-mail: jean-paul.zolesio@sophia.inria.frThe controlled evolution of level sets provides a successful framework to solve time-hannonic inverse scattering problems for objects whose contrast with the environment is known but whose shape is unknown 3• New solution tools extend thisframework to the retrieval of objects whose both shape and contrast are unknown. 
1. A short introduction to the level set techniqueThe level set representation of domains enables to describe the evolutionof fronts 1, and is now used in a variety of applications 2, including inversescattering problems 3•4 •5 •6 • The idea of using level sets to retrieve locationand shape of an unknown homogeneous and penetrable object embeddedin a portion (some search domain D) of a known space by the observation of the scattered field on a set of receivers M which is resulting fromits interaction with an impinging time-harmonic pressure wave lies in thecombination of two techniques: (i) the representation of a bounded domain n (singly- or multiplyconnected as well) within D by a function ct> whose zero-levels correspond to the boundary contours 80; (ii) the speed method, which consists in the construction of a velocityfield ensuring a deformation of n, a properly chosen objective or cost
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functional J being minimized 7• Like with many inverse problems, the solution is obtained by iterativeminimization of J, the latter measuring the discrepancy between the fieldus scattered by n and data ( collected by the sensors at the frequency(ies)
w of operation for probing field(s) u1. The scattering problem itself isapproached via a (scalar) contrast-source domain integral formulation andthe application of a method of moments at the discretization stage 8• Theformulation is similar to the one developed earlier in the TM-polarizationcase in 2-D electromagnetics 3•5 • State (coupling) and observation (data)equations respectively read asu(x) = u1(x) + ki l 11Goo(x, y)u(y)dy, Vx E D, (1)us(x) = ki l r,Gor(x, y)u(y)dy, Vi E M. (2)In the above Green functions Gor and G00 with source point y and observation point fl are used, index o standing for a point in the search domain
D and index r for a point in the measurement domain M; the wave numberof the host medium Dis ko(w), and the scatterer is of wave number k(w); 

� c2 contrast r, reads as r, = �-1 = ,-1, where Co and care the velocitiesof the pressure wave insia>e the host medium and the scatterer, respectively,both media being fluid and with unit density. When the contrast r, is known, the problem comes down to an optimalshape design problem in some pseudo-time t (in the discrete model, thenumber of iterations), with the associated objective functional (3) The gradient of J with respect to the variation of shape is handled via aLagrangian formulation 5, and reads as
!: = Ote ( k5 hn r,u(s)p(s)V(s).n(s)d� , (4) where u is the total field in D; p the adjoint field, computed as usual byassuming that the measurement set M radiates an incident field of complexvalued amplitude us(O) - (, the overbar denoting complex-conjugation; nthe normal to the boundary contour an (assumed regular enough); and Vthe speed of evolution of this boundary. The choice of (5)

2



along an provides in theory a strictly negative derivative of J. Upon extending the above speed to the whole of D, the motion of every level of �-the level O is an- is described by the Hamilton-Jacobi equation 1, 
!! (x) + V(x).ii(x)IIV�(x)II = o, vx e n. (6) Examples of such reconstructions are available in different electromagneticand acoustic configurations 5• 9 • 

2. Shape and contrast reconstruction The simultaneous retrieval of contrast f/ and shape n is a demanding task.Variations of the cost functional (3) now read as 
aJ aJ U=��+�� m where x is the support of n. The partial derivation of J with respect tox is dealt with as is usual within the level set method (4). As for thepartial derivation of J with respect to f/, it can be performed either in full, which means the variations of the total field vs. rJ are accounted for in thecalculation, or in approximate fashion, which means the total field u is keptconstant in the estimation. (Details of the calculations are given next.) Once suitable derivatives in the direction of fJ and x are available, analternating procedure can be built: shape contours are updated by the levelset method until convergence, then contrasts are updated by an optimization algorithm adapted to non-linear problems (such as the LevenbergMarquardt method 10) until convergence, and the procedure is repeatedfrom the new updates until a satisfactory solution is obtained. The full calculation of the derivative with respect to the contrast proceeds as follows. The cost functional (3) is cast into a constrained Lagrangian: J= min max £, wEH 1 ('2) ,pEH 1 ('2) C(w, w, <P, ii,) = ½ !M I l rJGor(x, ii)w(ii)dy- ((x)r dx + �t l ( w(x) - u1(x) - l rJG 00 (i, ii)w(ii)dy) <J,(x)dx, (8) the saddle-point (u, u, '1/J, '¢) of which is verified to be unique 5 by consideringthe change of variable, Vi E n, (9)
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Then, application of Cuer-Zolesio's theorem 11 yields the derivative of J as
8J 8£ _811 = 811 (u,u,'1/J,'I/J). (10)Now, in order to use the Levenberg-Marquardt algorithm, the complexvalued contrast is written as 11(a, b) = a+ ib, and the derivations are performed with respect to the real-valued coefficients a and b.By derivating (8) with respect to a, one obtains �� (a, b) = JM { alk5 L G0r(x, Y)u(y)dy,2 -Vle(kJ((x) L Gor(x,y)u(y)dff) }dx-Vle L k5 l Goo(x, Y)u(Y)djj'lj)(x)dx; (11)Noticing that \fz1,z2 et, Vle(z1z2) = Vle(z1z2), Eq. (11) is rewritten as

!� (a, b) = Vle !M ii [k5 l Gor(x,y)u(Y)dy] [ki L Gor(x,y)u(y)dy] dx- Vle !M k5((x) fo Gor(X, y)u(y)dydx-Vle l k5 L Goo(x,y)u(y)dy'lj)(x)dx. (12)Performing the change of variable defined in (9), applying Fubini's theorem,and using Eq. (2), one gets :� (a,b) = Vle L ijk5u(y) !M Gro(ii,x)k5 fo Gor(x,z)u(z')dzdxdjj- Vle L u(ii)k5 !M Gro(ii, i)((x)dxdy+ Vle L k5u(ii)k511 l Goo(x,ii)p(x)dxdy. (13)This gives, using the reciprocity relation of the Green functions,
!� (a, b) = Vle fo u(ii)k5 [!M Gor(X, ii)(us(x) -((x))dx+k5 L Goo(X, ii)17p(x)dx] dy, {14)and finally, by definition of p,:� (a, b) = Vle [k3 l u(x)p(x)dx]. (15)
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The derivation with respect to b can be carried out rather similarly: starting with 
:: (a, b) = /M { b jk5 l Gor(x,y)u(y)dy, 2 

- Jm( k5((x) l Gor(i, y)u(y)dy)}
+)ml k5 lo Goo(x,y)u(y)dy'I/J(x)dx, (16) 

using the property 'vz1, z2 E (), Jm(z1z2) = -Jm(z1z2), and the sameproperties as those used for t.f, one finally gets
�� (a, b) = -Jm [k� k u(i)p(i)dx]. (17) 

The use of such derivatives requires the availability of the total field u and of its adjoint p at each iteration step of the 77-optimization procedure, and this might become computationally costly. A less computationally demanding calculation of an approximated derivative is as follows. Derivating the cost functional (3), u being taken as a constant, yields 
:�,u (a, b) = /M { alk5 l Gor(x,y)u(y)d�2 

- 9\e( �((£) l Gor(x, y)u(fi)dy) }dx, (18) 
��,u (a, b) = /M {bl� l Gor(x,y)u(y)dyf

- Jm(k5((x) l Gor(x,y)u(y)dy) }dx. (19) 
Let us notice that the approximated derivatives are similar to the exact ones in Eq. (11) and Eq. (16), the last terms taken out. For each of those expressions, one could have obtained it directly bycalculating i� 12, which enables to write, for the full derivative,

{)J = ! ({)J - i {)J) = k5 { u(x)p(x)dx, (20) 077 2 8a 8b 2 Jn 
and for the approximated derivative, 

�� L = � /M [ 11 lk5 k Gor(X, y)u(y)dyr
-k5((x) fo Gor(x, y)u(y)dy] di. (21)
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3. Numerical examplesUsing proper derivatives (4) , (15) , (1 7) ,  ( 18) and (19), various algorithmscan be devised by choosing the order and the accuracy of each optimizationprocedure 9 • Requiring a minimal value of the cost functional separatelyin the search of shape T/ and in the one of contrast X ,  and alternating onesearch of each kind is the option taken from now. For simplicity, only the case of lossless media will be considered, whichmeans that only the derivative with respect to a is considered. Let usconsider for example the configuration sketched in Table 1 .
Table 1 .  Incident wavesFrequenciesReceivers Domain D Defect 36 line sources, in circle, radius 3 mm500, 1000, 1500, 2000 kHz 64, on a circle of radius 2.5 mm2 x 2 mm2 , Co = 1 470 m.s- 1 2 rectangles, c = 1800 m.s- 1The scatterer domain is init ialized as a centered disc the radius of whichis equal to one-fourth of the side of the search domain , the first guess of itsacoustic velocity being 1600 m.s- 1 . Figure 1 displays the evolution of thecost functional J (here, the sum of the costs at all observation frequencies)and of the retrieved velocity c of the scatterer as a function of the number of iterations; the correspondingl y retrieved domains are displayed in Figure 2.One observes that the approximated calculation of the derivative yields a correct solution (the two rectangles) after not too high a number of iterations (with a cost functional reaching its least magnitude at iteration 41) , but this result is not stable, since the procedure diverges beyond (atiteration 100 the velocity is unrealistically huge and the two rectangles arereduced almost to point scatterers . . .  ) .  In contrast , with the full calculation of the derivative, the retrieved domains stay almost the same beyondthe iteration at which the minimum of the cost functional is reached (atiteration 39) , being said that the velocity  fluctuates somewhat around thetrue value. Notice that both methods however provide the same velocity(about c = 1770 m.s- 1 ) at the minimum of the cost functionals. 
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20 40  60 80  100  Figure 1 .  Top: evolution of the cost functional as a function of the number of iterations; bottom: corresponding evolution of the scatterer velocity c using the approximated calculation of the derivative with respect to the contrast (-) and the full one (- -) .  
4. ConclusionResults shown so far are still provisional. Complementary experimentsare needed, with the help of both approximated and full evaluation of thederivatives of the cost functional with respect to the contrast, for morecomplicated configurations (such as an object confined within a layer ofa stratified space or lossy media), but proper retrieval of both shape andcontrast with a level set method is certainly promising. 
References 1 .  S. Osher and J. A. Sethian, J. Comput. Phys. ,  79 , 12-49 ( 1988) . 2. J. A. Sethian, Levelset Methods and Fast Marching Methods, Cambridge University Press, 2nd edition (1999) .3 .  A. Litman, D. Lesselier, and F. Santosa, Inverse Problems, 14, 658-706 ( 1998) . 4. 0. Dorn , E. L. Miller, and C. M. Rappaport , Inverse Problems, 16,  1 1 19-1 156(2000) .

7



, 
I 

,, , 

/ - - - '/. / '?,;, , ' '
I 

, I 
I Figure 2. Refer to Fig. 1 .  Black-and-white representations of the retrieved domains using the approximated calculation of the derivative with respect to the contrast (top row, left at iteration 41 ,  right at iteration 100) and the exact one (bottom row, left at iteration 39 , right at iteration 100) .  The initial contour is displayed as a dashed line. 5.  C. Ramananjaona, M. Lambert , D. Lesselier, and J.-P. Zolesio, Inverse Prob

lems, 17, 1 087-1 1 1 1  (200 1 ) .  6 .  H .  Feng,  D .  A .  Castanon, and W.  C .  Karl, IEEE Trans. Image Process. , to appear. 7. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape
Sensitivity Analysis, Springer Verlag, ( 1992) .8. R. F. Harrington, Field Computation by Moment Method, Macmillan ( 1968) .9. C .  Ramananjaona, Methodes d 'ensembles de niveaux pour la resolution de
problemes inverses des ondes, These de Doctorat , Universite de VersaillesSaint-Quentin-en-Yvelines (2002) .10 .  A. Franchois and C. Pichot , IEEE Trans. Antennas Propagat. , 45, 203-215  ( 1997) . 1 1 .  M .  Cuer and J. -P. Zolesio, Systems and Control Letters, 11  151-158 ( 1988) . 12. D. H. Brandwood, Proceedings of the IEE-H, 130 1 1-16  ( 1983) .

8


