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Remanufacturing

Abstract

This paper presents a theoretical model of remanufacturing where a duopoly of

original manufacturers produces a component of a �nal good. The speci�c component

that needs to be replaced during the lifetime of the �nal good creates a secondary

market where independent remanufacturers enter the competition. An environmental

regulation imposing a minimum level of remanufacturability is also introduced. The

main results establish that, while collusion of the �rms on the level of remanufactura-

bility increases both pro�t and consumer surplus, a social planner could use collusion

as a substitute for an environmental regulation. However, if an environmental regula-

tion is to be implemented, collusion should be repressed since competition supports the

public intervention better. Under certain circumstances, the environmental regulation

can increase both pro�t and consumer surplus. Part of this result supports the Porter

Hypothesis, which stipulates that industries respecting environmental regulations can

see their pro�ts increase.

Keywords: remanufacturing, competition, environmental regulation, Porter Hy-

pothesis.

JEL classi�cation: H23, L10, L51, Q53, Q58
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1 Introduction

Remanufacturing is a speci�c type of recycling in which used durable goods are repaired

to a like-new condition. Both remanufacturing and recycling avoid post-consumption waste

while reducing the use of raw materials. However, recycling is an energy-intensive process

that conserves only material value. In attempting to meet multiple environmental objectives,

remanufacturing can be a more suitable option; it preserves most of the added-value by giving

a second life to the product and, typically, reduces the use of energy by eliminating production

steps. This paper develops a model of remanufacturing where a government may either

favor an environmental collusion between producers or introduce an environmental regulation

setting a minimum level of remanufacturability. The impact on pro�ts and consumer surplus

is analyzed.

The level of remanufacturability de�nes the technical attributes that facilitate the product

reuse and refurbishing at the end of its life. In this sector, waste reuse becomes a design

objective, so that remanufacturability can be seen as a form of green design. Moreover,

since it deals with end-of-life product management and recycled materials, remanufacturing

belongs to the eco-industry as de�ned by the OECD and Eurostat.1

After a product�s �rst life, recycled material can be redirected towards any industry. On

the contrary, the material going through the remanufacturing process goes back to the same

industry. Then, remanufacturing-oriented designs permit the original manufacturers (OMs)

to access the secondary market�s bene�ts. Indeed, while remanufactured products are sold

at 60 to 70 percent of the new products� price, their production accounts for only 35 to 60

percent of the original costs [Giuntini and Gaudette 2003]. Therefore, when new products can

1Eco-industries "[...] include cleaner technologies, products and services which reduce environmental risk
and minimize pollution and resource use." [�The Environmental Goods and Services Industry: Manual for
Data Collection and Analysis� OECD, 1999]
For an introduction to the literature on green design see Fullerton and Wu (1998), Eichner and Pethig

(2001) and Eichner and Runkel (2005). For the literature on eco-industry, see David and Sinclair-Desgagné
(2005) and Canton (2008).
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be substituted with remanufactured ones, original manufacturers may undertake pro�table

remanufacturing initiatives. Xerox, Kodak, Ford Motor Company and Mercedes-Benz are

examples of corporations that could reduce their production costs with voluntary product

recovery [To¤el 2004]. These corporations are part today of a 60-100 billion dollar industry.

In this framework, the car parts industry is of particular interest. Combined, alternators

and starters represent 80% of remanufactured products [Kim et al. 2008]. Valeo and Bosch

are two important alternator producers in Europe. They started remanufacturing activities

in the early 90�s, following the announcement of legislation prohibiting the production, sale

and use of asbestos.2 Since the remanufacturing process requires a lot of handling (disman-

tling, sorting, cleaning...), the removal of the hazardous content is a technological constraint

that has made alternator remanufacturing commercially viable. In its lifetime, the same

car goes through two or three alternators [Kim et al. 2008]. Remanufactured alternators

and starters cover more than 90% of the replacement market and they are produced at a

fraction of the original cost: on average they require 14% of the energy and 12% of the

material necessary for the production of new ones [Steinhilper, 1998]. Representative of the

remanufacturing industry, this reduction in energy and raw material consumption makes

remanufacturing both environmentally desirable and industrially pro�table. Reduced pro-

duction costs attracts independent remanufacturers (IRs). In 2005, IRs represented 54%

of the aftermarket for automotive parts in Europe and 66% worldwide.3 Inspired by the

alternator anecdote, one of the main purposes of this paper is to describe how green designs

can be costly for the industry and become pro�table once an environmental regulation is

introduced.4

2This legislation was enacted in 1993 in Germany and in 1997 in France, the respective headquarters of
Bosch and Valeo, with the European Union following suit in 1999 [European Commission 1999].

3Source: Fernand J. Weiland: "Remanufacturing Automotive Mechatronics and Electronics" available at
http://www.apra-europe.org.

4Lund and Hauser (2003) describe data they have collected on the remanufacturing industry in the US.
The motivation behind their work emerges form the fact that the remanufacturing industry has stayed "vir-
tually invisible" to the public and decision makers. This is because of the large variety of remanufactured
products and the small size of actors. The authors list sectors where remanufacturing is important: auto-
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The current paper proposes a theoretical model of remanufacturing framed on the par-

ticularities of the alternator industry. A duopoly of OMs compete on the primary market

where they face the threat of an outsider. The threat insures a price competition that re-

�ects the automotive industry: original components being perfectly substitutable, vehicle

manufacturers can switch from one supplier to the other as soon as a lower price is o¤ered.

OMs also compete on the aftermarket where consumers of remanufactured products may

alternatively use the services of competitive IRs. The model pins down the di¤erent incen-

tives in the technology selection determining the level of remanufacturability and explores

the consequences of environmental regulations. In particular, it explains why original alter-

nator manufacturers refrained from adopting a voluntary withdrawal of asbestos from their

production in order to launch pro�table remanufacturing activities.

Over the years, pro�tability concerns have made remanufacturing a hot topic in the en-

gineering and managerial worlds, witness the �ourishing literature on reverse logistic, stock

planning, material demand and return, and case studies.5 Nonetheless, there are only a

handful of economic studies that consider the e¤ect of public interventions on remanufactur-

ing activities. Webster and Mitra (2007) and Mitra and Webster (2008) develop two-period

models where they consider a monopolist on the original market that competes with an IR on

the remanufacturing market. They show the conditions under which take-back regulations

as well as subsidies encourage remanufacturing activities. Like in most previous research

works, they assume a �xed level of remanufacturability.

A study by Debo et al. (2005) analyzes the technology selection that determines the

level of remanufacturability. They �rst consider an industry where the manufacturer holds a

monopoly on both the original and the remanufacturing market. They then introduce com-

motive and transport, electrical apparatus, toner cartridges, machinery, o¢ce furniture, tires, compressors,
and valves. Other examples cited in the literature include for instance the aerospace industry, single-use
cameras, hospital beds, or pulse sensors.

5See for instance Ferrer (1997), Kiesmuller and Laan (2001), Majumder and Groenevelt (2001), Lebreton
and Tuma (2006), Ferrer and Swaminathan (2006), Chung and We (2008).
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petition in the remanufacturing sector where a higher level of remanufacturability invites

entry by IRs.6 Stronger competition on the remanufacturing market pulls down prices and

OMs show lower interest in costly production technology. This result allows to conclude

that any governmental interventions promoting competition on the aftermarket would have

an adverse e¤ect on the level of remanufacturability. This corroborates the observation of

Ferrer (2000) who states that remanufacturing is viable only if the remanufactured product

is priced above its marginal cost. Following Debo et al. (2005), the current model con-

siders the positive one-way externality of remanufacturability on IRs. However, OMs can

endogeneously choose among a range of existing technologies and reduce, for low levels of

remanufacturability, the impact of technological spillovers.

Studies that observe e¤ects of competition on the remanufacturing market generally

assume away competition on the primary market; i.e. they assume a monopolistic original

manufacturer.7 The current model innovates by considering a duopoly and the threat of an

outsider. One major point that distinguishes the current model from the previous literature is

the perfect market segmentation between new and remanufactured products. In an industry

where there is a need for compatibility between the component and the �nal good, and where

the component can be remanufactured several times, the need for new good production on

the aftermarket is negligible. In the alternator industry, more than 90% of the aftermarket

is �lled with remanufactured products.

Other literatures that can be used to understand this remanufacturing market include the

literature on durable goods with repeated purchases as well as the economics of innovation

6Since remanufacturability gives the products a positive value at the end of their life, OMs have the
incentive to o¤er remanufacturable products when the end of life value is re�ected in the original product
price.

7See for instance Carlton and Waldman (2009), Mitra and Webster (2008), Webster and Mitra (2007),
Debo et al. (2005) and Majumder and Groenevelt (2001). In a di¤erent context, Heese et al. (2005)
study a duopoly that compete on the primary market. In their model, new products have a positive initial
remanufacturability level. Hence the �rst mover in launching take-back strategy can deter the competitor
by o¤ering a new product with a lower price that includes a discount for the consumer who will return the
used product.
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in the presence of technological spillovers. These topics will be discussed below.

Finally, similarities between recycling and remanufacturing are such that they use compa-

rable public interventions.8 Furthermore, because recyclable and remanufacturable products

present common characteristics in their conception [Steinhilper 1998], regulations aimed at

either recycling or remanufacturing may interchangeably foster one activity or the other.

The main results show that in the absence of environmental regulation, collusion leads

to a higher level of remanufacturability while increasing both pro�ts and consumer surplus.

When remanufacturability is environmentally desirable, the government may use collusion

on the level of remanufacturability as a substitute for an environmental regulation. In the

absence of public intervention, the threat of entry on the primary market keeps the original

price at the production cost of non-remanufacturable products. Consequently, the OM who

decides to produce remanufacturable goods must absorb the full cost of remanufacturing-

oriented technologies. This phenomenon explains what has refrained alternator producers to

adopt remanufacturable technologies prior to the regulation on asbestos. The introduction

of an environmental regulation imposing a minimum level of remanufacturability reduces

the threat of the outsider, since potential entrants will be subjected to the same regulation.

Softened market competition leads to an increase in the original product price and corre-

spondingly higher OMs pro�ts. This result is in line with the Porter Hypothesis stating

that environmental regulations may increase pro�ts in regulated industries. Finally, under

speci�c circumstances, an environmental regulation can also increase consumer surplus.

2 The Model

A duopoly of identical original manufacturers (OMs) produce an intermediate good m (the

alternator), which enters as a component of a �nal consumption good (the vehicle). This

constitutes the primary market and the component�s �rst life. The lifetimes of the component

8See Fullerton and Wu 1998; Eichner and Pethig 2001; Eichner and Runkel 2005; To¤el et al. 2008.
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and the �nal good are respectively l and L, with l < L. Consequently, consumers of the

�nal good all have to replace the defective component at each of the b replacement periods,

where b = (L=l)� 1. This creates an aftermarket.

The component�s original life aims speci�cally at the original �nal good industry with

one component per product. Used components can be remanufactured several times and, at

any moment, there is an equal number of �nal goods and components on the market.

When they originally produce a remanufacturable component, OMs participate in the

aftermarket by recovering and remanufacturing used products. On this market, however,

they face competition from independent remanufacturers (IRs).

2.1 Technology

Each OM i, i 2 f1; 2g, controls its level of remanufacturability qi, a technology choice

corresponding to the ease with which a used product can be remanufactured9 and leading

to decreasing unit remanufacturing costs cr(qi) and cs(qi), for OMs and IRs respectively.

However, OMs bene�t from economies of scope between new and remanufactured products10

and, for any given q, have lower unit remanufacturing costs than IRs. This technological

advantage for OMs over the IRs is represented by the following properties:

cs(q)� cr(q) � 0; and asymptotically: lim
qi!1

(cs(q)� cr(q)) = 0: (1)

For large levels of remanufacturability, remanufacturing becomes equally accessible for IRs.

9In most models [see for instance Debo et al. 2005; Majumder and Groenevelt 2001; Ferrer and Swami-
nathan 2006] the level of remanufacturability is the percentage of remanufacturable used products. While the
share of un-remanufacturable cores can exceed 30% for certain products, it is less than 15% for alternators
[Kim et al. 2008]. In the present model, this number is assumed to be negligible so that the alternator/vehicle
ratio stays equal to 1.
10Carlton and Waldman (2009) also assume economies of scope between the production of new parts and

remanufactured ones.
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To make the original product more remanufacturable, OMs bear additional production

costs re�ected by an increasing and convex initial manufacturing cost, cm (qi).

2.2 Demand functions

The demand for the component is segmented into two types: the demands for new and for

remanufactured products.

The demand for new products m is driven by �nal good producers. It is assumed that

any variation in the original component price represents a small share of the �nal good

production cost and, hence, the demand for m stays inelastic for a reasonably large range of

prices (or until a certain choke price). Except for great demand elasticities, this assumption

does not a¤ect the results, but lightens the model. For simplicity, m is normalized to 1.

The demand for remanufactured products comes from �nal consumers. It is assumed

that consumers always opt for remanufactured products.11 Consumer types are uniformly

distributed over � 2 [0; 1], where �+� is the willingness to pay for a replacement good. The

positive constant � indicates that even individuals from the lower bound are willing to pay

a positive amount. When remanufacturing used products, OMs provide the properties and

warranty of new goods while IRs supply products of lower quality.12 As a result, consumers

will express lower willingness to pay for IRs� products. The parameter � 2 [0; 1] re�ects this

perceived depreciation in quality.

At each replacement period, individuals maximize their consumer surplus by purchasing

11In other models, two scenarios generally bring new products on the aftermarket. In the �rst one,
products di¤erentiation leads to a positive demand for new replacement products (for instance, in the case of
rapid obsolescence like in the computer market). In the second one, the elastic aftermarket demand cannot
be ful�lled solely with remanufactured products (like in the disposable camera market). In the alternator
industry, the need for compatibility makes product di¤erentiation negligible between new and remanufactured
products. Also, the potential supply of remanufactured products correspond to the potential demand since
there is one alternator per vehicle and each alternator can be remanufactured several times.
12For the same two year warranty, OMs� remanufactured products are twice the price of IRs� products

[Kim et al. 2008]. This suggests a di¤erence in quality. For instance, IRs� products may require more visits
to the mechanic.
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a product coming from an OM, an IR or no product at all. This maximization problem is

given by: max[� + � � pr; (1 � �)� + � � ps; 0], where pr and ps are respectively the selling

price of OMs and IRs� products. Because the component price represents a small fraction

of the �nal good�s value, � � ps mimics the inelastic aftermarket and ensures that everyone

consumes a replacement good; that is, r + s = 1, where variables r and s designate the

demand for components remanufactured by the OMs and the IRs respectively. Figure 1

illustrates the willingness to pay for the two di¤erentiated products.

The set of consumers buying remanufactured products from the OMs is de�ned by � such

that � + � � pr � (1 � �)� + � � ps, or equivalently: � � (pr � ps) =�. In Figure 1, given

prices pr and ps, individual �q is indi¤erent between the two products. Types � 2 [�q; 1]

prefer OMs� services while the others, � 2 [0; �q], purchase lower quality goods. The shaded

area corresponds to the total consumer surplus at each replacement period.

Given a uniform distribution for �, the demand for products remanufactured by the OMs

at each period is r = 1� (pr�ps
�
) so that the inverse demand function is:

pr = �(1� r) + ps: (2)

2.3 Industrial structure

Competition in the industry is described by the following four-stage game. In the �rst

stage, two identical OMs produce the original component and control its level of remanu-

facturability qi. Two di¤erent competitive environments will be considered in determining

qi: non-cooperation and collusion. Since each �rm can end up remanufacturing the other�s

products, these scenarios internalize, or not, the fact that �rms can free-ride on each other�s

technology selection qi.
13

13It has been observed in the alternator industry that i) Bosch remanufactures Valeo�s alternators; ii)
Valeo remanufactures Bosch�s alternators; and iii) although, for a given vehicle model, alternators must
meet standards set by the automobile constructor, Bosch and Valeo�s products are not identical.
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In the second stage, OMs set the original product�s prices and quantities pmi and mi.

They face the threat of an outsider that would seize any pro�t opportunities originating from

the original market but who stays blind on what occurs on the remanufacturing market.14

This threat forces price competition between OMs.

The third and fourth stages occur on the aftermarket. Although this market is shared

with IRs, OMs hold an oligopolistic power on high quality products. In the third stage,

OMs compete by choosing quantities ri. In the �nal stage, IRs compete perfectly and their

remanufactured good�s price is established.

Because of the inelastic aftermarket size, it is assumed that OMs and IRs cannot dis-

criminate between products that have di¤erent levels of remanufacturability (everything has

to be remanufactured).

OMs have perfect knowledge of each other. Their decisions in each stage are made and

applied simultaneously. They also have perfect information about IRs� characteristics. Since

OMs are identical, a symmetric subgame-perfect equilibrium in pure strategies in the four-

stage game is computed.

3 The optimization problem

Under the market clearing conditions, m1+m2 = 1 and r1+r2 = r. The OMs� pro�t function

depends on both their activities on the primary market and the remanufacturing market:

�i = (pmi � cm (qi))mi +

bX

t=1

�tl [(pr �micr(qi)�mjcr(qj))ri]

| {z }
Ri(ri;rj ;mi;mj ;qi;qj)

for i = 1; 2 and j 6= i

14Two arguments are proposed in order to explain this behaviour. The �rst one assumes that reputation
is an important factor in being considered as an OM and, therefore, new entrants cannot bene�t from a
price premium on the aftermarket. The second point considers that incumbents face less risk and are more
willing to accept delayed pro�ts.
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where pr = �(1� r) + ps from equation (2) and 0 < �l < 1 is the discount factor associated

with the length of time l. The �rst term is the net pro�t from the original market while

Ri(ri; rj;mi;mj; qi; qj) corresponds to the discounted pro�t from all the remanufacturing

periods. Because used products randomly go to any remanufacturer, the remanufacturing

cost depends on the technology selection of each OM and is weighed by their respective

participation in the original market.

3.1 Prices and quantities

Using backward induction, the �nal stage is solved �rst. IRs are perfectly competitive and

the selling price ps is set at the average unit cost of remanufacturing:

ps = mics(qi) +mjcs(qj): (3)

In the third stage, each OM i maximizes its pro�t on the aftermarket by choosing its

supply of remanufactured products ri, and by taking the supply choice of its opponents rj

as well as the levels of remanufacturability (qi; qj) as given. It also considers IRs� behavior

through equation (3). The OMs maximization problem at this stage is:

max
ri�0

Ri =

bX

t=1

�tl [(�(1� (ri + rj)) +mi(cs(qi)� cr(qi)) +mj(cs(qj)� cr(qj)))ri]

for i = 1; 2 and j 6= i

and the �rst-order condition is:

@Ri
@ri

= 0()

bX

t=1

�tl [� � �rj � 2�ri +mi(cs(qi)� cr(qi)) +mj(cs(qj)� cr(qj))] = 0: (4)
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The Nash equilibrium for the supply of remanufactured products is de�ned by:

r�i (mi;mj; qi; qj) =
� +mi(cs(qi)� cr(qi)) +mj(cs(qj)� cr(qj))

3�
for i = 1; 2 and j 6= i (5)

and the second-order condition for an interior maximum is respected when evaluated at the

equilibrium r�i .

Here, IRs play a passive role since their price is driven by the OMs� choice of remanufac-

turability (equation 3). Also, they only have a residual participation in the aftermarket; the

demand for their products depends on OMs� supply decisions with s� = 1� 2r�i . Note that

the choice of 2r�i also corresponds to OMs� aftermarket share.

In the second stage, the two OMs compete on the primary market where the threat of

the outsider keeps the component price pmi at the minimum production cost; that is,

pm1 = pm2 = cm(0): (6)

By o¤ering a common original price, OMs share this market equally with mi = 1=2. If a

higher price is set, the outsider, by proposing the lowest level of remanufacturability, can

make a strictly positive pro�t and deter competitors. Note that in spite of that restriction,

OMs may still optimally choose a positive level of remanufacturability and, consequently,

run a de�cit on the primary market (pmi � cm(qi) = cm(0)� cm(qi) � 0). This is consistent

with the existing literature on durable goods with switching costs. In the current model of

repeated purchases, the need for compatibility between the component and the �nal good

induces a consumer cost of switching to other models of alternators. One standard result

shows how switching costs cause a price war for initial market share.15 Here, �xing the

original price at the lowest production cost prevents the entry by the outsider and secures

15See Klemperer (1995) for an introduction to the literature. The author relates the example of banks,
giving free banking services to college students. Students who open current accounts are then charged high
fees once they graduate. Expected pro�ts in subsequent periods induce a price war for initial market share.
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the original market to the duopoly.

Two situations are considered for the determination of qi and qj in the �rst stage. The

�rst case re�ects the non-cooperative problem that occurs when an OM remanufactures used

products from random origin and free-rides on the technology selection of the other. The

second case considers the possibility of an agreement between the OMs. These situations

are explicitly formulated in subsections 3.3 and 3.4.

Before solving for the choice of remanufacturability, an important assumption on the

technology selection is introduced in the coming subsection.

3.2 Assumption on the technology selection

At this step, only the �rst stage equilibrium remains to be solved and everything thereafter

depends on the technology selection (qi; qj) taken as given. The pro�t function is:

��i = (cm(0)� cm(qi))
1

2
+

bX

t=1

�tl [�r
�
i (qi; qj)

2]

| {z }
Ri(qi;qj)

(7)

where the optimal supply of remanufactured products (equation 5) is reduced to:

r�i (qi; qj) =
� + cs(qi)� cr(qi)

6�
+
� + cs(qj)� cr(qj)

6�
(8)

when the individual market share in equilibrium, mi = 1=2, is taken into account.

A variation in q a¤ects the pro�t through two channels: i) the original production cost

cm(qi); and ii) the total net revenue of remanufacturing activities Ri(qi; qj). Since OMs are

identical, the analysis will focus on symmetric equilibria qi = qj = q. OMs know that, for

any given q, their pro�t depends substantially on their technological advantage: cs(q)�cr(q).
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The comparative static

@r�i
@q

=
c0s(q)� c

0
r(q)

3�
(9)

indicates that, with an increasing technological advantage, a higher level of remanufactura-

bility leads to a larger aftermarket share and, consequently, higher remanufacturing revenues.

The following assumption completes the description of the technological advantage intro-

duced in section 2.1. It is assumed that OMs have access to a wide range of remanufacturable

and substitutable technologies. In dealing with the fact that IRs bene�t from the positive

externality of remanufacturability (through c0s(q) < 0), OMs endogeneously rank order tech-

nologies with respect to their marginal technological advantage, c0s(q) � c
0
r(q). In other

words, OMs will prioritize technologies where their relative cost reduction is the largest.

Consequently, for low levels of remanufacturability, c0s(q)� c
0
r(q) is positive and large. This

is because the wide technology choice allows OMs to shape the original product in order to

suit their own remanufacturing facilities or assembly lines.16 As the level of remanufactura-

bility goes higher, the range of technology choices lessens and c0s(q)�c
0
r(q) decreases. As long

as c0s(q) � c
0
r(q) > 0, OMs have an incentive to choose higher levels of remanufacturability

since it increases their aftermarket share (see equation 9). At some q = bq, higher levels of
remanufacturability leads to the adoption of technologies that reduce their aftermarket share

with c0s(q)�c
0
r(q) � 0. This situation occurs for instance when a larger q eliminates disassem-

bly or reassembly steps originally costlier for IRs.17 For high levels of remanufacturability,

q > eq, OMs are constrained with end of tail technologies, i.e. non-substitutable technologies
speci�cally designed for high performance. Beyond eq, higher levels of remanufacturability
16For instance, in the toner cartridge industry, some �rms have added an electronic key in their remanu-

facturable cartridges that must be reset by the OM. This leads to an increase in the relative remanufacturing
cost of IRs [Majumder and Groenevelt 2001].
17By the mean value theorem, c0s(q)�c

0
r(q) � 0; for at least some q; is an essential condition for the respect

of equation (1).
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slowly reduce the gap between OMs� and IRs� remanufacturing costs. Formally, with bq < eq;
the technological advantage is described by equation (1) and:

c0s(q)� c
0
r(q)

8
>>><
>>>:

> 0 for q < bq
= 0 for q = bq
� 0 for q > bq

and c00s(q)� c
00
r(q)

8
>>><
>>>:

< 0 for q < eq
= 0 for q = eq
� 0 for q > eq

(10)

This assumption is in line with a broader literature on innovation. The �rst part, when

c0s(q) � c
0
r(q) > 0, shows the predominance of post-innovation competitive advantage while

the second part, when c0s(q) � c
0
r(q) � 0, is the result of an increasing relative rate of

technological spillovers.18 The presence of IRs therefore determines, through technology, the

extent to which OMs reach the aftermarket. Variation of the technological advantage with

the level of remanufacturability is illustrated in Figure 2.

3.3 The non-cooperative case

Each manufacturer i maximizes its pro�ts by choosing the level of remanufacturability qi,

taking the technology choice of the other qj as given and considering the optimal supply of

remanufactured products r�i (qi; qj). Used products are randomly dispatched among reman-

ufacturers (both OMs and IRs) and, therefore, the technology selection of i is subject to

free-riding. The maximization problem is:

max
qi�0

��i = (cm(0)� cm(qi))
1

2
+

bX

t=1

�tl
�
�r�i (qi; qj)

2
�
for i = 1; 2 and j 6= i

s.t. r�i (qi; qj) =
� + cs(qi)� cr(qi)

6�
+
(� + cs(qj)� cr(qj))

6�
,

18See for instance d�Aspremont and Jacquemin (1988) or Celleni and Lambertini (2009). Goel (1990)
studies the R&D decision of a Stackelberg leader (the OMs here) when the follower (the IRs here) bene�ts
from one-way spillovers. The author argues that the leader sustains a dominant role when R&D investment
implies a greater cost reduction than for the follower. In the current model, that is c0s(q)� c

0
r(q) > 0.
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and the �rst-order condition is:

@��i
@qi

= 0() �
c0m(qi)

2
+

bX

t=1

�tl

�
2�(c0s(qi)� c

0
r(qi))

6�
r�i (qi; qj)

�
= 0

for i = 1; 2 and j 6= i

where the marginal cost of a higher level of remanufacturability is equal to the marginal

revenue generated when the choice of the other is taken as �xed. The symmetric Nash

equilibrium q�nc is de�ned by:

�c0m(q
�
nc) +

bX

t=1

�tl

�
2(c0s(q

�
nc)� c

0
r(q

�
nc))

3
r�i (q

�
nc)

�

| {z }
R0(q�nc)

= 0 (11)

where the subscript nc stands for the non-cooperative case. It is assumed that the second-

order condition for an interior maximum is respected when evaluated at the symmetric

equilibrium q�nc.
19 In the presence of a corner solution q�nc = 0, the component is not reman-

ufacturable.

A positive q�nc denotes voluntary remanufacturing activities in the industry.

3.4 The collusive case

In this scenario, OMs agree on a unique level of remanufacturability qi = qj = qc, where the

subscript c refers to the collusive case. OMs internalize each other�s free-riding behaviour by

choosing the level of remanufacturability q�c that maximizes joint pro�t (however they still

19The second-order condition is �c00m(q
�
nc)+ R00(q�nc) � 0. For any given q, R00(q) =Xb

t=1
�tl

h
2
3

�
(c00
s
(q)�c00

r
(q))

3 r�i (q) +
(c0
s
(q)�c0

r
(q))2

3�

�i
. From the speci�cations of equation (10), the condition

is satis�ed in a large neighbourhood of q = bq. Note that if c00s (q)�c00r (q) is monotonically increasing for q < eq,
then when a maximum exists, it is included in the neighbourhood of q = bq and it is unique.
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su¤er from IRs� free-riding activities), which becomes:

max
q�0

��1 + �
�
2 = (cm(0)� cm(qc)) + 2

bX

t=1

�tl [�r
�
i (qc)

2] (12)

s.t. r�i (qc) =
� + cs(qc)� cr(qc)

3�
.

The �rst-order conditions is:

@��i
@q

= 0() �
c0m(q

�
c )

2
+

bX

t=1

�tl

�
2(c0s(q

�
c )� c

0
r(q

�
c ))

3
r�i (q

�
c )

�

| {z }
R0(q�c )

= 0 (13)

and it is assumed that the second-order condition for an interior maximum is respected when

evaluated at q�c .
20

3.5 Welfare analysis

The consumer surplus is now compared for the two scenarios. Here, consumer surplus on the

original market is ignored since prices and quantities stay unchanged. Referring to Figure

1, the consumer surplus on the aftermarket is de�ned by: Sr =
Xb

t=1
�tl

hR 1
�q
(� + �� pr)@�

+
R �q
0
((1� �)� + �� ps)@�

i
: Markets clear in equilibrium, therefore 1 � �q = 2r�i . Using

(2), (3) and (8), the total consumer surplus for a given q becomes:

Sr(q) =
bX

t=1

�tl
2

�
(1� �) + �r�i (q)

2 + 2(�� cs(q))
�
: (14)

Proposition 1 Collusion, compared to non-cooperation, leads to:

i) a higher level of remanufacturability: q�nc < q
�
c ;

20The second-order condition is �c00m(q
�
c )=2+ R00(q�c ) � 0. See footnote 19 for details.
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ii) a larger market share of good quality remanufactured products: r�i (q
�
nc) < r

�
i (q

�
c );

iii) higher pro�ts: ��i (q
�
nc) < �

�
i (q

�
c ); and

iv) higher consumer surplus: Sr(q
�
nc) < Sr(q

�
c ).

Proof: The optimal choice of q�nc and q
�
c are determined by equations (11) and (13).

From the second-order condition, �c00m(q)=2+ R
00(q) � 0. Therefore, q�nc < q

�
c . Both q

�
nc and

q�c are in a neighbourhood where R
0(q) > 0 () (c0s(q)� c

0
r(q)) > 0 . Hence, from equation

(9), r�i (q
�
nc) < r

�
i (q

�
c ). �

�
i (q

�
nc) < �

�
i (q

�
c ) because the externality is internalized: We can �nd

that @Sr(q)=@q =
Xb

t=1

�tl
2
[�2r�i (q)@r

�
i (q)=@q � 2c

0
s(q)]. Since R

0(q) > 0() @r�i (q)=@q > 0,

we have that @Sr(q)=@q jq=q�nc; q�c> 0 and Sr(q
�
nc) < Sr(q

�
c ):

Figure 3a illustrates ��i (q) (the lower curve) and shows q
�
nc < q�c as well as �

�
i (q

�
nc) <

��i (q
�
c ) (points e and b). When the economy changes from non-cooperation to collusion,

prices in the remanufacturing sector (equations 2 and 3) strictly decrease while the market

share of good quality products increases. Therefore, collusion bene�ts not only producers

but also consumers. This result recalls Carlton and Waldman (2009) where the monopolist

on the original market is also the low-cost remanufacturer. Comparing with the competitive

case, monopolizing the remanufacturing market increases welfare since used products are

remanufactured in the lowest cost manner. In their model however, the monopolist captures

all the bene�ts and the consumer surplus stays unchanged.

Proposition 1 suggests that a government could substitute environmental regulations by

legislating industrial agreements on the level of remanufacturability. The parallel can be

made with the National Cooperative Research Act of 1984, in the US, which promotes col-

lusion on innovation and R&D. Extended producer responsibility, a new type of regulation

where producers are responsible for their end-of-life product management,21 also o¤ers plat-

forms where certain kinds of collusions are encouraged. In the alternator industry, these

21See for instance the EU Waste Electrical and Electronic Equipment (WEEE) Directive.



20

agreements could take place within manufacturers and remanufacturers associations like the

international Automotive Parts Remanufacturers Association or the United States Council

for Automotive Research.22

4 Environmental regulation

In this economy, the government may decide to introduce an environmental regulation which

establishes a minimum level of remanufacturability, denoted by q.

Here, the objective is not to solve for the social planner�s problem, but to observe how

the industry would react in case of an environmental regulation. In particular, the analysis

shows under which conditions the OMs go along with the regulation or resist compliance

with it.

4.1 Public intervention

Under public intervention, the four stages stay the same but �rms face a more stringent

technological constraint: qi � q. Because this regulation applies also to the outsider, the

minimum production cost increases at cm(q) and the second stage equilibrium leads to an

increased original component�s price:

pm1 = pm2 = cm(q):

Hence, the pro�t function becomes:

�i(qk) = (cm(q)� cm(qk))
1

2
+

bX

t=1

�tl
�
�r�i (qk)

2
�

(15)

22See http://apra.org/ and www.uscar.org.
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where �i and qk designate the pro�t and the optimal level of remanufacturability under envi-

ronmental regulations. With k 2 fnc; cg, equation (15) stands for either the non-cooperative

or the collusive case and respects the equilibrium condition which stays equation (11) or (13).

An environmental regulation will be e¤ective if it is larger than voluntary remanufactura-

bility, i.e. when q > q�k. However, if a regulation applies to di¤erent industries with uneven

remanufacturing initiatives, the regulation might be non-e¤ective for some industries with

q < q�k. In this case, the regulation constraint is not biding and the selected level of reman-

ufacturability stays unchanged. The applied level of remanufacturability and the di¤erence

in pro�ts before and after regulation are:

qk =

8
<
:
q�k if q

�
k � q

q if q�k � q
(16)

�i(qk)� �
�
i (q

�
k) =

8
>><
>>:

(cm(q)�cm(0))
2

if q�k � q

(cm(q�k)�cm(0))

2
+

bX

t=1

�tl [�(r
�
i (q)

2 � r�i (q
�
k)
2)] if q�k � q

(17)

Figure 3a shows how pro�ts vary with the imposition of a regulation in the collusive case.

Figure 3b combines both the collusive and the non-cooperative cases. The vertical distance

between the curves �i(qk) and the horizontal lines �
�
i (q

�
k) describes the di¤erence in pro�ts

due to all possible levels of regulation. The light and medium shade areas show the non-

cooperative case while the medium and dark shade areas exhibit the collusive case.

When the regulation is non-e¤ective (i.e. when qk = q
�
k � q), the level of remanufactura-

bility stays unchanged. However, the OMs� pro�t increases by (cm(q)� cm(0))=2 due to the

higher original product price. For the collusive (non-cooperative) case, this corresponds to

the vertical distance in the triangle abc (def).

An e¤ective regulation (qk = q > q
�
k) in�uences OMs� pro�ts through two e¤ects. First,

price and cost are now equal on the primary market and OMs� initial de�cit vanishes. This

shifts up pro�ts by (cm(q
�
k) � cm(0))=2. For the collusive (non-cooperative) case, this is
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the vertical distance bc (ef). Second, a higher level of remanufacturability in�uences OMs�

technological advantage and, consequently, their ability to reach a larger aftermarket share

(equations 9 and 10). As long as the OMs gain technological advantage, c0s(q) � c
0
r(q) � 0,

their pro�ts increase. When c0s(q) � c
0
r(q) � 0, the technological gap lessens and OMs see

their aftermarket share reduced. Thereafter, the pro�t under regulation decreases until it

reaches the initial �rm�s pro�t ��i (q
�
k) at q = q

max
k (at point g (h)), where the second e¤ect

overtakes the �rst one. Above this threshold, regulation results in net costs for the OMs.

Total variation following an e¤ective regulation is represented by bcg (efcgh) and the shaded

area beyond gh (h).

Proposition 2 Environmental regulations can increase �rms� bene�ts in both the non-cooperative

and the collusive cases:

�i(qk)� �
�
i (q

�
k) > 0() q < qmaxk :

In particular, this remains true when the environmental regulation is e¤ective:

�i(qk)� �
�
i (q

�
k) > 0() q�k � q < q

max
k

This result coincides with the Porter Hypothesis, which says that pro�ts may increase in

the industry with the application of environmental regulations. The present model corrobo-

rates the argument of Ambec and Barla (2007) under which the Porter Hypothesis requires

the presence of at least one market imperfection beside the environmental externality. The

phenomenon is here the result of two market characteristics.

The �rst is the threat of the outsider on the primary market, which keeps the original

price at the minimum production cost. Hence, OMs cannot pass on the information through

prices that a product is remanufacturable. The competitive �nal good producers do not

bene�t from remanufacturability and see no incentive in raising production costs. Therefore,
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the selling price stays pm = cm(0). When the regulation takes place, the selling price pm

carries the information up to the point justi�ed by the public intervention (pm = cm(q)).

This result shows how free-entry on the original alternator market has prevented OMs from

engaging in remanufacturing initiatives and how the asbestos ban was welcomed by the

industry.

The second characteristic occurs in the non-cooperative scenario. From Proposition 1, it

is known that collusion leads to higher pro�ts. Here, the regulation solves for this collective

action problem. Although non-cooperation is not a necessary condition in con�rming the

Porter Hypothesis, it increases the extent to which regulations generate pro�ts. This speci�c

e¤ect is graphically represented in Figure 3 by the area framed above and below by the

horizontal lines ��i (q
�
c ) and �

�
i (q

�
nc), and to the left by eb. André et al. (2009) obtains similar

results when a duopoly simultaneously choose between the production of a "standard" or

a "green" product. A discrete choice of options can keep the standard quality as the Nash

equilibrium, even if Pareto dominated by the green choice. Therefore, a regulation that

forces cooperation between �rms for the environmentally-friendly option can bene�t �rms,

consumers and the environment. This additional role given to the regulation explains the

di¤erence between the non-cooperative and the collusive scenarios and leads to propositions

3 and 4.

In view of the positive variation in pro�ts, any regulation below qmaxk should be positively

supported by the OMs. In contrast, regulations above qmaxk are likely to meet resistance in

their application. The di¤erence in pro�ts before and after the regulation (equation 17) can

therefore be interpreted as the intensity of compliance or resistance towards the regulation.

Hence:

Proposition 3 It is always easier to introduce an environmental regulation q under the
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non-cooperative case:

�i(qnc)� �
�
i (q

�
nc) > �i(qc)� �

�
i (q

�
c )

Proposition 4 The maximum level of regulation positively supported by the industry is

larger under the non-cooperative case:

qmaxc < qmaxnc :

In the absence of environmental regulation, the government can promote collusion as

a substitute for regulation. However, when a regulation is scheduled, collusion should be

repressed since non-cooperation better supports the regulation.

4.2 Intervention maximizing OMs� pro�t

Let q� denotes the optimal regulation that would be chosen by the OMs. This scenario di¤ers

from the collusive case in the absence of regulation; for whichever level of remanufacturability

chosen by the OMs, the outsider, constrained by the regulation, will not have the opportunity

to produce at lower costs and, consequently, the threat vanishes. With pm1 = pm2 = cm(q),

the maximization problem is:

max
q�0

�i =
bX

t=1

�tl [�r
�
i (q)

2]

s.t. r�i (q) =
� + cs(q)� cr(q)

3�
.

The optimal condition is:

@�i
@q

= 0() c0s(q
�)� c0r(q

�) = 0 (18)
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and the second-order condition is always satis�ed. Note that q� coincides with bq, the level
of remanufacturability that maximizes the OMs� technological advantage (see equation 10).

Figure 3 displays q� and �i(q
�), the privately optimal regulation and the corresponding

pro�t. Comparing the optimal conditions for the determination of q�, q�c and q
�
nc leads to

the following propositions:

Proposition 5 The regulation preferred by the private sector leads to a level of remanufac-

turability above the one chosen in absence of regulation:

q� > q�c > q
�
nc

Proof : From Proposition 1, it is already known that q�c > q
�
nc. The optimal conditions

(11) and (13) for the choice of q in absence of environmental regulation imply a positive

value of (c0s(q) � c
0
r(q)): Since c

00
s(q) � c

00
r(q) < 0 in this neighbourhood (equation 10), it is

straightforward to see that the condition leading to the private optimal choice of regulation

(18) results in q� > q�c > q
�
nc.

Proposition 6 The size of remanufacturing activities (for the OMs) is maximized if and

only if the public sector �xes the regulation at the level preferred by the OMs:

@r�i
@q

=
(c0s(q)� c

0
r(q))

3�
= 0() q = q�

When the regulation is selected by the private sector, OMs take into account the fact

that the entire production cost is covered by the selling price. They can therefore seize the

maximum aftermarket share by costlessly choosing the level of remanufacturability leading

to their largest technological advantage. When q = q�, OMs�s pro�ts are maximized as well

as their aftermarket size.

When OMs� remanufacturing activities pollute signi�cantly less than IRs�, the social

planner may want to maximize the OMs� aftermarket share to the detriment of higher re-
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manufacturability by choosing q = q�.

4.3 Welfare analysis

On the inelastic original market, consumer surplus varies only with the price. Hence, in

equilibrium, it can be de�ned as Sm = Sm(pm) = Sm(cm(q)) where Sm(a) � Sm(b) =

�[cm(a) � cm(b)] (or equivalently S
0
m(cm(q)) = �c0m(q)). Using the consumer surplus on

the remanufacturing market, Sr(q) (equation 14), total consumer surplus in the presence of

a regulation becomes:

S(qk) = Sm(q) +
Xb

t=1

�tl
2

�
(1� �) + �r�i (qk)

2 + 2(�� cs(qk))
�
:

The change in consumer surplus following an environmental regulation is de�ned by:

S(qk)�Sr(q
�
k) =

8
>>><
>>>:

�(cm(q)� cm(0)) if q
�
k � q

�(cm(q)� cm(0))+Xb

t=1

�tl
2
[�(r�i (q)

2 � r�i (q
�
k)
2)� 2(cs(q)� cs(q

�
k))] if q

�
k � q

(19)

Figure 4a illustrates a particular case of equation (19) in the collusive scenario. Figure

4b combines both the collusive and the non-cooperative cases. The upper curve is the

consumer surplus with respect to the level of remanufacturability in the absence of regulation.

The horizontal line Sr(q
�
c ) (respectively Sr(q

�
nc)) is the consumer surplus in the collusive

(non-cooperative) case where, following Proposition 1, Sr(q
�
c ) > Sr(q

�
nc). In the presence of

regulation, the lower curve shows the consumer surplus if the industry were to adopt exactly

q, however for low levels of regulation, the industry keeps producing at q�k. The vertical

distance between the curves S(qk) and Sr(q
�
k) describes the di¤erence in consumer surplus

due to all possible level of regulation. The medium and dark (light and medium) shade areas

exhibit the collusive (non-cooperative) case.
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When the regulation is non-e¤ective (i.e. for q�k � q), the level of remanufacturability

stays �xed but the price increases on the original market. Consumer surplus is therefore

reduced by �(cm(q)� cm(0)), illustrated in the triangle abc (def).

Proposition 7 A non-e¤ective environmental regulation lets the social welfare that equally

weights total pro�ts and consumer surplus unchanged.

[S(qk)� Sr(q
�
k)] + 2[�i(qk)� �

�
i (q

�
k)] = 0 if q

�
k � q

A non-e¤ective regulation partially shifts the cost of remanufacturability from OMs to-

wards �nal good producers and consumers. This can be seen using equations (17) and (19)

expressing the change in pro�t and the change in consumer surplus. Considering the environ-

mental neutrality of non-e¤ective regulations, this money transfer leaves the social welfare

unchanged.

When the regulation is e¤ective, it can be shown that for some speci�c scenarios, a

variation in the level of remanufacturability reduces prices of remanufactured products and

increases the share of high quality goods on the aftermarket so that the net variation in

consumer surplus is positive. Let q�cs be the e¤ective environmental regulation that locally

maximizes consumer surplus. The subscript cs designates consumer surplus. The constraints

for a maximum are:

�c0m(q
�
cs) +

bX

t=1

�tl

�
(c0s(q

�
cs)� c

0
r(q

�
cs))

3
r�i (q

�
cs)� c

0
s(q

�
cs)

�
= 0:

�c00m(q
�
cs) +

bX

t=1

�tl

"
(c00s(q

�
cs)� c

00
r(q

�
cs))

3
r�i (q

�
cs) +

(c0s(q
�
cs)� c

0
r(q

�
cs))

3�

2

� c00s(q
�
cs)

#
� 0

Comparing with the optimality conditions for the choice of q�nc and q
�
c (equations 11 and 13),

there exists (at least) one local maximum for the function (19) only if q�cs � q
�
k, which occurs

when the decreasing remanufacturing cost c0s is large enough compared to the increasing
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original production cost c0m, when evaluated at q
�
k.
23 Otherwise, consumer surplus strictly

decreases with more stringent regulation. The regulation can be welfare improving for the

consumer only if S(q�cs) � S(q
�
k), in which case the net positive variation in consumer surplus

is illustrated by the area hij (ghijk) for the collusive (non-cooperative) case. When the

regulation becomes too stringent, the market share of high quality remanufactured products

drops, which causes the consumer surplus to decrease. At qmaxk;cs (beyond j (k)), the regulation

is a net cost for the consumer. This leads to the following propositions:

Proposition 8 When S(q�cs) � S(q�k), an e¤ective environmental regulation can increase

consumer surplus:

S(q)� Sr(q
�
k) � 0 if q

min
k;cs � q � q

max
k;cs

More particularly, when S(q�cs) � S(q
�
k) and q

min
k;cs � q

max
k , an e¤ective environmental regula-

tion can increase both pro�ts and consumer surplus:

�i(qk)� �
�
i (q

�
k) � 0 and S(q)� Sr(q

�
k) � 0 if q

min
k;cs � q � minfq

max
k;cs ; q

max
k g

Under some circumstances, the government can apply an environmental regulation for

which, in addition to environmental advantages, producers and consumers bene�t from higher

pro�ts and lower prices.

Proposition 9 It is always easier to introduce an e¤ective environmental regulation under

the non-cooperative case:

S(qnc)� Sr(q
�
nc) < S(qc)� Sr(q

�
c )

23Note that, under certain conditions, the consumer surplus function in the presence of regulation allows
for multiple maxima for q � q�k. For simplicity, the following results are presented for cases where there is
at most one maximum.
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Proposition 10 When S(q�cs) � S(q�k) for k = c; nc, the range of regulations positively

supported by consumers is larger under the non-cooperative case:

qmaxnc;cs � q
min
nc;cs > q

max
c;cs � q

min
c;cs :

This stays true when S(q�cs) � S(q
�
nc) and S(q

�
cs) � S(q

�
c ) since

qmaxnc;cs � q
min
nc;cs � 0

Propositions 9 and 10 say that, when the di¤erence in consumer surplus before and

after the regulation is interpreted as the intensity of political support for the regulation, the

government should repress collusion. These results are in line with Propositions 3 and 4

where �rms are more likely to comply with the public intervention when they compete on

the level of remanufacturability.

5 Conclusion

Original manufacturers produce a component as an input for the �nal good where the threat

of an outsider keeps the input�s price at the minimum production cost. At the same time,

they select the technology determining the level of remanufacturability of their products.

Later, consumers of the �nal good have to replace the speci�c component. They consider

products remanufactured by either independent remanufacturers or original manufacturers,

and they are willing to pay a price premium for the latter. In this set-up, used products can

be remanufactured by any �rms, causing original manufacturers to su¤er from free-riding on

their technology selection and discouraging investment in remanufacturing-oriented designs.

When the original manufacturers collude on the level of remanufacturability, they only face

free-riding from independent remanufacturers and select a higher level of remanufacturability.
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Collusion bene�ts producers and, by reducing prices on the aftermarket, consumers.

Remanufacturing bene�ts the population through less post-consumption waste, lower en-

ergy and raw material consumptions, and lower prices for replacement products. It can also

bene�t the industry through the generation of positive pro�ts. While the gains of remanu-

facturing are shared among the society, the costs of remanufacturing-oriented technology are

born solely by the original manufacturers. Consequently, public regulation may be necessary.

The introduction of an environmental regulation, which imposes a minimal level of reman-

ufacturability, justi�es a price increase on the primary market. As a consequence, the cost

of complying with the regulation is redirected towards �nal good producers and consumers.

Hence, original manufacturers can see their pro�ts increase. This observation corroborates

the Porter Hypothesis. Under some circumstances, the environmental regulation can also

increase consumer surplus.

A social planner who wants to stimulate remanufacturing activities can consider allowing

private collusion as an alternative to environmental regulation since it leads to a higher level

of remanufacturability. Moreover, collusion leads to a larger supply of high quality reman-

ufactured products and to lower prices on the aftermarket and, hence, increases consumer

surplus. The application of an environmental regulation reduces the threat of the outsider

and solves for the collective action problem. If the social planner opts for this option, it

should repress private collusions. When the variation in pro�ts following the public inter-

vention is interpreted as the industrial degree of cooperation with the regulation, original

manufacturers will always o¤er stronger support, or lower opposition, when the technology

choice is initially subject to free-riding.
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Figure 1: Willingness to pay and consumer surplus

Figure 2: Technological advantage
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Figure 3: Pro�t with and without regulation
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Figure 4: Consumer surplus with and without regulation


