# Sonographic measurement of cervical volume in non-pregnant women with use of the geometric formula for a cylinder 

Dimitrios Papoutsis, George Daskalakis, Angeliki Antonakou, Alexandros Rodolakis, Spiridon Mesogitis, Aris Antsaklis

## To cite this version:

Dimitrios Papoutsis, George Daskalakis, Angeliki Antonakou, Alexandros Rodolakis, Spiridon Mesogitis, et al.. Sonographic measurement of cervical volume in non-pregnant women with use of the geometric formula for a cylinder. Journal of Clinical Ultrasound, 2011, 39 (6), pp.322. 10.1002/jcu.20833 .
hal-00638141

## HAL Id: hal-00638141

## https://hal.science/hal-00638141

Submitted on 4 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Journal of Clinical Ultrasound

Sonographic measurement of cervical volume in nonpregnant women with use of the geometric formula for a cylinder

| Journal: | Journal of Clinical Ultrasound |
| ---: | :--- |
| Manuscript ID: | JCU-10-219.R1 |
| Wiley - Manuscript type: | Research Article |
| Keywords: | Uterine cervix, ultrasound volume measurement, cylinder geometric <br> formula |
|  |  |

Manuscripts

## Title page:

## Title:

Sonographic measurement of cervical volume in nonpregnant women with use of the geometric formula for a cylinder

Short Title: Cervical volume with cylinder formula


#### Abstract

: Purpose: To sonographically evaluate the volume of uterine cervix in nonpregnant women with use of the geometric formula for a cylinder and to assess agreement with the reference VOCAL method.

Methods: Three-dimensional ultrasound volume datasets of the uterine cervix from 81 women were obtained prospectively within a 1-year period. Volume measurements were performed using Virtual Organ Computer aided AnaLysis (VOCAL ${ }^{\text {TM }}$ ) and the geometric formula for a cylinder. Reliability was evaluated using intraclass correlation coefficient (ICC) and Bland-Altman plots were produced to examine intermethod agreement. Time needed to perform measurements was compared with Student's t-test.

Results: There was good agreement between VOCAL and the geometric formula for a cylinder (mean percentage difference, - $0.78 \%$; 95\% limits of agreement, -17.59 to $16.03 \%$ ). Measurements made by the formula for a cylinder were slightly greater than VOCAL by a mean ( $\pm$ SE) of $0.78 \%$ ( $\pm 0.95 \%$ ). A high degree of reliability was observed between the two methods (ICC, $0.970 ; 95 \% \mathrm{CI}, 0.954-0.981$ ). Cervical volume estimation with the geometric formula for a cylinder was faster to obtain.

Conclusion: This method comparison study shows that the geometric formula for a cylinder has good agreement with VOCAL and can determine the volume of the cervix in a faster way.


Key words: Uterine cervix; ultrasound volume measurement; cylinder geometric formula

## TEXT

## Introduction:

Volume measurements of uterine cervix with use of three-dimensional (3D) ultrasound are increasingly being reported in literature. Though volume estimation of the cervix has not yet been introduced into clinical practice, there are certain fields of interest where importance of cervical volumetry is currently being investigated. In Obstetricsit is being investigated whether cervical volume may have a higher predictive value than cervical length in predicting preterm labor. ${ }^{1,2}$ In Gynecology it is being explored whether complete or incomplete restoration of cervix after conization for cervical intraepithelial lesions may be a function of the initial volume of cervix. ${ }^{3}$ In the above research fields, accurate cervical volumetry is essential to reach final conclusions.

In this study we aimed to calculate the volume of cervix with the use of the geometric formula for a cylinder, since the cervix has a cylindrical shape. There are only two reportsin literature referring to use of this formula. ${ }^{4,5}$ The first reportcompared the geometric formula with MRI cervical imaging and showed no statistically significant difference between the two methods. ${ }^{4}$ In the second report, a small cohort of women $(\mathrm{n}=12)$ underwent two-dimensional ultrasound measurements prior to hysterectomy. ${ }^{5}$ Size of uterine corpus and cervix were determined with the geometric formula of prolate ellipsoid and cylinder formula respectively and were compared to total size of the surgical specimen. Due to the small sample size and study design, the cylinder formula could not be fully validated as being accurate in cervical volume estimation. Considering the emerging interest of researchers in cervical
volume measurements, we sought to validate these results by using 3D ultrasound measurements and more appropriate statistics. ${ }^{6,7}$

## Patients and Methods

This is an observational study of 81 non-pregnant women who were examined with 3D ultrasound within a 1-year period in the ultrasound department of our University teaching Hospital. Ethical approval was obtained from the Hospital's Ethics Committee. All patients gave written informed consent prior to participation in the study.

## Volume acquisition-volume rendering

Ultrasound examination was performed with a transvaginal probe of 7.5 MHz (RIC5-9H series) and a Voluson 730 Pro ultrasound machine (GE Healthcare, Austria). Women were examined in lithotomy position with an empty bladder. The vaginal probe was slowly introduced into the vagina until a satisfactory image was obtained without exerting undue pressure to the cervix. The sagittal view of cervix was centralised in the 3D sector and represented the initial plane of cervical volume acquisition. A volume dataset was acquired with a sweep angle of $90^{\circ}$ and fast volume acquisition (low resolution) setting so as to minimize artifacts due to patient movement. Two 3D volume datasets containing cervix were acquired for each patient by the same investigator (D.P.) and stored for off-line analysis.

All volume datasets for each patient were reviewed by a single investigator (D.P.) and only that image with the best tissue contrast resolution was selected for further process. In this way, 81 selected volume datasets were used for final processing. 4D-View ${ }^{\top M}$ software (version 9.0, GE Healthcare) was used and the uterine cervix was visualised in the multiplanar
display (Figure 1a). Plane A (upper left) shows the sagittal view of cervix, Plane B (upper right) the transverse view and Plane C (lower left) the coronal view. All identifying data were removed from images to limit bias in measurement.

## Identification of cervical os

As the main problem in ultrasound cervical measurement is the difficulty in identifying the upper cervical boundary at the level of internal os, for this reason each Observer (P.D., G.D.) was allowed to freely manipulate the volume dataset from initial orientation of the volume at acquisition. Through this rotation and with use of plane C , the true mid-sagittal view of the cervix was obtained. In mid-sagittal view, the hypoechogenic mucosa was used as a guide to the true position of internal os. ${ }^{8,9}$ The cervical os can be seen by observing the cervical glands which have different echogenicity and are quite distinct from the endometrium at lower uterine segment. ${ }^{10}$ The coronal view was used to discern the point where endocervical glands end and where endometrium begins. Unfortunately, the two reports in literaturewhich used the cylinder formula in non-pregnant women did not provide any information on how they identified the internal cervical os. ${ }^{4,5}$ Therefore, identification in our study was made according to instructions given in reportsthat concerned pregnant patients. ${ }^{8-10}$ Identification of the lower cervical boundary at the level of external os was much easier as contrast to the adjacent vaginal wall was much greater.

## Volume measurements

To date, VOCAL technique is considered the gold-standard in 3D ultrasound volume measurement and has been used in volumetry of other
structures, such as the endometrium and ovaries. ${ }^{11-15}$ This method concerns rotation of the 3D volume dataset about a central axis through a number of rotation steps and defining 2D contours on each plane. We employed manual mode of VOCAL with a $30^{\circ}$ rotational angle and after cervical contour was manually traced in Plane A, the software generated cervical volume automatically (in $\mathrm{cm}^{3}$ ) (Figure 1a).

Measurements were also made using the cylinder geometric formula:
Volume $=3.14 \times([\text { anteroposterior }+ \text { transverse diameter }] / 4)^{2} \times$ cervical length Cervical length was measured in plane A as the straight line from external to internal cervical os. Anteroposterior diameter was also measured in plane A and finally transverse diameter in plane $B$ (Figure 1b). The three diameters were measured as they would have been measured with use of standard 2D ultrasound machines.

Observer 1 (D.P.) performed two sets of VOCAL and two sets of cylinder formula measurements for each volume dataset (81volume datasets). The second set of measurements for Observer 1 was conducted after one week time with random order of volume datasets. The investigator was blinded to his own previous results and patient's data. Observer 2 (G.D.) performed only one set of VOCAL and one set of cylinder formula measurements. Overall, Observer 1 analysed 324 volume datasets and Observer 2 analysed 162 volume datasets. Each Observer was blinded to each other's results.

## Statistical analysis

In this method comparison study, statistics used were reliability analysis and Bland-Altman method. In both cases, percentage difference ( $1^{\text {st }}$
measurement-2 ${ }^{\text {nd }}$ measurement/average X100) was used in a similar manner proposed by other authors, as statistical results are more understandable in clinical terms. ${ }^{13}$ Reliability analysis concerned estimation of intraclass correlation coefficient (ICC) for determination of intermethod, intraobserver and interobserver reliability. Intermethod agreement was determined with Bland-Altman method, where difference between two methods is plotted against the mean. ${ }^{7}$ After graphical presentation, $95 \%$ limits of agreement were estimated, which represents the range we can expect $95 \%$ of differences between two methods to lie. Time needed to perform measurements was compared with Student's $t$-test and $p$-value $=0.05$ was considered statistically significant. Statistical analysis was performed with SPSS version 17.0 (SPSS Inc., USA).

## Results

Eighty one non-pregnant women with mean age of 38.1 years (18-62) were examined with 3D ultrasound within a 1-year period. Mean volume of cervix calculated with the geometric formula for a cylinder was $25.13 \pm 8.82$ $\mathrm{cm}^{3}$, whereas mean volume of cervix estimated with VOCAL was $24.81 \pm 8.46$ $\mathrm{cm}^{3}$ (Table 1).

## Time required for measurements

As shown in Table 2, volume measurements with the geometric formula were significantly faster compared to VOCAL (p<0.001).

## Intermethod agreement

For measurements between VOCAL and the geometric formula for a cylinder, there was a high degree of reliability (ICC, $0.970 ; 95 \% \mathrm{CI}, 0.954-$ 0.981) (Table 3). Bland-Altman plot is presented in Figure 2 for the
percentage of mean difference and the $95 \%$ limits of agreement (mean, $0.78 \%$; $95 \%$ limits of agreement, $-17.59 \%$ to $16.03 \%$ ) are given in Table 4. There was no systematic bias between the two methods since statistical analysis showed that zero lied within the interval of mean $\pm 1.96 \mathrm{SE}$ ( $0.78 \% \pm 1.86 \%$ ). Also, differences were not increased with increasing of measurements and remained constant throughout the entire range of measurements.

## Interobserver and intraobserver agreement

Interobserver and intraobserver agreement for each technique was evaluated and there was a high degree of reliability demonstrated as shown in Tables 3 and 4. Bland-Altman plots for interobserver and intraobserver agreement between measurements performed by each technique are presented in Figure 3 and 4 for the percentage of mean difference. Differences also remained constant throughout the entire range of measurements.

## Discussion

Though cervical volume measurement is still not implemented in daily clinical practice and is at this stage used for research purposes, there are reports in literature where cervical volumetry may be important and thus have significant clinical interest in the near future. ${ }^{1,2,3}$ In our study, it is shown that the cylinder formula could be acceptable to use for cervical volume measurements, as the cervix is a quite regularly shaped organ. However, such a method would be unacceptable for irregularly shaped structures (i.e. the endometrium). The principal finding is that the cylinder formula is in good
agreement with VOCAL method, the values obtained with the geometric formula being slightly larger by a mean ( $\pm$ SE) of $0.78 \% ~( \pm 0.95 \%)$.

The Bland-Altman method is considered the proper statistical method when comparing two different methods. The estimated $95 \%$ limits of agreement represent the range which we can expect to find $95 \%$ of differences between two methods. However, whether the $95 \%$ limits of agreement are acceptable is a clinical not a statistical decision. Mean volume of cervix estimated with VOCAL was $24.81 \pm 8.46 \mathrm{~cm}^{3}$ and mean percentage of difference with the geometric formula ( $95 \%$ limits of agreement) was $0.78 \%$ ($17.59 \%$ to $16.03 \%$ ). This means that if cervical volume estimated with VOCAL is $25 \mathrm{~cm}^{3}$, then mean cervical volume measured with cylinder formula would be $25.19 \mathrm{~cm}^{3}$ and in $95 \%$ of measurements differences between the two methods would lie between $20.60 \mathrm{~cm}^{3}$ and $29.00 \mathrm{~cm}^{3}$. The limits of agreement are in fact wide, indicating that small differences in cervical volume may be difficult to discriminate with the geometric formula. Nevertheless, in review of literature where VOCAL was used as the reference technique in other method-comparison studies, similar and even wider limits of agreement were reported by investigators when comparing newly introduced ultrasound methods (i.e. inversion method, manual segmentation method) to VOCAL. ${ }^{13}$

Limitations of our study are that validity of measurements could not be tested, since true volume of cervix was not available. Nevertheless, VOCAL is a well validated three-dimensional volumetric method and is considered the reference standard for measurement against which the geometric formula was compared. Additionally, a $30^{\circ}$ rotational angle was used in VOCAL as it is
shown to be both accurate and faster. ${ }^{15}$ Perhaps, the use of lower angles ( $6^{\circ}$, $\mathbf{9}^{\circ}$, 15응 ) would have led to different results. Moreover, identification of internal cervical os was indeed difficult as women were of different age, varying parity and ultrasound was performed at different time points in menstrual cycle where cervical glands had a varying degree of echogenicity. Nevertheless, no patients were excluded due to inadequate cervical images. However, in everyday clinical practice, the borders of uterine cervix are not always clearly contrasted against the surrounding tissue. This means that only when the cervix is clearly imaged and well defined can the volume measurements be accurate to the degree provided by our results. Finally, our study design utilized 3D sonography where plane C represents the virtual reconstruction of plane A and B. In clinical practice, sonographers will most likely use 2D ultrasound machines, where plane $C$ is not available, thus leading to more difficulty in defining the internal cervical os and to less accurate measurements.

The practical implications of this study are that if volume estimation of cervix were to be implemented in clinical practice, the cylinder formula could provide a simple, accurate, faster way of volumetry in comparison to computerized and sophisticated methods such as VOCAL. It is easy and faster to measure only three diameters of the cervix and use the geometric formula for a cylinder even with conventional two-dimensional ultrasound machines. In order to safely extrapolate these results to 2 D sonography, a more proper study design would be to compare the VOCAL method 3D cervical measurements with the cylinder formula 2D cervical measurements.

Such a study design is currently being conducted in our department and results are soon expected.

## References:

1. Rozenberg P, Rafii A, Sénat MV, et al. Predictive value of two-dimensional and three-dimensional multiplanar ultrasound evaluation of the cervix in preterm labor. J Matern Fetal Neonatal Med 2003;13(4):237-41.
2. Dilek TU, Gurbuz A, Yazici G, et al. Comparison of cervical volume and cervical length to predict preterm delivery by transvaginal ultrasound. Am J Perinatol 2006;23(3):167-72.
3. Kyrgiou M, Koliopoulos G, Martin-Hirsch P, et al. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet 2006;367(9509):489-98.
4. Dumanli H, Fielding JR, Gering DT, et al. Volume Assessment of the Normal Female Cervix with MR Imaging: Comparison of the Segmentation Technique and Two Geometric Formula. Acad Radiol 2000;7(7):502-5.
5. Rovio PH, Luukkaala T, Vuento M, et al. Ultrasonographic assessment of weight of the myomatous uterus: A pilot study using a new combined geometrical formula. Eur J Obstet Gynecol Reprod Biol 2008;137(2):193-7.
6. Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 2008;31(4):466-75.
7. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.
8. Cook CM, Ellwood DA. A longitudinal study of the cervix in pregnancy using transvaginal ultrasound. Br J Obstet Gynaecol 1996;103(1):16-18.
9. To MS, Skentou C, Liao AW, et al. Cervical length and funneling at 23 weeks of gestation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol 2001;18(3):200-3.
10. Guzman ER, Walters C, Ananth CV, et al. A comparison of sonographic cervical parameters in predicting spontaneous preterm birth in high-risk singleton gestations. Ultrasound Obstet Gynecol 2001;18(3):204-10.
11. Rovas L, Sladkevicius P, Strobel E, et al. Intraobserver and interobserver reproducibility of three-dimensional gray-scale and power Doppler ultrasound examinations of the cervix in pregnant women. Ultrasound Obstet Gynecol 2005;26(2):132-7.
12. Basgul A, Kavak ZN, Bakirci N, et al. Three-dimensional ultrasound power Doppler assessment of the cervix: comparison between nulliparas and multiparas. J Perinat Med 2007;35(1):48-50.
13. Kusanovic JP, Nien JK, Goncalves LF, et al. The use of inversion mode and 3D manual segmentation in volume measurement of fetal fluid-filled structures: comparison with Virtual Organ Computer-aided AnaLysis (VOCAL). Ultrasound Obstet Gynecol 2008;31(2):177-86.
14. Raine-Fenning N, Campbell B, Collier J, et al. The reproducibility of endometrial volume acquisition and measurement with the VOCAL-imaging program. Ultrasound Obstet Gynecol 2002;19(1):69-75.
15. Raine-Fenning NJ, Clewes JS, Kendall NR, et al. The interobserver reliability and validity of volume calculation from three-dimensional ultrasound datasets in the in vitro setting. Ultrasound Obstet Gynecol 2003;21(3):283-91.

## LEGENDS

| Figure 1. | a). Volume measurement $\left(22.00 \mathrm{~cm}^{3}\right)$ with VOCAL (manual mode, <br> rotation step $\left.30^{\circ}\right)$. <br> b). The volume is measured with the use of three diameters and the <br> geometric formula for the cylinder (volume $\left.=20.69 \mathrm{~cm}^{3}\right)$. |
| :--- | :--- |
| Figure 2. | Bland-Altman plot for the percentage of the mean difference and 95\% <br> limits of agreement between VOCAL method and the geometric <br> formula for the cylinder. |

Figure 3. a) Bland-Altman plot for the percentage of the mean difference for VOCAL (Observer's 1-1 ${ }^{\text {st }}$ measurement - Observer's 2 measurement) and $95 \%$ limits of agreement for interobserver measurements.
b) Bland-Altman plot for the percentage of the mean difference for geometric formula of cylinder (Observer's $1-1^{\text {st }}$ measurement Observer's 2 measurement) and 95\% limits of agreement for interobserver measurements.

Figure 4. a) Bland-Altman plot for the percentage of the mean difference for VOCAL (Observer's $1-1^{\text {st }}$ measurement $-2^{\text {nd }}$ measurement) and $95 \%$ limits of agreement for intraobserver measurements.
b) Bland-Altman plot for the percentage of the mean difference for geometric formula of cylinder (Observer's 1-1 ${ }^{\text {st }}$ measurement $-2^{\text {nd }}$ measurement) and $95 \%$ limits of agreement for intraobserver measurements.

Table 1. Descriptive statistics of sample ( $n=81$ patients/81 volume datasets).

|  | Mean $\pm$ SD | Range |
| :---: | :---: | :---: |
| Age (in years) | $38.1 \pm 10.4$ | 18-62 |
| Dimensions of cervix (in mm) |  |  |
| Cervical length | $35.3 \pm 5.2$ | 23.0-46.3 |
| Anteroposterior diameter | $28.3 \pm 5.6$ | 16.7-44.7 |
| Transverse diameter | $31.2 \pm 5.9$ | 22.9-49.5 |
| Cervical volume (in $\mathrm{cm}^{3}$ ) | VOCAL | Cylinder formula |
| $1^{\text {st }}$ measurement | $\begin{gathered} 24.81 \pm 8.46 \\ (10.72-47.74) \end{gathered}$ | $\begin{gathered} 25.13 \pm 8.82 \\ (10.09-47.59) \end{gathered}$ |
| $1^{\text {st }}$ Observer ${ }^{\text {a }}$ |  |  |
| $2^{\text {nd }}$ measurement | $\begin{gathered} 24.91 \pm 8.26 \\ (10.94-46.28) \end{gathered}$ | $\begin{gathered} 25.21 \pm 8.66 \\ (10.29-45.33) \end{gathered}$ |
| $2^{\text {nd }}$ Observer | $\begin{gathered} 24.68 \pm 8.24 \\ (11.28-45.98) \end{gathered}$ | $\begin{gathered} 25.09 \pm 8.68 \\ (10.09-47.60) \end{gathered}$ |

Table 2. Time (mean $\pm$ SD) needed to perform cervical volume measurements with VOCAL method and the geometric formula of the cylinder.

|  | VOCAL <br> $(\mathrm{sec})$ | Cylinder formula <br> $(\mathrm{sec})$ | $p$-value |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $1^{\text {st }}$ measurement | $51.89 \pm 10.92$ | $33.32 \pm 9.56$ | $<0.001$ |
| $1^{\text {st }}$ Observer | $2^{\text {nd }}$ measurement | $52.77 \pm 11.04$ | $34.26 \pm 9.60$ | $<0.001$ |
|  |  | $50.70 \pm 11.26$ | $31.96 \pm 9.15$ | $<0.001$ |

Table 3. Reliability analysis with the calculation of intraclass correlation coefficient (ICC) and 95\% confidence intervals.

|  |  | ICC | 95\%CI |
| :---: | :---: | :---: | :---: |
| Intermethod agreement | Observer's 1 - VOCAL $1^{\text {st }}$ measurement Observer's 2 Cylinder measurement | 0.970 | 0.954-0.981 |
| Interobserver agreement | Observer's 1 - VOCAL $1^{\text {st }}$ measurement Observer's 2 VOCAL measurement <br> Observer's 1-Cylinder $1^{\text {st }}$ measurement Observer's 2 Cylinder measurement | $\begin{aligned} & 0.978 \\ & 0.954 \end{aligned}$ | $\begin{aligned} & 0.965-0.986 \\ & 0.930-0.970 \end{aligned}$ |
| Intraobserver agreement | Observer's 1 - VOCAL $1^{\text {st }}$ measurement VOCAL $2^{\text {nd }}$ - - easurement <br> Observer's 1 - Cylinder $1^{\text {st }}$ measurement Cylinder $2^{\text {nd }}$ measurement | 0.992 0.972 | $\begin{aligned} & 0.988-0.995 \\ & 0.956-0.982 \end{aligned}$ |

Table 4. Percentage of mean difference $\pm 95 \%$ limits of agreement.

|  |  | Percentage <br> of mean <br> difference | 95\% limits <br> of <br> agreement |
| :--- | :---: | :---: | :---: |
|  | Observer's 1- VOCAL st $^{\text {st }}$ measurement | $-0.78 \%$ | $-17.59 \%$ <br> to |
| Intermethod <br> agreement | Observer's 2 Cylinder measurement |  | $16.03 \%$ |



Figure 1a. Volume measurement ( 22.00 cm 3 ) with VOCAL (manual mode, rotation step $30^{\circ}$ ). $260 \times 151 \mathrm{~mm}$ ( $96 \times 96$ DPI)


Figure 1 b . The volume is measured with the use of three diameters and the geometric formula for the cylinder (volume $=20.69 \mathrm{~cm} 3$ ).
$260 \times 151 \mathrm{~mm}$ ( $96 \times 96$ DPI)


Figure 2. Bland-Altman plot for the percentage of the mean difference and $95 \%$ limits of agreement between VOCAL method and the geometric formula for the cylinder.
$166 \times 132 \mathrm{~mm}$ ( $96 \times 96$ DPI)


Figure 3a. Bland-Altman plot for the percentage of the mean difference for VOCAL (Observer's 1-1st measurement - Observer's 2 measurement) and 95\% limits of agreement for interobserver measurements.
$165 \times 133 \mathrm{~mm}$ ( $96 \times 96$ DPI)


Figure 3b. Bland-Altman plot for the percentage of the mean difference for geometric formula of cylinder (Observer's 1-1st measurement - Observer's 2 measurement) and $95 \%$ limits of agreement for interobserver measurements.
$165 \times 133 \mathrm{~mm}$ ( $96 \times 96$ DPI)


Figure 4a. Bland-Altman plot for the percentage of the mean difference for VOCAL (Observer's 1-1st measurement - 2nd measurement) and $95 \%$ limits of agreement for intraobserver measurements. $166 \times 132 \mathrm{~mm}$ ( $96 \times 96$ DPI)


Figure 4b. Bland-Altman plot for the percentage of the mean difference for geometric formula of cylinder (Observer's 1-1st measurement - 2nd measurement) and $95 \%$ limits of agreement for intraobserver measurements.

$$
165 \times 133 \mathrm{~mm}(96 \times 96 \text { DPI })
$$

## Title page:

## Title:

Sonographic measurement of cervical volume in nonpregnant women with use of the geometric formula for a cylinder

Short Title: Cervical volume with cylinder formula


#### Abstract

: Purpose: To sonographically evaluate the volume of uterine cervix in nonpregnant women with use of the geometric formula for a cylinder and to assess agreement with the reference VOCAL method.

Methods: Three-dimensional ultrasound volume datasets of the uterine cervix from 81 women were obtained prospectively within a 1-year period. Volume measurements were performed using Virtual Organ Computer aided AnaLysis (VOCAL ${ }^{\text {TM }}$ ) and the geometric formula for a cylinder. Reliability was evaluated using intraclass correlation coefficient (ICC) and Bland-Altman plots were produced to examine intermethod agreement. Time needed to perform measurements was compared with Student's t-test.

Results: There was good agreement between VOCAL and the geometric formula for a cylinder (mean percentage difference, - $0.78 \%$; 95\% limits of agreement, -17.59 to $16.03 \%$ ). Measurements made by the formula for a cylinder were slightly greater than VOCAL by a mean ( $\pm$ SE) of $0.78 \%$ ( $\pm 0.95 \%$ ). A high degree of reliability was observed between the two methods (ICC, $0.970 ; 95 \% \mathrm{CI}, 0.954-0.981$ ). Cervical volume estimation with the geometric formula for a cylinder was faster to obtain.

Conclusion: This method comparison study shows that the geometric formula for a cylinder has good agreement with VOCAL and can determine the volume of the cervix in a faster way.


Key words: Uterine cervix; ultrasound volume measurement; cylinder geometric formula

## TEXT

## Introduction:

Volume measurements of uterine cervix with use of three-dimensional (3D) ultrasound are increasingly being reported in literature. Though volume estimation of the cervix has not yet been introduced into clinical practice, there are certain fields of interest where importance of cervical volumetry is currently being investigated. In Obstetricsit is being investigated whether cervical volume may have a higher predictive value than cervical length in predicting preterm labor. ${ }^{1,2}$ In Gynecology it is being explored whether complete or incomplete restoration of cervix after conization for cervical intraepithelial lesions may be a function of the initial volume of cervix. ${ }^{3}$ In the above research fields, accurate cervical volumetry is essential to reach final conclusions.

In this study we aimed to calculate the volume of cervix with the use of the geometric formula for a cylinder, since the cervix has a cylindrical shape. There are only two reportsin literature referring to use of this formula. ${ }^{4,5}$ The first reportcompared the geometric formula with MRI cervical imaging and showed no statistically significant difference between the two methods. ${ }^{4}$ In the second report, a small cohort of women ( $n=12$ ) underwent two-dimensional ultrasound measurements prior to hysterectomy. ${ }^{5}$ Size of uterine corpus and cervix were determined with the geometric formula of prolate ellipsoid and cylinder formula respectively and were compared to total size of the surgical specimen. Due to the small sample size and study design, the cylinder formula could not be fully validated as being accurate in cervical volume estimation. Considering the emerging interest of researchers in cervical
volume measurements, we sought to validate these results by using 3D ultrasound measurements and more appropriate statistics. ${ }^{6,7}$

## Patients and Methods

This is an observational study of 81 non-pregnant women who were examined with 3D ultrasound within a 1-year period in the ultrasound department of our University teaching Hospital. Ethical approval was obtained from the Hospital's Ethics Committee. All patients gave written informed consent prior to participation in the study.

## Volume acquisition-volume rendering

Ultrasound examination was performed with a transvaginal probe of 7.5 MHz (RIC5-9H series) and a Voluson 730 Pro ultrasound machine (GE Healthcare, Austria). Women were examined in lithotomy position with an empty bladder. The vaginal probe was slowly introduced into the vagina until a satisfactory image was obtained without exerting undue pressure to the cervix. The sagittal view of cervix was centralised in the 3D sector and represented the initial plane of cervical volume acquisition. A volume dataset was acquired with a sweep angle of $90^{\circ}$ and fast volume acquisition (low resolution) setting so as to minimize artifacts due to patient movement. Two 3D volume datasets containing cervix were acquired for each patient by the same investigator (D.P.) and stored for off-line analysis.

All volume datasets for each patient were reviewed by a single investigator (D.P.) and only that image with the best tissue contrast resolution was selected for further process. In this way, 81 selected volume datasets were used for final processing. 4D-View ${ }^{\top M}$ software (version 9.0, GE Healthcare) was used and the uterine cervix was visualised in the multiplanar
display (Figure 1a). Plane A (upper left) shows the sagittal view of cervix, Plane B (upper right) the transverse view and Plane C (lower left) the coronal view. All identifying data were removed from images to limit bias in measurement.

## Identification of cervical os

As the main problem in ultrasound cervical measurement is the difficulty in identifying the upper cervical boundary at the level of internal os, for this reason each Observer (P.D., G.D.) was allowed to freely manipulate the volume dataset from initial orientation of the volume at acquisition. Through this rotation and with use of plane C , the true mid-sagittal view of the cervix was obtained. In mid-sagittal view, the hypoechogenic mucosa was used as a guide to the true position of internal os. ${ }^{8,9}$ The cervical os can be seen by observing the cervical glands which have different echogenicity and are quite distinct from the endometrium at lower uterine segment. ${ }^{10}$ The coronal view was used to discern the point where endocervical glands end and where endometrium begins. Unfortunately, the two reports in literaturewhich used the cylinder formula in non-pregnant women did not provide any information on how they identified the internal cervical os. ${ }^{4,5}$ Therefore, identification in our study was made according to instructions given in reportsthat concerned pregnant patients. ${ }^{8-10}$ Identification of the lower cervical boundary at the level of external os was much easier as contrast to the adjacent vaginal wall was much greater.

## Volume measurements

To date, VOCAL technique is considered the gold-standard in 3D ultrasound volume measurement and has been used in volumetry of other
structures, such as the endometrium and ovaries. ${ }^{11-15}$ This method concerns rotation of the 3D volume dataset about a central axis through a number of rotation steps and defining 2D contours on each plane. We employed manual mode of VOCAL with a $30^{\circ}$ rotational angle and after cervical contour was manually traced in Plane A, the software generated cervical volume automatically (in $\mathrm{cm}^{3}$ ) (Figure 1a).

Measurements were also made using the cylinder geometric formula:
Volume $=3.14 \times([\text { anteroposterior }+ \text { transverse diameter }] / 4)^{2} \times$ cervical length Cervical length was measured in plane A as the straight line from external to internal cervical os. Anteroposterior diameter was also measured in plane A and finally transverse diameter in plane $B$ (Figure 1b). The three diameters were measured as they would have been measured with use of standard 2D ultrasound machines.

Observer 1 (D.P.) performed two sets of VOCAL and two sets of cylinder formula measurements for each volume dataset (81volume datasets). The second set of measurements for Observer 1 was conducted after one week time with random order of volume datasets. The investigator was blinded to his own previous results and patient's data. Observer 2 (G.D.) performed only one set of VOCAL and one set of cylinder formula measurements. Overall, Observer 1 analysed 324 volume datasets and Observer 2 analysed 162 volume datasets. Each Observer was blinded to each other's results.

## Statistical analysis

In this method comparison study, statistics used were reliability analysis and Bland-Altman method. In both cases, percentage difference ( $1^{\text {st }}$
measurement-2 $2^{\text {nd }}$ measurement/average X 100 ) was used in a similar manner proposed by other authors, as statistical results are more understandable in clinical terms. ${ }^{13}$ Reliability analysis concerned estimation of intraclass correlation coefficient (ICC) for determination of intermethod, intraobserver and interobserver reliability. Intermethod agreement was determined with Bland-Altman method, where difference between two methods is plotted against the mean. ${ }^{7}$ After graphical presentation, 95\% limits of agreement were estimated, which represents the range we can expect $95 \%$ of differences between two methods to lie. Time needed to perform measurements was compared with Student's t-test and $p$-value $=0.05$ was considered statistically significant. Statistical analysis was performed with SPSS version 17.0 (SPSS Inc., USA).

## Results

Eighty one non-pregnant women with mean age of 38.1 years (18-62) were examined with 3D ultrasound within a 1-year period. Mean volume of cervix calculated with the geometric formula for a cylinder was $25.13 \pm 8.82$ $\mathrm{cm}^{3}$, whereas mean volume of cervix estimated with VOCAL was $24.81 \pm 8.46$ $\mathrm{cm}^{3}$ (Table 1).

## Time required for measurements

As shown in Table 2, volume measurements with the geometric formula were significantly faster compared to VOCAL (p<0.001).

## Intermethod agreement

For measurements between VOCAL and the geometric formula for a cylinder, there was a high degree of reliability (ICC, $0.970 ; 95 \% \mathrm{CI}, 0.954-$ 0.981) (Table 3). Bland-Altman plot is presented in Figure 2 for the
percentage of mean difference and the $95 \%$ limits of agreement (mean, $0.78 \%$; $95 \%$ limits of agreement, $-17.59 \%$ to $16.03 \%$ ) are given in Table 4. There was no systematic bias between the two methods since statistical analysis showed that zero lied within the interval of mean $\pm 1.96 \mathrm{SE}$ ( $0.78 \% \pm 1.86 \%$ ). Also, differences were not increased with increasing of measurements and remained constant throughout the entire range of measurements.

## Interobserver and intraobserver agreement

Interobserver and intraobserver agreement for each technique was evaluated and there was a high degree of reliability demonstrated as shown in Tables 3 and 4. Bland-Altman plots for interobserver and intraobserver agreement between measurements performed by each technique are presented in Figure 3 and 4 for the percentage of mean difference. Differences also remained constant throughout the entire range of measurements.

## Discussion

Though cervical volume measurement is still not implemented in daily clinical practice and is at this stage used for research purposes, there are reports in literature where cervical volumetry may be important and thus have significant clinical interest in the near future. ${ }^{1,2,3}$ In our study, it is shown that the cylinder formula could be acceptable to use for cervical volume measurements, as the cervix is a quite regularly shaped organ. However, such a method would be unacceptable for irregularly shaped structures (i.e. the endometrium). The principal finding is that the cylinder formula is in good
agreement with VOCAL method, the values obtained with the geometric formula being slightly larger by a mean ( $\pm$ SE) of $0.78 \% ~( \pm 0.95 \%)$.

The Bland-Altman method is considered the proper statistical method when comparing two different methods. The estimated $95 \%$ limits of agreement represent the range which we can expect to find $95 \%$ of differences between two methods. However, whether the $95 \%$ limits of agreement are acceptable is a clinical not a statistical decision. Mean volume of cervix estimated with VOCAL was $24.81 \pm 8.46 \mathrm{~cm}^{3}$ and mean percentage of difference with the geometric formula ( $95 \%$ limits of agreement) was $0.78 \%$ ($17.59 \%$ to $16.03 \%$ ). This means that if cervical volume estimated with VOCAL is $25 \mathrm{~cm}^{3}$, then mean cervical volume measured with cylinder formula would be $25.19 \mathrm{~cm}^{3}$ and in $95 \%$ of measurements differences between the two methods would lie between $20.60 \mathrm{~cm}^{3}$ and $29.00 \mathrm{~cm}^{3}$. The limits of agreement are in fact wide, indicating that small differences in cervical volume may be difficult to discriminate with the geometric formula. Nevertheless, in review of literature where VOCAL was used as the reference technique in other method-comparison studies, similar and even wider limits of agreement were reported by investigators when comparing newly introduced ultrasound methods (i.e. inversion method, manual segmentation method) to VOCAL. ${ }^{13}$

Limitations of our study are that validity of measurements could not be tested, since true volume of cervix was not available. Nevertheless, VOCAL is a well validated three-dimensional volumetric method and is considered the reference standard for measurement against which the geometric formula was compared. Additionally, a $30^{\circ}$ rotational angle was used in VOCAL as it is
shown to be both accurate and faster. ${ }^{15}$ Perhaps, the use of lower angles ( $6^{\circ}$, $\mathbf{9}^{\circ}$, 15응 ) would have led to different results. Moreover, identification of internal cervical os was indeed difficult as women were of different age, varying parity and ultrasound was performed at different time points in menstrual cycle where cervical glands had a varying degree of echogenicity. Nevertheless, no patients were excluded due to inadequate cervical images. However, in everyday clinical practice, the borders of uterine cervix are not always clearly contrasted against the surrounding tissue. This means that only when the cervix is clearly imaged and well defined can the volume measurements be accurate to the degree provided by our results. Finally, our study design utilized 3D sonography where plane C represents the virtual reconstruction of plane A and B. In clinical practice, sonographers will most likely use 2D ultrasound machines, where plane $C$ is not available, thus leading to more difficulty in defining the internal cervical os and to less accurate measurements.

The practical implications of this study are that if volume estimation of cervix were to be implemented in clinical practice, the cylinder formula could provide a simple, accurate, faster way of volumetry in comparison to computerized and sophisticated methods such as VOCAL. It is easy and faster to measure only three diameters of the cervix and use the geometric formula for a cylinder even with conventional two-dimensional ultrasound machines. In order to safely extrapolate these results to 2 D sonography, a more proper study design would be to compare the VOCAL method 3D cervical measurements with the cylinder formula 2D cervical measurements.

Such a study design is currently being conducted in our department and results are soon expected.

## References:

1. Rozenberg P, Rafii A, Sénat MV, et al. Predictive value of two-dimensional and three-dimensional multiplanar ultrasound evaluation of the cervix in preterm labor. J Matern Fetal Neonatal Med 2003;13(4):237-41.
2. Dilek TU, Gurbuz A, Yazici G, et al. Comparison of cervical volume and cervical length to predict preterm delivery by transvaginal ultrasound. Am J Perinatol 2006;23(3):167-72.
3. Kyrgiou M, Koliopoulos G, Martin-Hirsch P, et al. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet 2006;367(9509):489-98.
4. Dumanli H, Fielding JR, Gering DT, et al. Volume Assessment of the Normal Female Cervix with MR Imaging: Comparison of the Segmentation Technique and Two Geometric Formula. Acad Radiol 2000;7(7):502-5.
5. Rovio PH, Luukkaala T, Vuento M, et al. Ultrasonographic assessment of weight of the myomatous uterus: A pilot study using a new combined geometrical formula. Eur J Obstet Gynecol Reprod Biol 2008;137(2):193-7.
6. Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 2008;31(4):466-75.
7. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.
8. Cook CM, Ellwood DA. A longitudinal study of the cervix in pregnancy using transvaginal ultrasound. Br J Obstet Gynaecol 1996;103(1):16-18.
9. To MS, Skentou C, Liao AW, et al. Cervical length and funneling at 23 weeks of gestation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol 2001;18(3):200-3.
10. Guzman ER, Walters C, Ananth CV, et al. A comparison of sonographic cervical parameters in predicting spontaneous preterm birth in high-risk singleton gestations. Ultrasound Obstet Gynecol 2001;18(3):204-10.
11. Rovas L, Sladkevicius P, Strobel E, et al. Intraobserver and interobserver reproducibility of three-dimensional gray-scale and power Doppler ultrasound examinations of the cervix in pregnant women. Ultrasound Obstet Gynecol 2005;26(2):132-7.
12. Basgul A, Kavak ZN, Bakirci N, et al. Three-dimensional ultrasound power Doppler assessment of the cervix: comparison between nulliparas and multiparas. J Perinat Med 2007;35(1):48-50.
13. Kusanovic JP, Nien JK, Goncalves LF, et al. The use of inversion mode and 3D manual segmentation in volume measurement of fetal fluid-filled structures: comparison with Virtual Organ Computer-aided AnaLysis (VOCAL). Ultrasound Obstet Gynecol 2008;31(2):177-86.
14. Raine-Fenning N, Campbell B, Collier J, et al. The reproducibility of endometrial volume acquisition and measurement with the VOCAL-imaging program. Ultrasound Obstet Gynecol 2002;19(1):69-75.
15. Raine-Fenning NJ, Clewes JS, Kendall NR, et al. The interobserver reliability and validity of volume calculation from three-dimensional ultrasound datasets in the in vitro setting. Ultrasound Obstet Gynecol 2003;21(3):283-91.

## LEGENDS

| Figure 1. | a). Volume measurement $\left(22.00 \mathrm{~cm}^{3}\right)$ with VOCAL (manual mode, <br> rotation step $\left.30^{\circ}\right)$. <br> b). The volume is measured with the use of three diameters and the <br> geometric formula for the cylinder (volume $\left.=20.69 \mathrm{~cm}^{3}\right)$. |
| :--- | :--- |
| Figure 2. | Bland-Altman plot for the percentage of the mean difference and $95 \%$ <br> limits of agreement between VOCAL method and the geometric <br> formula for the cylinder. |

Figure 3. a) Bland-Altman plot for the percentage of the mean difference for VOCAL (Observer's $1-1^{\text {st }}$ measurement - Observer's 2 measurement) and $95 \%$ limits of agreement for interobserver measurements.
b) Bland-Altman plot for the percentage of the mean difference for geometric formula of cylinder (Observer's 1-1 ${ }^{\text {st }}$ measurement Observer's 2 measurement) and $95 \%$ limits of agreement for interobserver measurements.

Figure 4. a) Bland-Altman plot for the percentage of the mean difference for VOCAL (Observer's $1-1^{\text {st }}$ measurement $-2^{\text {nd }}$ measurement) and $95 \%$ limits of agreement for intraobserver measurements.
b) Bland-Altman plot for the percentage of the mean difference for geometric formula of cylinder (Observer's $1-1^{\text {st }}$ measurement $-2^{\text {nd }}$ measurement) and $95 \%$ limits of agreement for intraobserver measurements.

Table 1. Descriptive statistics of sample ( $n=81$ patients/81 volume datasets).

|  | Mean $\pm$ SD | Range |
| :---: | :---: | :---: |
| Age (in years) | $38.1 \pm 10.4$ | 18-62 |
| Dimensions of cervix (in mm) |  |  |
| Cervical length | $35.3 \pm 5.2$ | 23.0-46.3 |
| Anteroposterior diameter | $28.3 \pm 5.6$ | 16.7-44.7 |
| Transverse diameter | $31.2 \pm 5.9$ | 22.9-49.5 |
| Cervical volume (in $\mathrm{cm}^{3}$ ) | VOCAL | Cylinder formula |
| $1^{\text {st }}$ measurement | $\begin{gathered} 24.81 \pm 8.46 \\ (10.72-47.74) \end{gathered}$ | $\begin{gathered} 25.13 \pm 8.82 \\ (10.09-47.59) \end{gathered}$ |
| $1^{\text {st }}$ Observer ${ }^{\text {a }}$ |  |  |
| $2^{\text {nd }}$ measurement | $\begin{gathered} 24.91 \pm 8.26 \\ (10.94-46.28) \end{gathered}$ | $\begin{gathered} 25.21 \pm 8.66 \\ (10.29-45.33) \end{gathered}$ |
| $2^{\text {nd }}$ Observer | $\begin{gathered} 24.68 \pm 8.24 \\ (11.28-45.98) \end{gathered}$ | $\begin{gathered} 25.09 \pm 8.68 \\ (10.09-47.60) \end{gathered}$ |

Table 2. Time (mean $\pm$ SD) needed to perform cervical volume measurements with VOCAL method and the geometric formula of the cylinder.

|  | VOCAL <br> $(\mathrm{sec})$ | Cylinder formula <br> $(\mathrm{sec})$ | $p$-value |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $1^{\text {st }}$ measurement | $51.89 \pm 10.92$ | $33.32 \pm 9.56$ | $<0.001$ |
| $1^{\text {st }}$ Observer | $2^{\text {nd }}$ measurement | $52.77 \pm 11.04$ | $34.26 \pm 9.60$ | $<0.001$ |
|  |  | $50.70 \pm 11.26$ | $31.96 \pm 9.15$ | $<0.001$ |

Table 3. Reliability analysis with the calculation of intraclass correlation coefficient (ICC) and 95\% confidence intervals.

|  |  | ICC | 95\%CI |
| :---: | :---: | :---: | :---: |
| Intermethod agreement | Observer's 1 - VOCAL $1^{\text {st }}$ measurement Observer's 2 Cylinder measurement | 0.970 | 0.954-0.981 |
| Interobserver agreement | Observer's 1 - VOCAL $1^{\text {st }}$ measurement Observer's 2 VOCAL measurement <br> Observer's 1-Cylinder $1^{\text {st }}$ measurement Observer's 2 Cylinder measurement | $\begin{aligned} & 0.978 \\ & 0.954 \end{aligned}$ | $\begin{aligned} & 0.965-0.986 \\ & 0.930-0.970 \end{aligned}$ |
| Intraobserver agreement | Observer's 1 - VOCAL $1^{\text {st }}$ measurement VOCAL $2^{\text {nd }}$ - - easurement <br> Observer's 1 - Cylinder $1^{\text {st }}$ measurement Cylinder $2^{\text {nd }}$ measurement | 0.992 0.972 | $\begin{aligned} & 0.988-0.995 \\ & 0.956-0.982 \end{aligned}$ |

Table 4. Percentage of mean difference $\pm 95 \%$ limits of agreement.

|  |  | Percentage <br> of mean <br> difference | 95\% limits <br> of <br> agreement |
| :--- | :---: | :---: | :---: |
|  | Observer's 1- VOCAL $1^{\text {st }}$ measurement | $-0.78 \%$ | $-17.59 \%$ |
| Intermethod |  |  |  |
| agreement | Observer's 2 Cylinder measurement |  | $16.03 \%$ |
|  |  |  |  |
|  | Observer's 1- VOCAL ${ }^{\text {st }}$ measurement | $-0.42 \%$ | $-16.57 \%$ |
| to |  |  |  |

