A Randomised trial to investigate the effects of acute consumption of a blackcurrant juice drink on markers of vascular reactivity and bioavailability of anthocyanins in human subjects

Michael Gordon, Yannan Jin, Dauren Alimbetov, Trevor George, J Anne
Lovegrove

To cite this version:

Michael Gordon, Yannan Jin, Dauren Alimbetov, Trevor George, J Anne Lovegrove. A Randomised trial to investigate the effects of acute consumption of a blackcurrant juice drink on markers of vascular reactivity and bioavailability of anthocyanins in human subjects. European Journal of Clinical Nutrition, 2011, 10.1038/ejcn.2011.55 . hal-00638128

HAL Id: hal-00638128

https://hal.science/hal-00638128

Submitted on 4 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A randomised trial to investigate the effects of acute consumption of a blackcurrant juice drink on markers of vascular reactivity and bioavailability of anthocyanins in human subjects

Yannan. Jin, Dauren Alimbetov, Trevor George, Michael H. Gordon and Julie A. Lovegrove

Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading, Berks, RG6 6AP, UK

* Corresponding author and requests for reprints: Michael H.Gordon, fax: +44 118 931 0080, email:m.h.gordon@reading.ac.uk

Abstract:

Objective: To study the bioavailability of anthocyanins and the effects of a 20% blackcurrant juice drink on vascular reactivity, plasma antioxidant status and other CVD risk markers.

Subjects/Methods: The study was a randomised, cross over, double blind, placebo controlled acute meal study. Twenty healthy volunteers (11 females 9 males) were recruited, and all subjects completed the study. Fasted volunteers consumed a 20% blackcurrant juice drink $(250 \mathrm{ml})$ or a control drink following a low-flavonoid diet for the previous 72 hours. Vascular reactivity was assessed at baseline and 120 mins after juice consumption by Laser Doppler Imaging (LDI). Plasma and urine samples were collected periodically over an 8 hour period for analysis, with a final urine sample collected at 24 h . The cross over was performed after a 4 -week washout.

Results: There were no significant effects of the 20% blackcurrant juice drink on acute measures of vascular reactivity, biomarkers of endothelial function or lipid risk factors.

Consumption of the test juice caused increases in plasma vitamin $\mathrm{C}(P=0.006)$, and urinary anthocyanins ($P<0.001$). Delphinidin-3-rutinoside and cyanidin-3-rutinoside
were the main anthocyanins excreted in urine with delphinidin-3-glucoside also detected. The yield of anthocyanins in urine was $0.021 \pm 0.003 \%$ of the dietary intake of delphinidin glycosides and $0.009 \pm 0.002 \%$ of the dietary intake of cyanidin glycosides.

Conclusions: The juice consumption did not have a significant effect on vascular reactivity. Anthocyanins were present at low concentrations in the urine, and microbial metabolites of flavonoids were detected in plasma after juice consumption.

Keywords: anthocyanin, antioxidant, bioavailability, blackcurrant juice, vascular reactivity.

Running title: Effects of blackcurrant juice drink on vascular reactivity

Introduction

Several epidemiological studies have reported an inverse relationship between flavonoid intake and mortality risk due to CVD (Keli et al., 1996; Knekt et al., 1996; Hertog et al., 1995).

The main flavonoids in blackcurrants are the anthocyanins cyanidin-3-glucoside, cyanidin-3-rutinoside, delphinidin -3-glucoside, and delphinidin-3-rutinoside, which comprise 98% of the anthocyanins present (Slimestad \& Solheim, 2002). Several studies have demonstrated possible beneficial effects of anthocyanins on chronic degenerative diseases including CVD and cancer (Prior \& Cao, 2000; Tsuda et al., 1996; Kay \& Holub, 2002; Dalgard et al., 2009; Xu et al., 2004; Rechner \& Kroner, 2005; Nakamura et al., 2002; Hou, 2003; Kang et al., 2003). Anthocyanins have low bioavailability (Kay, 2006; Hollands et al., 2008) and are metabolized in humans into methylated derivatives, glucuronides and sulfoconjugates (Felgines et al., 2003; Felgines et al., 2005; Kay et al., 2004; Kay et al., 2005; Wu et al., 2002), but phenolic acids are the major stable metabolites of anthocyanins in vivo (Fleschhut et al., 2006; Keppler \& Humpf, 2005). Endothelial cell dysfunction is a critical initiating event in the progression of atherosclerosis (Ross, 1999), but the effects of anthocyanins on
endothelial function at normal intake levels have not been reported previously. The present investigation was an acute meal study in which the effects of consumption of a blackcurrant juice drink on physiological and biochemical measures of vascular function, antioxidant status and other markers of cardiovascular disease risk were assessed.

Experimental methods

Materials and reagents. All chemicals were purchased from Sigma Aldrich, Gillingham, UK. A 20\% blackcurrant juice drink and a control drink were supplied by GlaxoSmithKline, Coleford, UK. Both drinks contained citric acid solution (50\%), aspartame (1%), and acesulfame $\mathrm{K}(8 \%)$.

Subjects

Healthy volunteers (11 female and 9 male) with a mean $(\pm \mathrm{SD})$ age of 44.55 ± 13.34 years and body mass index of $23.81 \pm 2.46 \mathrm{~kg} / \mathrm{m}^{2}$ were recruited from members of the University of Reading and the surrounding area. Exclusion criteria included suffering from liver disease, diabetes mellitus, stroke, myocardial infarction, gall bladder problems or abnormalities of fat metabolism, on a weight reducing dietary regimen or taking any dietary supplements. Subjects who vigorously exercised (3 times/week, 20 minutes each session) or consumed more than 15 units of alcohol per week were rejected from the study. Females who were pregnant or lactating, or likely to become pregnant were also excluded. All subjects were asked to complete a health and lifestyle questionnaire, and suitable subjects were asked to sign an informed consent form and were screened for blood, anthropometric, blood pressure and dietary parameters, and were given an information sheet. The study protocol was given a favourable ethical opinion to proceed by the Research Ethics Committee of University
of Reading.

Study design

The study was a randomised, double blind, placebo controlled cross-over acute meal study conducted in University of Reading. Twenty healthy volunteers (11 females 9 males) were recruited, and all subjects completed the study. The 20 subjects were asked to follow a low-flavonoid diet for 3 days by omitting foods from a prescribed list and to fast overnight prior to each visit to the human investigation unit, when blood pressure and anthropometric measurements were determined. Afterwards, subjects lay down for 30 minutes, after which the vascular reactivity to acetylcholine (endothelium dependent) and sodium nitroprusside (endothelium independent) was determined non-invasively by laser Doppler imaging with iontophoresis (LDI). The subjects were cannulated and baseline blood samples were taken. The subjects then consumed 250 ml of either the 20% blackcurrant juice drink or the control drink, and blood samples were collected periodically up to 480 minutes after ingestion of juice. All urine produced during the study day was collected every 2 hours and at 24 hours after juice consumption. A second LDI scan of the blood vessels of volunteers was taken 2 hours after juice consumption. The subjects consumed a standard meal comprising bread, soft cheese, cucumber, crisps and white marshmallows at 180 minutes. This process was then repeated by the volunteers one month later in their second visit when 250 ml of the other juice (either control or 20\% blackcurrant juice drink) was consumed.

The clinical trial number was ISRCTN26166772.

Sampling procedures

Blood samples were taken from subjects via an inlaying cannula in the antecubital vein and collected into vacuum lithium heparin and EDTA tubes (Greiner Bio-One

GmbH, Bad Haller Str. 32, Austria). The tubes were wrapped in foil and kept on ice for transport to the laboratory. Following centrifugation at $4^{\circ} \mathrm{C}$ at 1560 g , plasma was stored at $-80^{\circ} \mathrm{C}$. Urine samples were collected, and centrifuged at 1560 g. Clear supernatant was aliquoted and stored at $-20^{\circ} \mathrm{C}$.

Laser Doppler Imaging (LDI) with iontophoresis

LDI measurements were conducted before juice consumption, and at 120 mins after juice consumption using a Moor Instruments combined iontophoresis and LDI system, as described by Vauzour et al. (2010). The number of scans was 20 with the area of flux $v s$ time curve indicating the microvascular response.

Analysis of flavonoids and their metabolites from urine

Anthocyanins were isolated from urine samples (20 ml) as described by Hollands et al. (2008). The extract was analysed by LC-MS using an Agilent 1100 with an ACE 5 C18-AR (2.1 mm i.d. x 15 cm) column. The mobile phase was a binary gradient comprising (A) water/ 1% formic acid and (B) acetonitrile $/ 1 \%$ formic acid, flow $200 \mu \mathrm{l} / \mathrm{min}, 40^{\circ} \mathrm{C}$ with $97 \% \mathrm{~A}-3 \% \mathrm{~B}$ changing to $70 \% \mathrm{~A}-30 \% \mathrm{~B}$ (15 min), then to $5 \% \mathrm{~A}-95 \%$ B (5 min). A Bruker MicroTof QII high resolution TOFMS was used in the positive ion mode scanning the range $\mathrm{m} / \mathrm{z} 50-1100 \mathrm{Da}$.

Analysis of phenolic compounds in blackcurrant juice

Juice (5 ml) containing added methyl gallate as internal standard was extracted with ethyl acetate ($4 \times 5 \mathrm{ml}$). The combined ethyl acetate extracts were washed with water and concentrated to 2 ml for GC-MS analysis of phenolics.

HPLC analysis of anthocyanins in juice.

Juice (1 ml) was mixed with methanol $(1 \mathrm{ml})$ and heated at $90^{\circ} \mathrm{C}$ for an hour with hydrochloric acid ($2 \mathrm{ml}, 5 \mathrm{M}$) to hydrolyze the anthocyanins.

The samples were then analyzed by HPLC-DAD using an ACE5 C18 column (150 x $4.6 \mathrm{~mm} ; 5 \mathrm{M}$), with $\mathrm{CH}_{3} \mathrm{OH}, 1 \% \mathrm{HCOOH}(\mathrm{aq})$ as mobile phase, 1.0 ml flow rate. The HPLC gradient was $\mathrm{CH}_{3} \mathrm{OH}: 1 \% \mathrm{HCOOH}(\mathrm{aq})$ 5:95 (5 min) changing to $70: 30$ by 30 min , isocratic for 10 min , then changing to $60: 40 \mathrm{in} 10 \mathrm{~min}$, to $50: 50 \mathrm{in} 5 \mathrm{~min}$, to 10:90 in 5 min , to $5: 95$ in 10 min .

GC-MS analysis of plasma flavonoids and phenolic acids, and juice phenolic acids

The flavonoids and phenolic acids in plasma and phenolic acids in blackcurrant juice were determined as described by Zhang and Zuo (2004) with methyl gallate and m-toluic acid as internal standards.

Antioxidant capacity analysis of plasma

The antioxidant capacity of the plasma was determined by the Oxygen Radical Antioxidant Capacity (ORAC) assay as described by Cao \& Prior (1999) using a 96 well black flat-bottomed microtitre plate, with fluorescence determined with a Genios spectrophotometer (Tecan Ltd, Dorset, UK). The ORAC values were calculated as described by Prior et al. (2003). The Ferric Reducing Ability of Plasma (FRAP) assay was determined according to Bub et al. (2000).

Determination of plasma ascorbic acid and uric acid concentrations

The plasma ascorbic acid and uric acid concentrations were measured by high
pressure liquid chromatography with UV detection (Liau et al., 1993).

Plasma total nitrate and nitrite

Plasma nitrate and nitrite were analyzed using Nitric Oxide Quantitation Kit (Active Motif Europe, 104 Avenue Franklin Roosevelt, B-1330 Rixensart, Belgium).

Plasma lipid profiles, glucose, insulin and urinary creatinine

Analyses of plasma lipids, glucose and creatinine were performed using an Instrument Laboratory ILAB 600 autoanalyzer. Standard kits and appropriate sero-normal, low, and high, quality control standards were purchased from Instrument Laboratories Ltd (Warrington, UK) and included in all batches. Low density lipoprotein (LDL) was calculated from Friedwald's equation. Insulin was assessed by ELISA (Dako Cytomation, Ely, Cambs, UK) with in-house pooled plasma controls in each batch.

Plasma vascular cell adhesion molecule-1 (VCAM), endothelial intercellular adhesion molecule-1 (ICAM)

Both VCAM and ICAM were analyzed using quantitative sandwich enzyme immunoassay (EIA) (R \& D Systems, Abingdon, Oxon, UK). In-house pooled plasma controls were included in each batch.

Statistical analysis

All statistical analyses were performed using SPSS 15.0 for Microsoft Windows. The data was checked for normality using the Shapiro-Wilk test. Data that were not normally distributed were \log transformed and reassessed. A repeated measure ANOVA with Bonferroni correction was used to look for significant differences between treatment groups. The incremental area under the curve (IAUC) for each parameter across the study timeline, and anthocyanin excretion for the two treatment
groups were compared using a paired t-test. P values ≤ 0.05 were considered as significant.

Results

Effect of juice consumption on CVD risk factors

The volunteers for the study had CVD risk factors within the normal range (Table 1). There were no significant changes in BMI, blood pressure, fasting plasma glucose, cholesterol or triacylglycerol concentrations between the first and second visits.

The juice contained a range of bioactive components from blackcurrants (Table 2). LDI measures of vascular reactivity in response to acetylcholine (endothelial dependent) and sodium nitroprusside (endothelial independent) were taken at baseline and 120 minutes after consumption of test and control juices. The changes in vascular reactivity in response to acetylcholine or sodium nitroprusside of the test and control samples (52 ± 149 and -189 ± 129 for acetylcholine and -251 ± 273 and -209 ± 472 for nitroprusside) were not significantly different

There was no significant change in plasma nitrate and nitrite after juice consumption. The plasma concentrations of ICAM and VCAM tended to fall after the consumption of juices, but no significant difference was detected between test and control. An increase in plasma insulin level was observed after test juice consumption and confirmed as a significant treatment effect both by a significant increase in the IAUC ($P=0.016$) and by RM ANOVA on percentage change from baseline ($P=0.013$) (Table 3). There was no significant treatment effect on plasma glucose concentrations, plasma TAG and NEFA concentrations (Table 3).

Flavonoids and Phenolic acids in plasma

Six phenolic acids, namely salicylic acid, benzoic acid, p-hydroxyphenylacetic acid, hippuric acid, phenylacetic acid and 3-(4-hydroxyphenyl)-2-hydroxypropanoic acid were detected in plasma, but no flavonoids were detected.

Plasma concentrations of benzoic acid, hippuric acid, salicylic acid and phenylacetic acid did not increase significantly more after juice consumption than after control (Table 3). Since phenolic acids are colonic metabolites of flavonoids, the sum of the plasma concentrations of benzoic acid, hippuric acid, salicylic acid and phenylacetic acid was calculated. The sums of the concentrations for these four phenolic acids peaked at approximately 30 and 180 minutes post juice consumption (Figure. 1). There was a significant time effect and a trend for a time*treatment effect on the sum of these 4 phenolic acids ($p=0.099$; Table 3).

Vitamin C and uric acid levels in plasma

Plasma vitamin C was $66.92 \pm 12.61 \mu \mathrm{M}$ at baseline. An increase in plasma vitamin C was observed after juice consumption and confirmed as a significant treatment effect both by the IAUC $(P=0.006)$ and by RM ANOVA on percentage change from baseline ($P=0.001$) (Table 3). The increase in plasma vitamin C due to juice consumption was significantly above that of the control value at 60 and 90 minutes ($P<0.01, P<0.05$) and remained higher than the control value throughout the study day (Figure. 2).

The plasma uric acid concentration tended to decrease from baseline after the consumption of the test juice, as shown by the significant time effect, but there was no significant treatment*time interaction (Table 3).

Urinary excretion of anthocyanins and phenolic acids

Delphinidin-3-rutinoside and cyanidin-3-rutinoside were the main anthocyanins excreted in urine with delphinidin-3-glucoside also detected (Table 4). However, the concentrations of the anthocyanins corresponded to only $0.021 \pm 0.003 \%$ of the dietary intake of delphinidin glycosides and $0.009 \pm 0.002 \%$ of the dietary intake of cyanidin glycosides.

Hippuric acid was detected as the major phenolic metabolite in urine. The total phenolics in urine were quantified by summing the peak areas of all the peaks on the chromatogram detected at 260 nm .

The concentrations of urinary hippuric acid and total phenolics after test juice consumption both peaked at 120 minutes. The total urinary phenolics increased from 240 or 360 mins until 1440 minutes after juice consumption, but this effect was mainly attributed to foods consumed overnight after the intervention period. Both urinary hippuric acid and total phenolics tended to show an increase after test juice consumption; which was above the control group. However, no significant difference was observed between the two treatment groups.

Antioxidant capacity of plasma expressed as ORAC and FRAP

There was no significant treatment effect on the oxidative stability of plasma assessed by both the ORAC and FRAP assays. However, it was found that plasma uric acid concentration correlated significantly with the FRAP value of plasma at times of 0 480 minutes after juice consumption ($\mathrm{P}<0.001$). Also, the plasma uric acid concentrations at 150-180 minutes correlated significantly with the plasma ORAC
values at 180 minutes in the test group ($\mathrm{P}<0.05$).

Discussion

The aim of the study was to determine the acute effects of ingestion of a 20% blackcurrant juice drink on vascular reactivity, biomarkers of endothelial function, bioavailability of anthocyanins, antioxidant status and other CVD risk factors in a healthy human population. The dose of bioactive components is much less than those used in many studies, but it is realistic in terms of a normal dietary intake from juice drinks. Differences in vascular reactivity assessed by LDI measurements between 0 and 120 mins , and between test and control were not significant. These observations are consistent with the non-significant changes in plasma total nitrate and nitrite, ICAM and VCAM, indicating that the consumption of the 20% blackcurrant juice drink did not exert any significant changes on vascular reactivity and biomarkers of endothelial function. This outcome is considered to be partly attributable to the low concentrations of polyphenolic compounds and vitamin C in the blackcurrant juice. However, any effects after longer times due to components absorbed in the gastrointestinal tract were not investigated.

The blackcurrant juice drink contained delphinidin and cyanidin glucosides and rutinosides, with delphinidin and cyanidin rutinosides detected as the main anthocyanins in urine together with a small concentration of delphinidin glucoside. The urinary yield of anthocyanins excreted within 4 hours of consuming the juice was calculated as $0.021 \pm 0.003 \%$ of the dietary intake of delphinidin glycosides and 0.009 $\pm 0.002 \%$ of the dietary intake of cyanidin glycosides. The urinary yield of anthocyanins was reported as $0.036+/-0.043 \%$ of the ingested dose after consumption of a blackcurrant juice similar to that consumed in this study (Hollands et al., 2008). Vasodilatory effects of cyanidin-3-glucoside, delphinidin and cyanidin-3-glucoside-rich juices have been reported but only at higher levels of intake (Xu et al., 2004; George et al., 2009; Fitzpatrick et al., 2000; Stein et al., 1999).

A significant increase in plasma vitamin C concentration was found in the current study, but the dose of vitamin C was 20 to 80 fold less than the dose used in
supplementation studies that have shown effects on endothelium-dependent vasodilation (Chambers et al., 1999; Gokce et al., 1999; Levine et al., 1996; Kugiyama et al., 1998; Hornig et al., 1998).

No significant changes in antioxidant status of plasma, assessed by both ORAC and FRAP assays, were observed post juice consumption. The FRAP values of plasma showed a significant fall with time but there was no treatment effect. This fall reflects the significant reduction in plasma uric acid after juice consumption. Plasma uric acid levels correlated with FRAP values at times of 0-480 min post juice consumption, and with the plasma ORAC value at 180 min in the test group, which is consistent with the important contribution of uric acid to the antioxidant capacity of plasma (Glantzounis et al., 2005). Lotito and Frei (2006) suggested that acute effects of consumption of flavonoid-rich foods on plasma antioxidant capacity may be due to changes in uric acid concentration.

Ascorbic acid is known as an antioxidant in plasma (Frei et al., 1990), but the ingested dose of vitamin $\mathrm{C}(25.5 \mathrm{mg})$ and the increase of $6-8 \%$ in maximum plasma vitamin C concentration were not sufficient to contribute a significant increase in antioxidant capacity. The increase in plasma ascorbic acid concentration after test juice consumption was small compared with other studies where significant effects on antioxidant capacity were reported (Pedersen et al., 2000; Volkovova et al., 2005; Samman et al., 2003; Cao et al., 1998).

Benzoic acid, hippuric acid, salicylic acid, phenylacetic acid, p-hydroxyphenylacetic acid and 3-(4-hydroxyphenyl)-2-hydroxypropanoic acid were detected in plasma within 3 h of juice consumption. The sum of benzoic acid, hippuric acid, salicylic acid and phenylacetic acid showed a tendency ($P=0.099$) to increase after juice consumption with two peaks at 30 and 180 minutes, even though these phenolic acids were not present in the juice. The peak at 30 minutes indicated that metabolites of phenolic components in the juice, which were absorbed in the small intestine, contributed to the concentrations of these phenolic acids. Benzoic acid and
hippuric acid are known to be colonic metabolites of anthocyanins (Kim et al., 1998). However, concentrations of the four phenolic acids decreased gradually after peaking at 30 min , indicating further chemical or microbial degradation of the phenolic compounds, as suggested by Keppler \& Humpf (2005). The quantity of hippuric acid formed by biosynthesis is reported to directly correlate with the concentrations of its precursors, primarily phenolic acids (benzoic acid and salicylic acid) (Toromanović et al., 2008). There was no treatment effect on the concentration of urinary hippuric acid in the period up to 24 hours.

The increase in plasma insulin can be ascribed to the presence of sugars in the juice (Table 2).

In summary, ingestion of 250 ml of the 20% blackcurrant juice drink caused significant increases in plasma ascorbic acid, insulin and urinary anthocyanins, and a trend for an increase in plasma phenolic acids. There was no significant effect on vascular reactivity or biomarkers of endothelial function.

Acknowledgments:

The authors acknowledge funding from GlaxoSmithKline plc.

Conflict of interest:

The authors declare no conflict of interest.

References:

Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R (1997). Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 120, 1053-1058.

Andriambeloson E, Magnier C, Haan-Archipoff G, Lobstein A, Anton R, Beretz A et al. (1998). Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J Nutr 128, 2324-2333.

Bub A, Watzl B, Abrahamse L, Delincee H, Adam S, Wever J et al. (2000). Moderate intervention with carotenoid-rich vegetable products reduces lipid peroxidation in men. J Nutr 130, 2200-2206.

Cao G, Russell RM, Lischner N, Prior RL (1998). Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128, 2383-2390.

Cao G, Prior RL (1999). Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol 299, 50-62.

Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS (1999). Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 99, 1156-1160.

Dalgard C, Nielsen F, Morrow JD, Enghusen-Poulsen H, Jonung T, Horder M et al. (2009). Supplementation with orange and blackcurrant juice, but not vitamin E, improves inflammatory markers in patients with peripheral arterial disease. Br J Nutr 101, 263-269.

Felgines C, Talavera S, Gonthier MP, Texier O, Scalbert A, Lamaison JL et al. (2003). Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J Nutr 133, 1296-1301.

Felgines C, Talavera S, Texier O, Gil-Izquierdo A, Lamaison JL, Remesy C (2005). Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agric Food Chem 53, 7721-7727.

Fitzpatrick DF, Fleming RC, Bing B, Maggi DA, O'Malley RM (2000). Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J Agric Food Chem 48, 6384-6390.

Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE (2006). Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr 45, 7-18.

Frei B, Stocker R, England L, Ames BN (1990). Ascorbate: the most effective antioxidant in human blood plasma. Adv Exp Med Biol 264, 155-163.

George TW, Niwat C, Waroonphan S, Gordon MH, Lovegrove JA (2009). Effects of chronic and acute consumption of fruit- and vegetable-puree-based drinks on vasodilation, risk factors for CVD and the response as a result of the eNOS G298T polymorphism. Proc Nutr Soc 68, 148-161.

Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA (2005). Uric acid and oxidative stress. Curr Pharm Des 11, 4145-4151.

Glass CK, Witztum JL (2001). Atherosclerosis. the road ahead. Cell 104, 503-516.

Gokce N, Keaney JF, Jr., Frei B, Holbrook M, Olesiak M, Zachariah BJ et al. (1999). Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 99, 3234-3240.

Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F et al. (1995). Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155, 381-386.

Hollands W, Brett GM, Radreau P, Saha S, Teucher B, Bennett RN et al. (2008). Processing blackcurrants dramatically reduces the content and does not enhance the urinary yield of anthocyanins in human subjects. Food Chemistry 108, 869-878.

Hornig B, Arakawa N, Kohler C, Drexler H (1998). Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 97, 363-368.

Hou DX (2003). Potential mechanisms of cancer chemoprevention by anthocyanins. Curr Mol Med 3, 149-159.

Kang SY, Seeram NP, Nair MG, Bourquin LD (2003). Tart cherry anthocyanins inhibit tumor development in $\mathrm{Apc}(\mathrm{Min})$ mice and reduce proliferation of human colon cancer cells. Cancer Lett 194, 13-19.

Kay CD, Holub BJ (2002). The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. Br J Nutr 88, 389-397.

Kay CD, Mazza G, Holub BJ, Wang J (2004). Anthocyanin metabolites in human urine and serum. $\operatorname{Br} J$ Nutr 91, 933-942.

Kay CD, Mazza GJ, Holub BJ (2005). Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr 135, 2582-2588.

Kay CD (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev 19, 137-146.

Keli SO, Hertog MG, Feskens EJ, Kromhout D (1996). Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med 156, 637-642.

Keppler K, Humpf HU (2005). Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 13, 5195-5205.

Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ (1998). Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res 21, 17-23.

Knekt P, Jarvinen R, Reunanen A, Maatela J (1996). Flavonoid intake and coronary mortality in Finland: a cohort study. $B M J$ 312, 478-481.

Kugiyama K, Motoyama T, Hirashima O, Ohgushi M, Soejima H, Misumi K et al. (1998). Vitamin C attenuates abnormal vasomotor reactivity in spasm coronary arteries in patients with coronary spastic angina. J Am Coll Cardiol 32, 103-109.

Levine GN, Frei B, Koulouris SN, Gerhard MD, Keaney JF, Jr., Vita JA (1996). Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 93, 1107-1113.

Liau LS, Lee BL, New AL, Ong CN (1993). Determination of plasma ascorbic acid by high-performance liquid chromatography with ultraviolet and electrochemical detection. J Chromatogr 612, 63-70.

Lotito SB, Frei B (2006). Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41, 1727-1746.

Nakamura Y, Matsumoto H, Todoki K (2002). Endothelium-dependent vasorelaxation induced by black currant concentrate in rat thoracic aorta. Jpn J Pharmacol 89, 29-35.

Pedersen CB, Kyle J, Jenkinson AM, Gardner PT, McPhail DB, Duthie GG (2000). Effects of blueberry and cranberry juice consumption on the plasma antioxidant capacity of healthy female volunteers. Eur J Clin Nutr 54, 405-408.

Prior RL, Cao GH (2000). Flavonoids: Diet and Health Relationships. Nutrition in Clinical Care 3, 279-288.

Prior RL, Hoang H, Gu LW, Wu XL, Bacchiocca M, Howard L et al. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J.Agric.Food Chem. 51, 3273-3279.

Rechner AR, Kroner C (2005). Anthocyanins and colonic metabolites of dietary polyphenols inhibit
platelet function. Thromb Res 116, 327-334.

Ross R (1999). Atherosclerosis--an inflammatory disease. NEngl J Med 340, 115-126.

Samman S, Sivarajah G, Man JC, Ahmad ZI, Petocz P, Caterson ID (2003). A mixed fruit and vegetable concentrate increases plasma antioxidant vitamins and folate and lowers plasma homocysteine in men. J Nutr 133, 2188-2193.

Slimestad R, Solheim H (2002). Anthocyanins from black currants (Ribes nigrum L.). J Agric Food Chem 50, 3228-3231.

Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD (1999). Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100, 1050-1055.

Toromanovic J, Kovac-Besovic E, Sapcanin A, Tahirovic I, Rimpapa Z, Kroyer G et al. (2008). Urinary hippuric acid after ingestion of edible fruits. Bosn J Basic Med Sci 8, 38-43.

Tsuda T, Shiga K, Ohshima K, Kawakishi S, Osawa T (1996). Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharmacol 52, 1033-1039.

Vauzour D, Houseman EJ, George TW, Corona G, Garnotel R, Jackson KG et al.(2010). Moderate Champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers. B.J.Nutr. 103, 1168-1178.

Volkovova K, Barancokova M, Kazimirova A, Collins A, Raslova K, Smolkova B et al. (2005). Antioxidant supplementation reduces inter-individual variation in markers of oxidative damage. Free Radic Res 39, 659-666.

Wu X, Cao G, Prior RL (2002). Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr 132, 1865-1871.

Xu JW, Ikeda K, Yamori Y (2004). Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension 44, 217-222.

Zhang K, Zuo Y (2004). GC-MS determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice. J Agric Food Chem 52, 222-227.

List of Figures.

Figure. 1. Percentage change from baseline of the sum of the plasma levels of benzoic acid, hippuric acid, salicylic acid and phenylacetic acid following the consumption of control and test juices. There was a significant time effect.

Figure. 2. Percentage change from baseline of plasma vitamin C following the consumption of control and test juices. The different symbols on the graph indicate different levels of statistical significance: $* P<0.05, \dagger P<0.01$.

Table 1 Baseline characteristics of volunteers (Mean \pm SEM $)$)

	Males $(\mathrm{n}=9)$	Females $(\mathrm{n}=11)$
Age (years)	44 ± 5.2	45 ± 3.7
Weight (kg)	75.7 ± 3.32	64.8 ± 3.1
BMI (kg/m²)	24.0 ± 0.83	23.0 ± 0.91
Sys. BP (mm Hg)	121 ± 2.47	110 ± 2.41
Dia. BP (mm Hg)	72 ± 2.15	68 ± 1.74
Glucose (mmol/L)	5.5 ± 0.14	5.1 ± 0.1
Total cholesterol (mmol/L)	4.6 ± 0.24	4.6 ± 0.34
Triacylglycerols (mmol/L)	0.9 ± 0.08	0.6 ± 0.07

Test juice Control juice

Delphinidin $(\mathrm{mg} / 100 \mathrm{ml})$	12.2 ± 0.1	0
Cyanidin $(\mathrm{mg} / 100 \mathrm{ml})$	8.0 ± 0.1	0
Vitamin $\mathrm{C}^{*}(\mathrm{mg} / 100 \mathrm{ml})$	10.2	0
Phenolic acids* $(\mathrm{mg} / 100 \mathrm{ml})$	81.5	<10
Nitrate + Nitrite $(\mu \mathrm{M})$	28.6 ± 8.9	0
Glucose $(\mu \mathrm{M})^{* *}$	3906.96 ± 6.88	0
Fructose $(\mu \mathrm{M})^{* *}$	385.67 ± 14.4	0
p-hydroxybenzoic acid $(\mu \mathrm{M})^{* *}$	47.75 ± 0.67	0
Sinapic acid $(\mu \mathrm{M})^{* *}$	65.83 ± 0.62	0
Caffeic acid $(\mu \mathrm{M})^{* *}$	98.66 ± 1.18	0
Ferulic acid $(\mu \mathrm{M})^{* *}$	62.3 ± 0.48	0
p-coumaric acid $(\mu \mathrm{M})^{* *}$	158.94 ± 1.21	0
Gallic acid $(\mu \mathrm{M})^{* *}$	186.58 ± 10.29	0

[^0]Table 3 Effects on plasma and urinary variables assessed by incremental area under the curve of each parameter against time (IAUC value.h) and Repeated Measures ANOVA P values for within-subject effects (on percentage change from baseline; mean \pm SEM).

Parameter	IAUC (control)	IAUC (test)	Treatment	Time	$\begin{aligned} & \text { Interv* } \\ & \text { Time } \end{aligned}$
Plasma ORAC ($\mu \mathrm{M}$ TE.h)	2099 ± 118	2122 ± 157	0.921	0.012*	0.231
$\begin{aligned} & \text { Plasma FRAP } \\ & (\mu \mathrm{M} \mathrm{TE.h}) \end{aligned}$	-253 ± 60	-163 ± 151	0.896	0.006**	0.885
Plasma Vitamin C ($\mu \mathrm{M} . \mathrm{h}$)	-5.16 ± 5.34	17.2 ± 6.6	0.001**	0.975	0.083
Plasma Uric acid ($\mu \mathrm{M} . \mathrm{h}$)	-57.8 ± 11.5	-113.3 ± 41.4	0.031*	0.000**	0.274
Plasma Benzoic $\operatorname{acid}(\mu \mathrm{M} . \mathrm{h})$	-1.79 ± 2.75	2.81 ± 3.13	0.830	0.006**	0.275
Plasma Hippuric $\operatorname{acid}(\mu \mathrm{M} . \mathrm{h})$	-3.71 ± 2.29	-1.86 ± 1.28	0.857	0.067	0.795
Plasma Salicylic $\operatorname{acid}(\mu \mathrm{M} . \mathrm{h})$	-0.39 ± 1.00	0.26 ± 0.69	0.345	0.078	0.633
Plasma p-hydroxyphenyl acetic acid ($\mu \mathrm{M} . \mathrm{h}$)	-0.01 ± 0.05	-0.14 ± 0.08	0.527	0.639	0.157
Plasma 3-(4-hydroxyphe nyl)-2- hydroxypropanoi c acid (μ M.h)	-0.08 ± 0.20	-0.26 ± 0.23	0.668	0.821	0.383

Plasma phenylacetic acid ($\mu \mathrm{M} . \mathrm{h}$)	-0.37 ± 1.12	1.80 ± 1.22	0.888	0.304	0.441
Sum of benzoic acid, hippuric acid, salicylic acid and phenylacetic acid (μ M.h)	-6.19 ± 4.35	3.17 ± 4.10	0.365	0.003	0.099
Plasma triacylglycerols (mM.h)	0.37 ± 0.21	0.36 ± 0.26	0.842	0.000**	0.544
Plasma insulin ($\mu \mathrm{IU} / \mathrm{ml} . \mathrm{h}$)	-1.17 ± 0.35	1.53 ± 0.81	0.013*	0.173	0.186
Plasma ICAM (Endothelial Intercellular Adhesion Molecule-1) (ng.h/mL)	-34.2 ± 15.3	-28.6 ± 14.6	0.102	0.159	0.480
Plasma VCAM Vascular \quad Cell Adhesion Molecule-1 (VCAM) (ng.h $/ \mathrm{mL}$)	-80.2 ± 27.9	-128.3 ± 60.8	0.403	0.070	0.689
$\begin{aligned} & \text { Plasma NEFA } \\ & (\mu \mathrm{M} . \mathrm{h}) \end{aligned}$	-763 ± 457	-794 ± 385	0.637	0.059	0.102
Plasma glucose	4.66 ± 1.15	3.52 ± 0.88	0.716	0.000**	0.390

(mM.h)					
total urinary phenolics $(24$ hours data) (area.h)	85551.30	87922.45	0.301	$0.000^{* *}$	0.542
Urinary hippuric acid	-1009.95	-617.34	0.784	0.293	0.327
$(24$ hours data)	± 392.65	± 590.09			
(mg/umol creatinine.h)					

	Urinary anthocyanins $(\mu \mathrm{g}) \quad$ (Mean \pm SEM)			
Compounds	Test juice baseline	Test juice $(2-4$ hexcretion)	Control juice baseline	Control juice (2-4 h excretion)
Total anthocyanins	0.04 ± 0.04	$15.61 \pm 2.16^{*}$	0.10 ± 0.07	0.32 ± 0.21
Delphinidin-3 -rutinoside	0.04 ± 0.04	$11.05 \pm 1.42^{*}$	0.10 ± 0.07	0.25 ± 0.20
Delphinidin-3 -glucoside	0	0.81 ± 0.39 $(p=0.052)$	0	0
Cyanidin-3- rutinoside	0	$3.76 \pm 0.68^{*}$	0	0.07 ± 0.07

[^1]Table 4 Urinary content of anthocyanins excreted within 4 hours of juice consumption

Figure 1

Figure 2

[^0]: * Analytical data provided by RSSL, Reading, UK
 ** Mean \pm range of duplicate determinations

[^1]: * significant increase from baseline $(\mathrm{p}<0.001)$

