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We study asymptotic expansion of the likelihood of a certain class of Gaussian processes characterized by their spectral density f θ . We consider the case where f θ (x) ∼ x→0 |x| -α(θ) L θ (x) with L θ a slowly varying function and α(θ) ∈ (-∞, 1). We prove LAN property for these models which include in particular fractional Brownian motion or ARFIMA processes.

Introduction

Local asymptotic normality (LAN) property is a fundamental concept in asymptotic statistics. Originated by Wald in [START_REF] Wald | Tests of statistical hypotheses concerning several parameters when the number of observations is large[END_REF] and developed by Le Cam in [START_REF] Cam | Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses[END_REF], it relies on the idea of approximating a sequence of statistical models by a family of Gaussian distributions. Its consequence is that the initial model is approximately normal and thus inherits, in an asymptotic sense, the simple structure of normal models. Among the many applications in mathematical statistics, local asymptotic normality is essential in asymptotic optimality theory and also explains the asymptotic normality of certain estimators such as the maximum likelihood estimator for instance. We refer for instance to [START_REF] Pollard | Convergence of stochastic processes[END_REF] or in [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] for applications of LAN property. When dealing with inference on the parameter, LAN property will enable to assess optimality of any estimation procedure for this parameter which governs the behaviour of the random process. Hence LAN property is a powerful framework to understand probabilistic properties of a stochastic model.

Many work has been done to prove LAN property for a large number of observation models such as i.i.d sequences of random variables parametrized by a parameter or Gaussian processes in [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] or more complicated random processes such as multifractal processes in [START_REF] Loubes | Local asymptotic normality property for lacunar wavelet series[END_REF], AR or ARMA based models in [START_REF] Garel | Local asymptotic normality of multivariate ARMA processes with a linear trend[END_REF][START_REF] Lai | Local asymptotic normality for multivariate nonlinear AR processes[END_REF] or extreme models in [START_REF] Falk | Local asymptotic normality in a stationary model for spatial extremes[END_REF] for instance.

We focus in this paper on statistical inference for empirical estimation of the parameters of spectral density of a certain class of Gaussian processes. We consider a stationary centered Gaussian process X n whose spectral density is indexed by a parameter θ and satisfies the condition

f θ (x) ∼ x→0 |x| -α(θ) L θ (x)
with L θ a slowly varying function and α(θ) ∈ (-∞, 1). More precisely, we aim at proving Local Asymptotic Normality (LAN) for the model where we observe a sample of n observations X n = (X 1 , . . . , X n ) by studying an asymptotic expansion of the log likelihood. For this, a precise control over the asymptotic behaviour of the some Toeplitz matrices linked with f θ will be required. It relies on the results in [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF].

In very particular, our assumptions (see section 3) are fulfilled by fractional Gaussian noises, which are defined as increments of fractional Brownian motions (see [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum[END_REF][START_REF] Mandelbrot | Fractional Brownian motion, fractional noises and applications[END_REF]). From the LAN property fulfilled by fractional Gaussian noises, we deduce the LAN property when the observation model is a time-discretized fractional Brownian motion, which is not any more a stationary model. Moreover observation models of autoregressive fractionally integrated moving average processes (ARFIMA(p,d,q)), defined as a fractionally differenced ARMA processes in [START_REF] Granger | An introduction to long-memory time series models and fractional differencing[END_REF][START_REF] Hosking | Fractional differencing[END_REF], satisfy also our assumptions and are covered by our results. Note that, when d ≤ -1, ARFIMA(p,d,q) are non-invertible processes (see [START_REF] Bondon | A class of antipersistent processes[END_REF]).

The paper falls into the following parts. Section 2 is devoted to recall some basic properties of Toepliz matrices. Then Section 3 states the general LAN property for the considered processes. Section 4 is devoted to two examples that undergo the required assumptions (fractional Brownian noises and ARFIMA processes) and the LAN property for the non stationary model provided by the fractional Brownian motion. Most of the proofs are postponed to Section A.

Notations and some preliminary results on Toeplitz matrices

For any integrable symmetric function f : [-π, π] → R and any integer n ∈ N\{0}, let us consider the real Toeplitz matrix

T n (f ) = π -π e i(k-j)x f (x)dx 1 k,j n . (1) 
Observe that if f is nonnegative, T n (f ) is a nonnegative matrix. Observe also that if f = 0 on a non neglectible set, T n (f ) is positive and then invertible. Before stating some results on Toeplitz matrices, let us introduce some notations and recall some basic facts. First, if the n×n matrix A is nonnegative and Hermitian, hence the matrix A 1/2 defined as the solution of A = (A 1/2 ) 2 , exists and is a nonnegative Hermitian matrix. In addition, the spectral norm of the n × n matrix A is

A 2,n = sup x∈C n x * A * Ax x * x 1/2
, where A * is the conjugate transpose of A. We recall that • 2,n is a multiplicative norm, that is for any n × n matrices A, B,

AB 2,n ≤ A 2,n B 2,n . (2) 
Let us also recall that for any matrix A and any x ∈ C n ,

x * Ax ≤ x * x A 2,n = A 2,n x 2 , (3) 
with y the Euclidean norm of y ∈ R n (see [START_REF] Graybill | Matrices with applications in statistics[END_REF] for example).

One of the main tools we use in this paper is the following lemma, which gives a bound for the spectral norm of some products of the form T n (f ) -1/2 T n (g) 1/2 under some assumptions for the functions f and g. This lemma, given in [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF] (full version of [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF]) , generalizes Lemma 5.3 in [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF].

Lemma 2.1. Let f and g be nonnegative symmetric functions defined on [-π, π]. Assume that there exist some constants c 1 , c 2 ∈ (0, +∞) and

β 1 , β 2 ∈ (-∞, 1) such that for any x ∈ [-π, π]\{0}, f (x) ≥ c 1 |x| -β 1 and g(x) ≤ c 2 |x| -β 2 . (4) 
Then, there exists a constant K which only depends on (c 1 , c 2 , β 1 , β 2 ) such that for any integer n ≥ 1,

T n (f ) -1/2 T n (g) 1/2 2,n = T n (g) 1/2 T n (f ) -1/2 2,n ≤ Kn max ((β 2 -β 1 )/2,0) .
Remark 2.2. In the previous lemma, observe that the assumption on f ensures that T n (f ) -1/2 exists. Moreover, one can choose the constant K independently of (β 1 , β 2 ) and such that the conclusion holds for any

β 1 , β 2 ∈ [a, b].
In our framework, f depends on an unknown parameter θ and is the spectral density of a centered Gaussian stationary sequence (X n ) n . This spectral density will be denoted f θ and is assumed to be such that

f θ (x) ∼ x→0 |x| -α(θ) L θ (x)
with L θ a slowly varying function and α(θ) ∈ (-∞, 1). Then next theorem deals with the uniform behavior in θ as n → +∞ of

tr p ℓ=1 (T n (f θ )) -1 T n (g θ,ℓ ) ,
where g θ,ℓ denotes a spectral density or one of its derivatives which undergoes some technical assumptions. If the true value θ 0 of the parameter is such that α(θ 0 ) ∈ (-1, 1), this theorem is one of the main tools we use to obtain the LAN property. It allows us to consider a process (X n ) n which admits antipersistence (α(θ 0 ) < 0), short memory (α(θ 0 ) = 0) or long memory (α(θ 0 ) ∈ (0, 1)). This theorem is stated as Theorem 5 in [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF] (full version of [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF]). It generalizes Theorem 2 in [START_REF] Lieberman | Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process[END_REF], which is already a uniform version of Theorem 1.a [START_REF] Fox | Central limit theorems for quadratic forms in random variables having long-range dependence[END_REF] and Theorem 5.1 in [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF].

Theorem 2.3. Let Θ * ⊂ R m be a compact set and p ∈ N\{0}. For any 1 ≤ ℓ ≤ p, consider f ℓ : Θ * × [-π, π] → [0, ∞] and g ℓ : Θ * × [-π, π] → R
two symmetric functions with respect to their second variable. In the following,

f θ,ℓ = f ℓ (θ, •) and g θ,ℓ = g ℓ (θ, •).
Assume that the following conditions hold.

1. For any 1 ≤ ℓ ≤ p, for any θ ∈ Θ * , f θ,ℓ and g θ,ℓ are differentiable on [-π, π]\{0}.

Moreover, for any

1 ≤ ℓ ≤ p, f ℓ , ∂ ∂x f ℓ , g ℓ and ∂ ∂x g ℓ are continuous on Θ * × [-π, π]\{0}.
2. There exist two continuous functions α : Θ * → (-1, 1) and β : Θ * → (-∞, 1) such that for any δ > 0, for every (θ, x) ∈ Θ * × [-π, π]\{0} and any

1 ≤ ℓ ≤ p (a) c 1,δ,Θ * |x| -α(θ)+δ ≤ f ℓ (θ, x) ≤ c 2,δ,Θ * |x| -α(θ)-δ (b) ∂ ∂x f ℓ (θ, x) ≤ c 2,δ,Θ * |x| -α(θ)-1-δ (c) and |g ℓ (θ, x)| ≤ c 2,δ,Θ * |x| -β(θ)-δ ,
with c i,δ,Θ * , i ∈ {1, 2} some finite positive constants which only depend on δ and Θ * .

For any

θ ∈ Θ * , p(β(θ) -α(θ)) < 1.
Then,

lim n→+∞ sup θ∈Θ * 1 n tr p ℓ=1 (T n (f θ,ℓ )) -1 T n (g θ,ℓ ) - 1 2π π -π p j=1 (f θ,ℓ (x)) -1 g θ,ℓ (x)dx = 0.
Remark 2.4. Observe that under Conditions 1. and 2.,

f -1 ℓ = 1/f ℓ is continuous on Θ * × [-π, π]\{0},
as assumed in Theorem 5 of [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF].

If the true value θ 0 of the parameter is such that α(θ 0 ) ≤ -1, the previous theorem can not be applied. However, the following theorem, which is a simple consequence of Lemma 8 in [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF], provides a sufficient property to establish the LAN property. In particular, it allows us to study the LAN property for ARFIMA models whose order of differentiability are lower than 1/2, which includes some non invertible models.

Theorem 2.5. Let Θ * = B(θ 0 , r) ⊂ R m be the closed Euclidean ball centered at θ 0 with radius r and let p ∈ N\{0}.

Consider f : Θ * × [-π, π] → [0, ∞] and for 1 ≤ ℓ ≤ p, g ℓ : Θ * ×[-π, π] → R
some symmetric functions in their second variable. In the following,

f θ = f (θ, •) and g θ,ℓ = g ℓ (θ, •).
Assume that the following conditions hold.

1. The functions f and g ℓ satisfy assumption 1 of Theorem 2.3.

2. There exists a continuous function α : Θ * → (-∞, 1/2) such that for any δ > 0, for every

(θ, x) ∈ Θ * × [-π, π]\{0} and any 1 ≤ ℓ ≤ p, assertion 3(a), 3(b) of Theorem 2.3 are fulfilled (with f ℓ = f ), assertion 3(c) of Theorem 2.3 holds with β = α and ∂ ∂x g θ,ℓ (x) ≤ c 2,δ,Θ * |x| -α(θ)-1-δ .
Then, for r small enough,

lim n→+∞ sup θ∈Θ * 1 n tr p ℓ=1 (T n (f θ )) -1 T n (g θ,ℓ ) - 1 2π π -π f -p θ (x) p j=1 g θ,ℓ (x)dx = 0.

LAN property for a certain class of random processes

Let X n , n ∈ N be a centered Gaussian stationary process with law P θ parametrized by θ = (θ 1 , . . . , θ m )

′ ∈ Θ ⊂ R m and associated with the 2π-periodic even spectral density f θ . Then, under P θ ,

E(X n X n+k ) = 1 2π π -π exp(ikx)f θ (x)dx = c k (f θ ).
As usual, for θ = η, the set {x ∈ [-π, π], f θ (x) = f η (x)} is assumed to have positive Lebesgue measure. This assumption is not needed to obtain the LAN property but is a standard background assumption in statistics. Actually, if this condition is not fulfilled, the model is not identifiable, preventing any estimation issues.

In practice, we observe the vector X n = (X 1 , . . . , X n ), with n ∈ N\{0}, whose law is denoted by P n θ . Under P n θ , the covariance matrix of X n is then the symmetric Toeplitz matrix 1 2π

T n (f θ ) = (c k-j (f θ )) 1 k,j n .
and the Fisher information of the model is the matrix

I(θ) = 1 4π π -π ∂ log f θ (x) ∂θ k ∂ log f θ (x) ∂θ j dx 1 k,j m
.

The LAN property of the model is proved under the following assumption.

Assumption 3.1.

(A.1) For any x ∈ [-π, π]\{0}, the function θ → f θ (x) is three times continuously differentiable on Θ. In addition, for any 0 ≤ ℓ ≤ 3 and 1 ≤ k 1 , . . . , k ℓ ≤ m, the partial derivative

(θ, x) → ∂ ℓ ∂θ k 1 . . . ∂θ k ℓ f θ (x)
is continuous on Θ × [-π, π]\{0}, continuously differentiable with respect to x on [-π, π]\{0} and its partial derivative

(θ, x) → ∂ ℓ+1 ∂x∂θ k 1 . . . ∂θ k ℓ f θ (x) is continuous on Θ × [-π, π]\{0}.
(A.2) There exists a continuous function α : Θ → (-∞, 1) such that for any δ > 0 and any compact set Θ * ⊂ Θ, the following conditions hold for every (θ,

x) ∈ Θ * × [-π, π]\{0}. (a) c 1,δ,Θ * |x| -α(θ)+δ ≤ f θ (x) ≤ c 2,δ,Θ * |x| -α(θ)-δ (b) ∂ ∂x f θ (x) ≤ c 2,δ,Θ * |x| -α(θ)-1-δ
(c) for any ℓ ∈ {1, 2, 3}, and any k ∈ {1, . . . , m} ℓ ,

∂ ℓ ∂θ k 1 . . . ∂θ k ℓ f θ (x) ≤ c 2,δ,Θ * |x| -α(θ)-δ .
with c i,δ,Θ * some finite positive constants which only depend on δ and Θ * .

This assumption implies that 1/f θ is well-defined on [-π, π]\{0} and corresponds to Assumptions (A1), (A2) and (A4) in [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF], except that we impose some smoothness property on the derivative of order three. This assumption, as noted in [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary gaussian processes[END_REF], is an extension and a reformulation of Dahlhaus's ones in [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF][START_REF] Dahlhaus | Correction: "Efficient parameter estimation for self-similar processes[END_REF].

If for the true value θ 0 of the parameter, α(θ 0 ) ∈ (-1, 1), the LAN property (see Theorem 3.4) holds. Nevertheless, if α(θ 0 ) ≤ -1, the LAN property is established under the following additional assumption (which allows to apply Theorem 2.5). Assumption 3.2. Let Θ * = B(θ 0 , r) ⊂ Θ. For any δ > 0, for any ℓ ∈ {1, 2, 3} and k ∈ {1, . . . , m} ℓ ,

∂ ℓ+1 ∂x∂θ k 1 . . . ∂θ k ℓ f θ (x) ≤ c 2,δ,Θ * |x| -α(θ)-1-δ
with α and c 2,δ,Θ * given in Assumption 3.1.

Under Assumption 3.1, the covariance matrix T n ( 1 2π f θ ) is invertible (for each θ) and then, we compare the distribution of the model under P θ and P η using the following proposition.

Proposition 3.3. For any symmetric positive definite matrix Γ on R n (n ∈ N\{0}), P Γ denotes the distribution of a centered Gaussian vector with covariance Γ. Then, for any covariance matrices Γ 1 and Γ 2 ,

2 log dP Γ 1 dP Γ 2 (x) = x, (Γ -1 2 -Γ -1 1 )x + log det(Γ -1 1 Γ 2 ),
where • denotes the usual Hermitian product in C n .

The following theorem states LAN property for the observation model.

Theorem 3.4 (LAN property). Let θ 0 be in the interior of Θ. Assume that Assumption 3.1 is fulfilled. If α(θ 0 ) ≤ -1, assume also that Assumption 3.2 is fulfilled. Then under P n θ 0 , for t ∈ R m , we get

log dP n θ 0 +t/ √ n dP n θ 0 = t, Z n - 1 2 t * I(θ 0 )t + ψ θ 0 (t, n)
where Z n does not depend on t and converges in distribution, under P n θ 0 , to a centered Gaussian vector with covariance matrix I(θ 0 ), while ψ θ 0 (•, n) converges uniformly on each compact to 0 P n θ 0 -almost surely when n → +∞. Proof. Let K ⊂ R m be a compact set and consider r > 0 such that

Θ * = B(θ 0 , r) ⊂ Θ
where B(u, r) is the Euclidean closed ball of R m centered at u with radius r. Then, we can choose n 0 , such that for any integer n ≥ n 0 and any t ∈ K, θ 0 + t/ √ n ∈ Θ * .

Let us now consider n ≥ n 0 and observe that for any t ∈ K, P n θ 0 and P n θ 0 +t/ √ n are well-defined. Moreover, using Proposition 3.3, for any t ∈ K, we get log

dP n θ 0 +t/ √ n dP n θ 0 (x n ) = F n θ 0 + t √ n where x n = (x 1 , . . . , x n ) ∈ R n and for θ ∈ B(θ 0 , r) = Θ * , F n (θ) = π < x n , [T n (f θ 0 ) -1 -T n (f θ ) -1 ]x n > + 1 2 log det[T n (f θ ) -1 T n (f θ 0 )].
By Assumption 3.1, F n is three times continuously differentiable on B(θ 0 , r). Hence, for any t ∈ K, since F n (θ 0 ) = 0,

F n θ 0 + t √ n - t, ∇F n (θ 0 ) √ n - t * ∇ 2 F n (θ 0 )t 2n ≤ M 3 K 6n 3/2 max 1≤j,k,l≤m sup θ∈B(θ 0 ,r) ∂ 3 F n ∂θ j ∂θ k ∂θ l (θ)
where ∇F n (θ 0 ) is the gradient of F n at θ 0 , ∇ 2 F n (θ 0 ) its Hessian matrix at θ 0 and M K = max s∈K s . Hence, setting Z n = ∇F n (θ 0 )/ √ n (which does not depend on t ∈ K) and applying Equation (3), we get

∀t ∈ K, F n θ 0 + t √ n = t, Z n - 1 2 t * I(θ 0 )t + ψ θ 0 (t, n) with sup s∈K |ψ θ 0 (s, n)| ≤ M 2 K 2 ∇ 2 F n (θ 0 ) n + I(θ 0 ) 2,m + M 3 K 6n 3/2 max 1≤j,k,l≤m sup θ∈B(θ 0 ,r) ∂ 3 F n ∂θ j ∂θ k ∂θ l (θ) .
The conclusion follows from the three following lemmas, whose proofs are postponed to the Appendix for sake of clearness. The first lemma deals with the behavior of Z n . Lemma 3.5. Under P n θ 0 , Z n converges in distribution, as n → +∞, to a centered Gaussian random vector whose covariance matrix is the Fisher information I(θ 0 ).

Let us now state the asymptotic of ∇ 2 F n (θ 0 ). Lemma 3.6. Under P n θ 0 , ∇ 2 F n (θ 0 )/n converges almost surely to -I(θ 0 ), as n → +∞. Hence,

∇ 2 F n (θ 0 ) n + I(θ 0 ) 2,m
converges almost surely to 0 as n → +∞.

The next lemma deals with the behavior of the partial derivative of F n of order three. 

Application to Fractional Gaussian noises and ARFIMA processes

Here we consider two particular cases where the LAN property can be proved.

Fractional Gaussian noises

Let (B H (t)) t 0 be a fractional Brownian motion (see [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum[END_REF][START_REF] Mandelbrot | Fractional Brownian motion, fractional noises and applications[END_REF]) with Hurst index H ∈ (0, 1). In other words, B H is a centered Gaussian random process whose covariance function is given by

E(B H (t)B H (s)) = σ 2 2 |t| 2H -2|t -s| 2H + |s| 2H . (5) 
The parameter σ 2 corresponds to the variance of B H (1). Let us now consider the centered stationary Gaussian sequence (X n ) n≥1 , called the fractional Gaussian noise of index H, defined by for n ≥ 1,

X n = B H (n) -B H (n -1).
The law of (X n ) n≥1 is parametrized by θ = (σ 2 , H) ∈ (0, +∞) × (0, 1). According to [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF], its spectral density f σ 2 ,H is given by

f σ 2 ,H (x) = σ 2 |e ix -1| 2 C 2 2 (H) k∈Z 1 |x + 2kπ| 2H+1 , x ∈ [-π, π]\{0}, (6) 
where

C 2 2 (α) = π αΓ(2α) sin(απ)
.

Then, the model satisfies Assumption 3.1 with α(θ) = 2H -1. Since the range of α is (-1, 1), the Assumption 3.2 is not needed in this example.

Next proposition establishes the LAN property when the observation are modeled by

B n = {B H (1), . . . , B H (n)}
with B H the fractional Brownian motion whose covariance function is given by ( 5). This model is not a stationary one but its log-likelihood can be linked to those of the fractional Gaussian noise

X n = {B H (1), B H (2) -B H (1), . . . , B H (n) -B H (n -1)},
which fulfills Assumption 3.1. The law of B n is parametrized by (σ 2 , H) ∈ (0, +∞) × (0, 1) = Θ and denoted by Q n σ 2 ,H . Proposition 4.1. Let I be the Fisher information of the fractional Gaussian noise X n , that is the Fisher information associated with the spectral density f σ 2 ,H defined by [START_REF] Falk | Local asymptotic normality in a stationary model for spatial extremes[END_REF]. Then, under Q n σ 2 0 ,H 0 , for t ∈ R 2 and n large enough

log dQ n (σ 2 0 ,H 0 )+t/ √ n dQ n (σ 2 0 ,H 0 ) = t, Z n - 1 2 t * I(σ 2 0 , H 0 )t + ψ σ 2 0 ,H 0 (t, n)
where Z n does not depend on t and converges in distribution, under Q n (σ 2 0 ,H 0 ) , to a centered Gaussian vector with covariance matrix I(σ 2 0 , H 0 ), while ψ σ 2 0 ,H 0 (•, n) converges uniformly on each compact to 0 Q n 0 ,H 0 , the law of x n is P n θ 0 , the conclusion follows from Theorem 3.4.

ARFIMA processes

ARFIMA processes have been introduced in [START_REF] Granger | An introduction to long-memory time series models and fractional differencing[END_REF][START_REF] Hosking | Fractional differencing[END_REF]. We also refer to [START_REF] Beran | Statistics for long-memory processes[END_REF] for general properties of ARFIMA(p, d, q). Let p, q ∈ N. Then, a stationary ARFIMA process (X n ) n is parametrized by θ = (σ 2 , d, Φ 1 , . . . , Φ p , Ψ 1 , . . . , Ψ q ) where d ∈ (-∞, 1) is the order of differentiability and the polynoms Φ(X) = 1 + p j=1 Φ j X j and Ψ(X) = 1 + q j=1 Ψ j X j have no zeros in the unit circle and no zeros in common. Then, its spectral density is given by

f θ (x) = σ 2 e ix -1 -2d Ψ(e ix ) Φ(e ix ) 2 .
Then Assumptions 3.1 and 3.2 are fulfilled with α(θ) = 2d. Theorem 3.4 also implies LAN property for this model.

A Appendix

A.1 Proof of Lemma 3.5

In this appendix, for ℓ ∈ {1, 2, 3} and k ∈ {1, . . . , m} ℓ , ∂ ℓ k f θ denotes the partial derivative of (θ, x) → f θ (x) with respect to (θ k 1 , . . . , θ k ℓ ), that is

∂ ℓ k f θ (x) = ∂ ℓ f θ ∂θ k 1 • • • ∂θ k ℓ (x). ( 7 
)
By definition of F n , for any θ ∈ B(θ 0 , r), and any integer 1

≤ k ≤ m, ∂F n ∂θ k (θ) = π x n , T n (f θ ) -1 T n (∂ k f θ )T n (f θ ) -1 x n - 1 2 tr T n (∂ k f θ )T n (f θ ) -1 . ( 8 
)
Let us fix u ∈ R m and study the asymptotic behavior, under

P n θ 0 , of u, ∇F n (θ 0 ) , that is by (8) of u, ∇F n (θ 0 ) = π x n , T n (f θ 0 ) -1 T n (g u θ 0 )T n (f θ 0 ) -1 x n - 1 2 tr T n (g u θ 0 )T n (f θ 0 ) -1 with g u θ = m k=1 u k ∂ k f θ .
To achieve this goal we use the following result on Gaussian random field. = stands for equality in distribution, (λ j,n ) 1≤j≤n are the eigenvalues of the real symmetric matrix Γ 1/2 AΓ 1/2 and (χ j,n ) j,n are i.i.d. random variables with distribution χ 2 (1). Moreover,

E( Y, AY ) = tr(AΓ) = tr(ΓA) and Var( Y, AY ) = 2 n j=1 λ 2 j,n = 2tr (AΓ) 2 .
Observe that under P n θ 0 , x n is a centered Gaussian random variable with covariance

Γ n = 1 2π T n (f θ 0 ). Then, since T n (f θ 0 ) -1 T n (g u θ 0 )T n (f θ 0 ) -1 is a real symmetric matrix, under P n θ 0 , u, ∇F n (θ 0 ) (d) = n j=1 λ u j,n (χ j,n -1),
where (λ u j,n ) j=1,...,n are the eigenvalues of

B u θ 0 = 1 2 T n (f θ 0 ) -1/2 T n g u θ 0 T n (f θ 0 ) -1/2 .
Therefore, under

P n θ 0 u, Z n (d) = n j=1 √ 2λ u j,n √ n ξ j,n
where ξ j,n = (χ j,n -1)/ √ 2 (1 ≤ j ≤ n, n ≥ 1) are i.i.d. centered random variables having unitary variance. To obtain the convergence of Z n , we use the following Lemma, which is an obvious corollary of Lindenberg theorem (see [START_REF] Billingsley | Probability and measure[END_REF] for instance).

Lemma A.2. Let (ξ j,n ) n 1,1 j n be a sequence of i.i.d centered random variables having unitary variance and let (v j,n ) n≥1,1 j n be a triangular array of real numbers. Assume further that 1. lim n→+∞ sup 1≤j≤n |v j,n | = 0,

2. lim n→+∞ n j=1 v 2 j,n = τ 2 > 0.
Then, as n → +∞, n j=1 v j,n ξ j,n converges in distribution to a centered Gaussian distribution with variance τ 2 .

We first check Condition 1 for the sequence v j,n = √ 2n -1/2 λ u j,n . Since B u θ 0 is an Hermitian matrix whose eigenvalues are λ u j,n 1≤j≤n , its spectral radius

ρ n (u) := sup 1≤j≤n |λ u j,n | is given by ρ n (u) = sup x∈C n \{0} x * B u θ 0 x x * x = 1 2 sup x∈C n \{0} x * T n (f θ 0 ) -1/2 T n (g u θ 0 )T n (f θ 0 ) -1/2 x x * x .
Observe that for any y ∈ C n , and any integrable symmetric function h,

y * T n (h)y = π -π n k=1 e ikx y k 2 h(x)dx
and therefore that

|y * T n (h)y| ≤ y * T n (|h|)y. (9) 
Then, we get

ρ n (u) ≤ 1 2 sup x∈C n \{0} x * T n (f θ 0 ) -1/2 T n ( g u θ 0 )T n (f θ 0 ) -1/2 x x * x ,
which can be written as

ρ n (u) ≤ 1 2 T n g u θ 0 1/2 T n (f θ 0 ) -1/2 2 2,n , since g u θ 0 is a nonnegative symmetric function on [-π, π]
. By Assumption 3.1, the functions f = f θ 0 and g = g u θ 0 satisfy Equation (4) with β 1 = α(θ 0 ) -δ and β 2 = α(θ 0 ) + δ (for any δ > 0). Then, applying Lemma 2.1, for any δ > 0, we get

ρ n (u) < K δ n 2δ
where the finite positive constant K δ does not depend on n. This implies that

lim n→+∞ sup 1≤j≤n |v j,n | = lim n→+∞ √ 2ρ n (u) √ n = 0.
This proves that Condition 1 of Lemma A.2 is fulfilled. Let us now study the asymptotic of

n j=1 v 2 j,n = 2 n n j=1 λ u j,n 2 .
By definition of the λ u j,n , we get

n j=1 v 2 j,n = 1 2n tr T n (f θ 0 ) -1/2 T n (g u θ 0 )T n (f θ 0 ) -1/2 2 = 1 2n tr T n (f θ 0 ) -1 T n (g u θ 0 ) 2 .
Observe that if α(θ 0 ) > -1, f θ,1 = f θ,2 = f θ and g θ,1 = g θ,2 = g u θ satisfy the assumptions of Theorem 2.3 with β = α on Θ * = B(θ 0 , r) for r chosen small enough. Otherwise, for r small enough, f θ and g θ,1 = g θ,2 = g u θ satisfy the assumptions of Theorem 2.5 on Θ * = B(θ 0 , r). Hence, applying one of these theorems, we get

lim n→+∞ n j=1 v 2 j,n = 1 4π π -π g u θ 0 (x) 2 f θ 0 (x) 2 dx.
that is by definition of g u θ 0 and I(θ 0 ),

lim n→+∞ n j=1 v 2 j,n = u * I(θ 0 )u.
Hence, by Lemma A.2, under P n θ 0 , u, Z n converges in distribution, to a centered Gaussian random variable whose variance is u * I(θ 0 )u. In other words, under P n θ 0 , u, Z n converges in distribution to u, G with G a centered Gaussian random vector whose covariance matrix is I(θ 0 ). Since this holds for any u ∈ R m , under P n θ 0 , Z n converges in distribution to G. The proof of Lemma 3.5 is then complete.

A.2 Proof of Lemma 3.6

Let us consider two integers 1 ≤ j, k ≤ m. We recall that ∂ ℓ k f θ is defined by ( 7) and set

A n,θ (g) = T n (f θ ) -1 T n (g). (10) 
Then, since ∂Fn ∂θ k is given by ( 8), for any θ ∈ B(θ 0 , r),

∂ 2 F n ∂θ j ∂θ k (θ) = G n,1 (θ) + G n,2 (θ) + G n,3 (θ) 
where

G n,1 (θ) = π x n , A n,θ (∂ 2 j,k f θ )T n (f θ ) -1 x n - 1 2 tr A n,θ (∂ 2 j,k f θ ) , G n,2 (θ) = -π x n , [A n,θ (∂ j f θ )A n,θ (∂ k f θ ) + A n,θ (∂ k f θ )A n,θ (∂ j f θ )]T n (f θ ) -1 x n , and 
G n,3 (θ) = 1 2 tr T n (∂ k f θ )T n (f θ ) -1 T n (∂ j f θ )T n (f θ ) -1 .
By Lemma A.1, under P n θ 0 , G n,1 (θ 0 ) is a centered square integrable random variable and

E P n θ 0 G 2 n,1 (θ 0 ) = Var P n θ 0 G n,1 (θ 0 ) = 1 2 tr A n,θ 0 ∂ 2 j,k f θ 0 2 .
By Assumption 3.1, if α(θ 0 ) > -1, f θ,1 = f θ,2 = f θ and g θ,1 = g θ,2 = ∂ 2 j,k f θ satisfy the assumptions of Theorem 2.3 (up to a proper choice of a smaller r) with β = α. Moreover if α(θ 0 ) ≤ -1, by Assumptions 3.1 and 3.2, f θ and g θ,1 = g θ,2 = ∂ 2 j,k f θ satisfy the assumptions of Theorem 2.5. Hence, by definition of A n,θ 0 ,

lim n→+∞ 1 n 2 E P n θ 0 G 2 n,1 (θ 0 ) = 0,
which implies that G n,1 (θ 0 )/n converges P n θ 0 -almost surely to 0.

Moreover, again by Lemma A.1, under P n θ 0 , G n,2 (θ 0 )/n is a square integrable random variable with mean

m n = 1 n E P n θ 0 (G n,2 (θ 0 )) = -1 2n tr(A n,θ 0 (∂ j f θ 0 )A n,θ 0 (∂ k f θ 0 ) + A n,θ 0 (∂ k f θ 0 )A n,θ 0 (∂ j f θ 0 )) = -1 n tr(A n,θ 0 (∂ j f θ 0 )A n,θ 0 (∂ k f θ 0 ))
and variance

σ 2 n = 1 n 2 tr [A n,θ 0 (∂ j f θ 0 )A n,θ 0 (∂ k f θ 0 )] 2 + 1 n 2 tr A n,θ 0 (∂ j f θ 0 ) 2 A n,θ 0 (∂ k f θ 0 ) 2 .
As previously, if α(θ 0 ) > -1 (respectively α(θ 0 ) ≤ -1), we can apply Theorem 2.3 (respectively Theorem 2.5). These theorems prove that

lim n→+∞ m n = - 1 2π π -π ∂ k f θ 0 (x)∂ j f θ 0 (x) f θ 0 (x) 2 dx = -2I(θ 0 ) kj and lim n→+∞ σ 2 n = 0. This implies that G n,2 (θ 0 )/n converges P n θ 0 -almost surely to -2I(θ 0 ) kj . Since G n,3 (θ 0 )/n = -m n /2, lim n→0 1 n ∂ 2 F n ∂θ k ∂θ j (θ 0 ) = -I(θ 0 ) kj .
Since this holds for any 1 ≤ j, k ≤ m, ∇ 2 F n (θ 0 )/n converges P n θ 0 -almost surely to -I(θ 0 ), which concludes the proof of Lemma 3.6.

A.3 Proof of Lemma 3.7

Let us focus on ∂ 3 Fn ∂θ 3

k

, where 1 ≤ k ≤ m. We recall that A n,θ is defined in [START_REF] Graybill | Matrices with applications in statistics[END_REF] and set for the sake of simplicity,

∂ 2 k f θ = ∂ 2 k,k f θ and ∂ 3 k f θ = ∂ 2 k,k,k f θ where ∂ ℓ (k 1 ,k 2 ,k 3 )
f θ is given by [START_REF] Fox | Central limit theorems for quadratic forms in random variables having long-range dependence[END_REF]. Then, for any θ ∈ B(θ 0 , r), we get

∂ 3 F n ∂θ 3 k (θ) = H n,1 (θ) + H n,2 (θ) + H n,3 (θ) + H n,4 (θ) 
where

H n,1 (θ) = π x n , A n,θ (∂ 3 k f θ )T n (f θ ) -1 x n , H n,2 (θ) = -3π x n , A n,θ (∂ 2 k f θ )A n,θ (∂ k f θ ) + A n,θ (∂ k f θ )A n,θ (∂ 2 k f θ ) T n (f θ ) -1 x n , H n,3 (θ) = 6π x n , A n,θ (∂ k f θ ) 3 T n (f θ ) -1 x n and H n,4 (θ) = -tr A n,θ (∂ k f θ ) 3 + 3 2 tr(A n,θ (∂ k f θ )A n,θ (∂ 2 k f θ )) -1 2 tr(A n,θ (∂ 3 k f θ )) Control of H n,1
Observe that since T n (f θ 0 ) is an Hermitian matrix,

H n,1 (θ) = π T n (f θ 0 ) -1/2 x n , T n (f θ 0 ) 1/2 A n,θ (∂ 3 k f θ )T n (f θ ) -1 x n .
Therefore, by (3)

|H n,1 (θ)| ≤ π T n (f θ 0 ) -1/2 x n 2 T n (f θ 0 ) 1/2 A n,θ (∂ 3 k f θ )T n (f θ ) -1 T n (f θ 0 ) 1/2 2,n
Hence by applying Equation ( 2), we get

|H n,1 (θ)| ≤ π T n (f θ 0 ) -1/2 x n 2 T n (f θ ) -1/2 T n (f θ 0 ) 1/2 2 2,n T n ( ∂ 3 k f θ ) 1/2 T n (f θ ) -1/2 2 2,n .
Let us now consider ε > 0. Then, by continuity of α, we can choose r sufficiently small so that α(θ 0 ) -ε ≤ α(θ) ≤ α(θ 0 ) + ε for any θ ∈ B(θ 0 , r) = Θ * ⊂ Θ. Then, Assumption 3.1 implies that f = f θ satisfies (4) with β 1 = α(θ 0 ) -2ε and a constant c 1 which does not depend on θ ∈ B(θ 0 , r). Note also that g = f θ 0 satisfies (4) with β 2 = α(θ 0 ) + ε > β 1 . Then, by Lemma 2.1, we get ∀θ ∈ B(θ 0 , r), T n (f θ ) -1/2 T n (f θ 0 ) 1/2 2 2,n ≤ Kn 3ε

where the finite constant K = K θ 0 ,r,ε does not depend on n and θ. Moreover, g = |∂ 3 k f θ | is a nonnegative symmetric function which satisfies (4) with β 2 = α(θ 0 ) + 2ε > β 1 and a constant c 2 which does not depend on θ ∈ B(θ 0 , r). Therefore by Lemma 2.1, ∀θ ∈ B(θ 0 , r),

|H n,1 (θ)| ≤ K ′ n 7ε T n (f θ 0 ) -1/2 x n 2
where the finite constant K ′ = K ′ θ 0 ,r,ε does not depend on n and θ. Therefore,

1 n 3/2 sup θ∈B(θ 0 ,r) |H n,1 (θ)| ≤ K ′ n 7ε-1/2 T n (f θ 0 ) -1/2 x n 2 n
.

Under P n θ 0 , T n (f θ 0 ) -1/2 x n is a centered Gaussian random vector with 1 2π Id n as covariance matrix. Then, by the strong law of large numbers, T n (f θ 0 ) -1/2 x n 

Lemma 3 . 7 .

 37 For r small enough, for any 1 ≤ j, k, l ≤ m, under P n θ 01 n 3/2 sup B(θ 0 ,r) ∂ 3 F n ∂θ j ∂θ k∂θ l converges almost surely to 0. Conbining Lemmas 3.6 and 3.7, we get lim n→+∞ sup s∈K |ψ θ 0 (s, n)| = 0 P n θ 0 -almost surely, which concludes the proof.

(σ 2 0

 2 ,H 0 ) -almost surely when n → +∞. Proof. Let θ 0 = (σ 2 0 , H 0 ). As previously, P n θ denotes the law of X n . b n = (b 1 , . . . , b n ) ′ and x n = (b 1 , b 2 -b 1 , . . . , b n -b n-1 ) ′ . Since under Q n σ 2

Lemma A. 1 .

 1 Assume that Y = (Y 1 , . . . , Y n ) ′ is a centered Gaussian random vector with covariance matrix Γ and consider A a real symmetric matrix of order n. Then,

n tr 3 ℓ=1T 3 kComputing ∂ 3

 333 Control of H n,2 and H n,[START_REF] Bondon | A class of antipersistent processes[END_REF] Proceeding as for H n,1 , one check that for r small enough, for ℓ ∈ {2,Control of H n,4 Assume first that α(θ 0 ) > -1. For 1 ≤ ℓ ≤ 3, consider f θ,ℓ = f θ and g θ,ℓ = ∂ 3 k f θ .Then, by Assumptions 3.1, these functions satisfy assumptions of Theorem 2.3 on the compact set Θ * = B(θ 0 , r) (choosing r small enough) with β = α. Then, applying this theorem, we get that sup n sup θ∈B(θ 0 ,r)1 n (f θ ) -1 T n ∂ 3 k f θ allowsus to control the two other terms of H n,4 by applying Theorem 2.3. This leads to sup If α(θ 0 ) ≤ -1, applying Theorem 2.5 instead of Theorem 2.3, we see that Equation (13) still holds. Control of ∂ 3 Fn ∂θ Equations (11), (12) and (13) leads to 1 n 3/2 sup θ∈B(θ 0 ,r) Fn ∂θ j ∂θ k ∂θ l and then using the same arguments as for j = k = l, one obtains that 1 n 3/2 sup θ∈B(θ 0 ,r) ∂ 3 F n ∂θ j ∂θ k ∂θ l
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