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We consider solutions of the Aw-Rascle model for traffic flow fulfilling a constraint on the flux at x = 0. Two different kinds of solutions are proposed: at x = 0 the first one conserves both the number of vehicles and the generalized momentum, while the second one conserves only the number of cars. We study the invariant domains for these solutions and we compare the two Riemann solvers in terms of total variation of relevant quantities. Finally we construct ad hoc finite volume numerical schemes to compute these solutions.

Introduction

The paper deals with solutions to the Aw-Rascle vehicular traffic model [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] ∂ t ρ + ∂ x (ρv) = 0, ∂ t y + ∂ x (yv) = 0, (

satisfying a constraint on the first component of the flux at x = 0:

ρ(t, 0)v(t, 0) ≤ q, (1.2) 
where q > 0 is a given constant. Here ρ, v and y denote respectively the density, the average speed and a generalized momentum of cars in a road.

Moreover y = ρ (v + p(ρ)), where p ∈ C 2 ([0, +∞[; [0, +∞[) is a pressure function satisfying    p(0) = 0, p ′ (ρ) > 0 for every ρ > 0, ρ → ρp(ρ) is strictly convex.

(1.3)

Problem (1.1), (1.2) models the presence of a constraint on traffic flow at the point x = 0, such as a toll gate, a traffic light, a construction site, etc. All these situations limit the flow at a specific location along the road. Conservation laws with unilateral constraints as (1.2) were first introduced in [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF], see also [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Colombo | Transport Management and Land-Use Effects in Presence of Unusual Demand[END_REF][START_REF] Colombo | On the management of traffic queues[END_REF] for further analytical results and applications. In these papers, the scalar Lighthill-Whitham [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF] and Richards [START_REF] Richards | Shock waves on the highway[END_REF] traffic model is coupled with a (possibly time-dependent) constraint on the flow, as in (1.2).

The model presented here constitutes the first example of a system of two equations with constrained flux. The Aw-Rascle model (1.1) belongs to the so-called "second order" traffic models, i.e. models consisting in two equations (see [START_REF] Colombo | A 2×2 hyperbolic traffic flow model[END_REF][START_REF] Payne | Models of freeway traffic and control, in mathematical models of public systems[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF] for other examples). System (1.1) can also be written

∂ t ρ + ∂ x (ρv) = 0, ∂ t (ρ(v + p(ρ))) + ∂ x (ρv(v + p(ρ))) = 0. (1.4) 
The first equation in (1.4) states the conservation of the number of vehicles, moving with flow rate ρv. The second equation is derived from the former one and from the evolution equation of the quantity w = v + p(ρ) (often referred to as "Lagrangian marker"), which moves with velocity v: ∂ t (v + p(ρ)) + v∂ x (v + p(ρ)) = 0.

The system in conservative form (1.4) belongs to the Temple class [START_REF] Temple | Systems of conservation laws with coinciding shock and rarefaction curves[END_REF], i.e. systems for which shock and rarefaction curves in the unknowns' space coincide. In particular, for such systems the interaction of two waves of the same family can only give rise to a wave of the same family.

The Aw-Rascle model (1.4) has been widely studied in the mathematical literature. Concerning the model itself, various extensions have been proposed, see [START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF][START_REF] Berthelin | A traffic-flow model with constraints for the modeling of traffic jams[END_REF][START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF][START_REF] Greenberg | Extensions and amplifications of a traffic model of Aw and Rascle[END_REF][START_REF] Moutari | A hybrid Lagrangian model based on the Aw-Rascle traffic flow model[END_REF]. The model can also be used to describe traffic flow on a road network, as explained in [START_REF] Garavello | Traffic flow on a road network using the Aw-Rascle model[END_REF][START_REF] Herty | Optimization criteria for modelling intersections of vehicular traffic flow[END_REF][START_REF] Herty | Coupling conditions for a class of second-order models for traffic flow[END_REF].

In this paper we restrict the analysis to the Riemann problem for (1.1), (1.2), i.e. to the Cauchy problem with piecewise constant initial data of the form

(ρ, y)(0, x) = (ρ l , y l ), if x < 0, (ρ r , y r ), if x > 0.
We propose two Riemann solvers, described in Sections 2.1 and 2.2: the first one conserves at x = 0 both the number of cars and the generalized momentum, while the second one does not conserve the generalized momentum. In particular, the first Riemann solver produces a non-entropic shock wave at x = 0, which travels with zero velocity. In Section 3 we describe the invariant domains corresponding to the two Riemann solvers, and in Section 4 we compare the total variation of relevant quantities. Section 5 is devoted to the construction of ad hoc numerical schemes designed to capture the proposed solutions.

The Riemann problem

In this section we deal with the Riemann problem

       ∂ t ρ + ∂ x (ρv) = 0, ∂ t (ρ(v + p(ρ))) + ∂ x (ρv(v + p(ρ))) = 0, (ρ, v)(0, x) = (ρ l , v l ), if x < 0, (ρ r , v r ), if x > 0, (2.1)
in the domain D = R + × R + , and with the constraint (1.2).

We denote by f (ρ, v) the flux for system (1.4), and with

f 1 (ρ, v), f 2 (ρ, v) its components, i.e. f (ρ, v) = f 1 (ρ, v) f 2 (ρ, v) = ρv ρv(v + p(ρ)) . (2.2) 
For reader's comfort, we resume in the following tables the relevant quantities concerning systems (1.1), (1.4) respectively. In (ρ, y) plane they write:

λ 1 = -p(ρ) + y ρ -ρp ′ (ρ) λ 2 = -p(ρ) + y ρ r 1 = -1 -y ρ r 2 = 1 y ρ + ρp ′ (ρ) ∇λ 1 • r 1 = 2p ′ (ρ) + ρp ′′ (ρ) > 0 ∇λ 2 • r 2 = 0 L 1 (ρ; ρ 0 , y 0 ) = y 0 ρ 0 ρ L 2 (ρ; ρ 0 , y 0 ) = y 0 ρ 0 ρ + ρ (p(ρ) -p(ρ 0 )) z = y ρ -p(ρ) w = y ρ
In (ρ, v) plane their expression is:

λ 1 = v -ρp ′ (ρ) λ 2 = v r 1 = -1 p ′ (ρ) r 2 = 1 0 ∇λ 1 • r 1 = 2p ′ (ρ) + ρp ′′ (ρ) > 0 ∇λ 2 • r 2 = 0 L 1 (ρ; ρ 0 , v 0 ) = v 0 + p(ρ 0 ) -p(ρ) L 2 (ρ; ρ 0 , v 0 ) = v 0 z = v w = v + p(ρ)
Above, λ 1 and λ 2 denote the eigenvalues of the Jacobian matrix Df , r 1 and r 2 the corresponding right eigenvectors, L 1 and L 2 the first and the second Lax curve, z and w the 1-and 2-Riemann invariant respectively. We remark that the system is strictly hyperbolic away from ρ = 0 (i.e. λ 1 < λ 2 ). Moreover the first characteristic speed is genuinely nonlinear, with characteristic speed that can change sign, and the second one is linearly degenerate with strictly positive speed.

(ρ l , ρ l v l ) (ρ l , ρ l v l ) L 1 L 1 q q ρ1 ρ1 ρ ρ f 1 ρ Figure 1:
The set I 1 and the quantities of equation (2.4).

Definition 2.1 A Riemann solver for system (2.1) is a function, which associates, for every initial condition (ρ l , v l ) ∈ D, (ρ r , v r ) ∈ D, a map belonging to L 1 (R) and representing a solution to (2.1) at time t = 1.

By RS we denote the classical Riemann solver for (2.1), i.e. the Riemann solver without the constraint (1.2); see for example [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF]. We introduce some more notation.

Given (ρ l , v l ) ∈ D and q > 0, let us consider the set

I 1 = ρ ∈ [0, +∞[ : ρL 1 (ρ; ρ l , v l ) = q (2.3) = ρ ∈ [0, +∞[ : ρ(v l + p(ρ l ) -p(ρ)) = q .
The set I 1 contains the densities of all the points (ρ, v) ∈ D belonging to the Lax curve of the first family passing through (ρ l , v l ) and such that f 1 (ρ l , v l ) = q. If I 1 = ∅, then we denote by ρ, v, ρ1 , v1 respectively

ρ = max I 1 , v = q ρ , ρ1 = min I 1 , v1 = q ρ1 ;
(2.4) see Figure 2.1. Given (ρ r , v r ) ∈ D and q > 0, let ρ2 and v2 be defined by ρ2 L 2 (ρ 2 ; ρ r , v r ) = q, v2 = q ρ2 ; (2.5)

i.e. (ρ 2 , v2 ) belongs to the Lax curve of the second family passing through (ρ r , v r ) and satisfies f 1 (ρ 2 , v2 ) = q. In particular, note that v2 = v r and ρ2 = q/v r . Given (ρ l , v l ) and (ρ r , v r ) ∈ D, let us consider the set

I 2 = ρ ∈ [0, +∞[ : L 1 (ρ; ρ l , v l ) = L 2 (ρ; ρ r , v r ) (2.6) = ρ ∈ [0, +∞[ : v l + p(ρ l ) -p(ρ) = v r
and define

ρ m = max I 2 , v m = v r , (2.7) 
which provide the intermediate state for the classical solution to (2.1).

Lemma 2.1 Let (ρ l , v l ), (ρ r , v r ) ∈ D and q > 0 be fixed. Assume (1.3) holds. If

f 1 (RS((ρ l , v l ), (ρ r , v r ))(0)) > q,
then the set I 1 is not empty and it consists in exactly two different points:

I 1 = {ρ 1 , ρ}.
Proof. Notice that the function ρ → ρL 1 (ρ; ρ l , v l ) is strictly concave by the hypotheses (1.3) on the pressure function p(ρ) and so, by (2.3), the cardinality of I 1 is at most 2. Denote with (ρ M , v M ) the trace of RS((ρ l , v l ), (ρ r , v r )) at x = 0+. Since the waves of the second family have strictly positive speed, then v M = L 1 (ρ M ; ρ l , v l ). Therefore, if I 1 = ∅ or it contains only one element, then ρ M v M ≤ q and therefore f 1 (RS((ρ l , v l ), (ρ r , v r ))(0)) ≤ q, which is a contradiction. Thus the only possibility is that I 1 is composed exactly by two elements. ✷

We propose two different ways of solving problem (2.1)-(1.2).

The Constrained Riemann Solver RS q 1

In this part, we introduce the Riemann solver RS q 1 for (2.1)-(1.2), which is characterized by the conservation of both the quantities ρ and y = ρ(v+p(ρ))

at x = 0. Fix (ρ l , v l ), (ρ r , v r ) ∈ D. The Riemann solver RS q 1 is defined as follows. 1. If f 1 (RS (ρ l , v l ), (ρ r , v r ) (0)) ≤ q, then RS q 1 (ρ l , v l ), (ρ r , v r ) (x) = RS (ρ l , v l ), (ρ r , v r ) (x) (2.8)
for every x ∈ R.

2. If f 1 (RS (ρ l , v l ), (ρ r , v r ) (0)) > q, then RS q 1 (ρ l , v l ), (ρ r , v r ) (x) = RS (ρ l , v l ), (ρ, v) (x), if x < 0, RS ((ρ 1 , v1 ), (ρ r , v r )) (x), if x > 0.
(2.9)

Proposition 2.1 The Riemann solver RS q 1 satisfies

f 1 (RS q 1 (ρ l , v l ), (ρ r , v r ) (0)) ≤ q
for every (ρ l , v l ) and (ρ r , v r ).

The proof follows directly from the construction of the Riemann solver RS q 1 .

Remark 1 The Riemann solver RS q 1 is determined by imposing the conservation of both quantities ρ and y at x = 0 and by respecting the constraint condition (1.2); see also [START_REF] Herty | Optimization criteria for modelling intersections of vehicular traffic flow[END_REF] for an example of a Riemann solver at a node, which conserves both ρ and y.

In the following, we denote by w(RS q 1 (ρ l , v l ), (ρ r , v r ) (x)) the w component of the Riemann solver RS q 1 (ρ l , v l ), (ρ r , v r ) (x). Proposition 2.2 The Riemann solver RS q 1 satisfies the maximum principle on the second Riemann invariant w = v + p(ρ), i.e.

min w l , w r ≤ w(RS q 1 (ρ l , v l ), (ρ r , v r ) (x)) ≤ max w l , w r , ∀x ∈ R.
The property easy follows from the maximum principle satisfied by the classical Riemann solvers RS (ρ l , v l ), (ρ, v) for x < 0 and RS ((ρ 1 , v1 ), (ρ r , v r )) for x > 0, and by the fact that ŵ = w1 = w l .

The constrained Riemann solver RS q 2

In this part we describe the Riemann solver RS q 2 , which conserves only the car density ρ at x = 0.

Fix (ρ l , v l ) ∈ D, (ρ r , v r ) ∈ D. The Riemann solver RS q 2 is defined as follows.

1. If f 1 (RS (ρ l , v l ), (ρ r , v r ) (0)) ≤ q, then we put

RS q 2 (ρ l , v l ), (ρ r , v r ) (x) = RS (ρ l , v l ), (ρ r , v r ) (x) (2.10)
for every x ∈ R.

2. If f 1 (RS (ρ l , v l ), (ρ r , v r ) (0)) > q, then RS q 2 (ρ l , v l ), (ρ r , v r ) (x) = RS (ρ l , v l ), (ρ, v) (x), if x < 0, RS ((ρ 2 , v2 ), (ρ r , v r )) (x), if x > 0.
(2.11)

Proposition 2.3 The Riemann solver RS q 2 satisfies f 1 (RS q 2 ((ρ l , v l ), (ρ r , v r ))(0)) ≤ q for every (ρ l , v l ) and (ρ r , v r ).
The proof follows directly from the construction of the Riemann solver RS q 2 . Remark 2 The Riemann solver RS q 2 conserves only the density at x = 0; therefore it is in the same spirit of Riemann solvers introduced for traffic at junctions in [START_REF] Garavello | Traffic flow on a road network using the Aw-Rascle model[END_REF].

3 Invariant domains for RS q 1 and RS q 2

In this section, we want to describe the invariant regions for the Aw-Rascle system with constraints. First, we recall that, for every 0 < v 1 < v 2 , 0 < w 1 < w 2 and v 2 < w 2 , the set

D v 1 ,v 2 ,w 1 ,w 2 = {(ρ, v) ∈ D : v 1 ≤ v ≤ v 2 , w 1 ≤ v + p(ρ) ≤ w 2 } (3.1)
is invariant for (1.1); see Figure 3.1 and [START_REF] Hoff | Invariant regions for systems of conservation laws[END_REF]. The hypothesis v 2 < w 2 implies that the Riemann invariants w = w 2 and z = v 2 intersect in D at a point different from the origin. For a given q > 0, we define the function of class

C 2 (]0, +∞[) h q : ]0, +∞[ -→ R v -→ p q v + v, (3.2) 
which gives the value of the Riemann invariant w of the point (ρ, v) ∈ D such that ρv = q. Indeed we have that h q (v) = w if and only if w = v + p(ρ) with ρv = q.

Lemma 3.1 Fix q > 0 and assume (1.3). There exists v = v(q) > 0 such that the function h q (v) is strictly decreasing in ]0, v[ and strictly increasing in ]v, +∞[.

Proof.

We have

h ′′ q (v) = q v 3 2p ′ q v + q v
p ′′ q v and so, by (1.3), we deduce that h ′′ q (v) > 0 for every v > 0; this means that h ′ q (v) is a strictly increasing function. Note also that (1.3) implies that lim

ρ→+∞ p(ρ) = +∞. (3.3) Indeed, if (3.
3) does not hold, then there exists M > 0 such that p(ρ) ≤ M and so ρp(ρ) ≤ M ρ for every ρ > 0. This is not possible since the map ρ → ρp(ρ) is strictly convex. This implies that lim

v→0 + h q (v) = +∞ and lim v→+∞ h ′ q (v) = 1;
hence, since h ′ q is a strictly increasing function, there exists a unique v > 0 such that h ′ q (v) = 0. Therefore h q is strictly decreasing in ]0, v[ and strictly increasing in ]v, +∞[.

✷ v 1 v 2 w 1 w 2 ρv ρ Figure 2: The invariant domain D v 1 ,v 2 ,w 1 ,w 2 . Proposition 3.1 Fix 0 < v 1 < v 2 , 0 < w 1 < w 2 , v 2 < w 2 and q > 0. If h q (v) ≥ w 2 for every v ∈ [v 1 , v 2 ], then D v 1 ,v 2 ,w 1 ,w 2 is invariant for both the Riemann solvers RS q 1 and RS q 2 .
Proof. The hypothesis

h q (v) ≥ w 2 for every v ∈ [v 1 , v 2 ] implies that sup {f 1 (ρ, v) : (ρ, v) ∈ D v 1 ,v 2 ,w 1 ,w 2 , v ∈ [v 1 , v 2 ], v + p(ρ) = w 2 } ≤ q and so sup {f 1 (ρ, v) : (ρ, v) ∈ D v 1 ,v 2 ,w 1 ,w 2 } ≤ q.
Therefore the Riemann solvers RS q 1 and RS q 2 in the domain D v 1 ,v 2 ,w 1 ,w 2 coincide with RS. ✷

The Riemann solver RS q 1

The next proposition describes the invariant domains for RS q 1 .

Proposition 3.2 Fix 0 < v 1 < v 2 , 0 < w 1 < w 2 , v 2 < w 2 and q > 0. Assume (1.3) and that there exists v ∈ [v 1 , v 2 ] such that h q (v) < w 2 . The set D v 1 ,v 2 ,w 1 
,w 2 is invariant for the Riemann solver RS q 1 , if and only if

h q (v 1 ) ≥ w 2 and h q (v 2 ) ≥ w 2 ; (3.4) see Figure 3.2.
Proof. Clearly, if condition (3.4) holds, then the set

D v 1 ,v 2 ,w 1 ,w 2 is invariant for RS q 1 , since both (ρ, v) and (ρ 1 , v1 ) belong to D v 1 ,v 2 ,w 1 ,w 2 for every possible choice of initial conditions in D v 1 ,v 2 ,w 1 ,w 2 . v 1 v 2 w 1 w 2 ρv ρ q Figure 3: The invariant domain D v 1 ,v 2 ,w 1 ,w 2 for the Riemann solver RS q 1 . Assume now that D v 1 ,v 2 ,w 1 ,w 2 is invariant for RS q 1 . If h q (v 1 ) < w 2 , then denote with (ρ l , v l ) = (ρ r , v r ) ∈ D v 1 ,v 2 ,w 1 ,w 2 the solution to the system v l + p(ρ l ) = w 2 , v l = v 1 .
By hypotheses, we deduce that ρ l v l > q and so the trace of the Riemann solver RS q 1 ((ρ l , v l ), (ρ r , v r )) at the point 0-is given by (ρ, v), which does not belong to D v 1 ,v 2 ,w 1 ,w 2 , since h q (v 1 ) < w 2 . This argument shows that h q (v 1 ) ≥ w 2 . If h q (v 2 ) < w 2 , then denote with (ρ l , v l ) = (ρ r , v r ) ∈ D v 1 ,v 2 ,w 1 ,w 2 the solution to the system

v l + p(ρ l ) = w 2 , v l = v 2 .
By hypotheses, we deduce that ρ l v l > q and so the trace of the Riemann solver RS q 1 ((ρ l , v l ), (ρ r , v r )) at the point 0+ is given by (ρ 1 , v1 ), which does not belong to D v 1 ,v 2 ,w 1 ,w 2 , since h q (v 2 ) < w 2 . This argument shows that h q (v 2 ) ≥ w 2 . This completes the proof. ✷

The Riemann solver RS q 2

In this part, we describe the invariant domains for RS q 2 . First let us introduce the following necessary conditions.

Lemma 3.2 Fix 0 < v 1 < v 2 , 0 < w 1 < w 2 , v 2 < w 2 and q > 0. As- sume (1.3) and that there exists v ∈ [v 1 , v 2 ] such that h q (v) < w 2 . If the set D v 1 ,v 2 ,w 1 ,w 2 is invariant for the Riemann solver RS q 2 , then h q (v 1 ) ≥ w 2 . v 1 v 2 w 1 w 2 ρv ρ q Figure 4: The invariant domain D v 1 ,v 2 ,w 1 ,w 2 for the Riemann solver RS q 2 .
Proof. Assume by contradiction that h q (v 1 ) < w 2 . Denote (ρ l , v l ) = (ρ r , v r ) ∈ D v 1 ,v 2 ,w 1 ,w 2 the solution to the system

v l + p(ρ l ) = w 2 , v l = v.
By hypotheses, we deduce that ρ l v l > q and so the trace of the Riemann solver RS q 2 ((ρ l , v l ), (ρ r , v r )) at the point 0-is given by (ρ, v), which does not belong to D v 1 ,v 2 ,w 1 ,w 2 , since h q (v 1 ) < w 2 . ✷ Lemma 3.3 Fix 0 < v 1 < v 2 , 0 < w 1 < w 2 , v 2 < w 2 and q > 0. Assume (1.3) and that there exists

v ∈ [v 1 , v 2 ] such that h q (v) < w 2 . If the set D v 1 ,v 2 ,w 1 ,w 2 is invariant for the Riemann solver RS q 2 , then h q (v) ≥ w 1 for every v ∈ [v 1 , v 2 ].
Proof. Assume by contradiction that h q (ṽ) < w 1 for some ṽ

∈ [v 1 , v 2 ]. Denote (ρ l , v l ) = (ρ r , v r ) ∈ D v 1 ,v 2 ,w 1 ,w 2 the solution to the system v l + p(ρ l ) = w 2 , v l = ṽ.
By hypotheses, we deduce that ρ l v l > q and so the trace of the Riemann solver RS q 2 ((ρ l , v l ), (ρ r , v r )) at the point 0+ is given by (ρ 2 , v2 ), which does not belong to D v 1 ,v 2 ,w 1 ,w 2 , since v2 = ṽ and h q (ṽ) < w 1 . ✷

We have the following proposition about necessary and sufficient conditions for a domain to be invariant for RS q 2 . Proposition 3.3 Fix 0 < v 1 < v 2 , 0 < w 1 < w 2 , v 2 < w 2 and q > 0. Assume (1.3) and that there exists v ∈ [v 1 , v 2 ] such that h q (v) < w 2 . The set D v 1 ,v 2 ,w 1 ,w 2 is invariant for the Riemann solver RS q 2 (see Figure 3.3) if and only if

h q (v 1 ) ≥ w 2 and h q (v) ≥ w 1 ∀v ∈ [v 1 , v 2 ].
(3.5)

Proof. By Lemma 3.2 and Lemma 3.3, we need to prove that condition (3.5) is sufficient in order D v 1 ,v 2 ,w 1 ,w 2 be invariant for the Riemann solver RS q 2 . Thus we assume that condition (3.5) holds. Since D v 1 ,v 2 ,w 1 ,w 2 is invariant for (1.1), it is sufficient to prove that the left and the right traces at x = 0 for RS q 2 belong to

D v 1 ,v 2 ,w 1 ,w 2 . So fix (ρ l , v l ) and (ρ r , v r ) in D v 1 ,v 2 ,w 1 ,w 2 . If RS q
2 ((ρ l , v l ), (ρ r , v r )) produces the classical solution, then we conclude. Assume therefore that RS q 2 ((ρ l , v l ), (ρ r , v r )) does not produce the classical solution and denote with (ρ, v) and (ρ 2 , v2 ) the left and right traces at x = 0 for RS q 1 ((ρ l , v l ), (ρ r , v r )). If (ρ, v) ∈ D v 1 ,v 2 ,w 1 ,w 2 , then every point (ρ, v) of the Lax curve of the first family through (ρ l , v l ) contained in D v 1 ,v 2 ,w 1 ,w 2 has the property that ρv ≤ q and so the Riemann solver gives the classical solution, since waves of the second family have strictly positive speed. This permits to prove that (ρ, v)

∈ D v 1 ,v 2 ,w 1 ,w 2 . If (ρ 2 , v2 ) ∈ D v 1 ,v 2 ,w 1 ,w 2 ,
then every point (ρ, v) of the Lax curve of the second family through (ρ r , v r ) contained in D v 1 ,v 2 ,w 1 ,w 2 has the property that ρv ≤ q and so the Riemann solver gives the classical solution. In fact, if v l > v r , then a shock wave of the first family with strictly negative speed appears, if v l = v r , then no wave of the first family appears, whereas if v l < v r , then all the states (ρ, v) of the rarefaction wave have flux ρv less than or equal to q. This permits to prove that (ρ 2 , v2 )

∈ D v 1 ,v 2 ,w 1 ,w 2 .
The proof is thus completed. ✷

4 Total variation estimates for RS q 1 and RS q

In this section we make a comparison between the two Riemann solvers RS q 1 and RS q 2 in terms of the changes in the total variation of various quantities. Fix (ρ l , v l ), (ρ r , v r ) ∈ D. We denote with ρ1 and ρ2 respectively the ρcomponent of RS q 1 ((ρ l , v l ), (ρ r , v r )) and of RS q 2 ((ρ l , v l ), (ρ r , v r )). Moreover we denote with ṽ1 , ṽ2 respectively the v-component of RS q 1 ((ρ l , v l ), (ρ r , v r )) and of RS q 2 ((ρ l , v l ), (ρ r , v r )). Finally, we put ỹ1 = ρ1 (ṽ 1 + p(ρ 1 )), ỹ2 = ρ2 (ṽ 2 + p(ρ 2 )), w1 = ṽ1 + p(ρ 1 ), w2 = ṽ2 + p(ρ 2 ).

In order to facilitate the reading of the following calculation, we refer to Proof. If RS q 1 ((ρ l , v l ), (ρ r , v r )) = RS q 2 ((ρ l , v l ), (ρ r , v r )), then Tot.Var.(ρ 1 ) = Tot.Var.(ρ 2 ). Therefore, we assume that

RS q 1 ((ρ l , v l ), (ρ r , v r )) = RS q 2 ((ρ l , v l ), (ρ r , v r )).
In this case we have that f 1 (RS((ρ l , v l ), (ρ r , v r ))(0)) > q and so, by construction of RS 1 and RS 2 , we deduce that ρ1 (x) = ρ2 (x) for a.e. x < 0. Moreover, for x > 0, Tot.Var. ρ2| ]0,+∞[ = |ρ 2ρ r |, since the states (ρ 2 , v2 ) and (ρ r , v r ) are connected by a contact discontinuity wave of the second family. Hence

Tot.Var.(ρ 2 ) = Tot.Var. ρ2| ]-∞,0[ + |ρ -ρ2 | + |ρ 2 -ρ r | = ρ l -ρ + |ρ -ρ2 | + |ρ 2 -ρ r | .
First consider the case v r = L 1 (ρ r ; ρ l , v l ), so that (ρ 1 , v1 ) and (ρ r , v r ) can be connected by a wave of the first family. We get that

Tot.Var.(ρ 1 ) = Tot.Var. ρ1| ]-∞,0[ + |ρ -ρ1 | + |ρ 1 -ρ r | = ρ l -ρ + |ρ -ρ1 | + |ρ 1 -ρ r | .
If ρ r ≤ ρ1 , then ρ2 ∈]ρ r , ρ1 ] and we obtain Tot.Var.(ρ 1 ) = Tot.Var.(ρ 2 ). If ρ r > ρ1 , then ρ1 < ρ2 < ρ r ≤ ρ and so Tot.Var.(ρ 1 ) -Tot.Var.(ρ 2 ) = 2(ρ 2 -ρ1 ) > 0.

Consider now the case v r = L 1 (ρ r ; ρ l , v l ). We have that This subsection deals with the total variation of the velocity, i.e. of the first Riemann invariant z.

Tot.Var.(ρ 1 ) = ρ l -ρ + |ρ -ρ1 | + |ρ 1 -ρ m | + |ρ m -ρ r | .
Proposition 4.2 For every initial conditions (ρ l , v l ), (ρ r , v r ) ∈ D, we have that Tot.Var.(ṽ 1 ) ≥ Tot.Var.(ṽ 2 ). (

Proof. If RS q 1 ((ρ l , v l ), (ρ r , v r )) = RS q 2 ((ρ l , v l ), (ρ r , v r )), then the thesis clearly holds. Therefore we assume that

RS q 1 ((ρ l , v l ), (ρ r , v r )) = RS q 2 ((ρ l , v l ), (ρ r , v r )).
Consider first the case v r = L 1 (ρ r ; ρ l , v l ), which implies that Consider now the case v r = L 1 (ρ r ; ρ l , v l ). We have that

Tot.Var.(ỹ 1 ) = y l -ŷ + |ŷ -y1 | + |y 1 -y m | + |y m -y r | ,
where

y m = ρ m (v m + p(ρ m )). If ρ1 ≤ ρ2 , then, by (1.
3), we deduce that y1 ≤ y2 ≤ y m and so The proof is completed. ✷

Tot.Var.(ỹ 2 ) = y l -ŷ + (ŷ -y2 ) + |y 2 -y r | ≤ y l -ŷ + (ŷ -y1 ) + |y 2 -y m | + |y m -y r | ≤ y l -ŷ + (ŷ -y1 ) + |y 1 -y m | + |y m -y r | = Tot.Var.(ỹ 1 ). If ρ1 > ρ2 , then, by (1.3) 

Total variation of the second Riemann invariant w

This subsection deals with the total variation of the second Riemann coordinate w = v + p(ρ). Proof. If RS q 1 ((ρ l , v l ), (ρ r , v r )) = RS q 2 ((ρ l , v l ), (ρ r , v r )), then Tot.Var.(z 1 ) = Tot.Var.(z 2 ). Therefore we assume that RS q 1 ((ρ l , v l ), (ρ r , v r )) = RS q 2 ((ρ l , v l ), (ρ r , v r )).

In this situation we have that f 1 (RS((ρ l , v l ), (ρ r , v r ))(0)) > q and so w1 (x) = w2 (x) for a.e. x < 0. We define ŵ = v+p(ρ), w l = v l +p(ρ l ), w r = v r +p(ρ r ), w1 = v1 + p(ρ 1 ), w2 = v2 + p(ρ 2 ). Note that w l = ŵ = w1 . We have that Tot.Var.( w2

) = w l -ŵ + | ŵ -w2 | + | w2 -w r | .
Consider first the case v r = L 1 (ρ r ; ρ l , v l ), which implies that Tot.Var.( w1 ) = w lŵ ≤ Tot.Var.( w2 ).

Consider now the case v r = L 1 (ρ r ; ρ l , v l ). In this case we have that

Tot.Var.( w1 ) = w l -ŵ + |w m -w r | ,
where w m = v m + p(ρ m ). Since w m = ŵ, we conclude by the triangular inequality.

The proof is so finished. ✷

Numerical schemes

This section is devoted to the construction of finite volume numerical schemes to capture the solutions corresponding to RS q 1 and RS q 2 . Let ∆x and ∆t be two constant increments for space and time discretization. We then define the mesh interfaces x j+1/2 = j∆x (so that x 1/2 = 0 corresponds to the constraint location) and the cell centers x j = (j -1/2)∆x for j ∈ Z, the intermediate times t n = n∆t for n ∈ N, and at each time t n we denote u n j an approximate mean value of the solution of (1.1), (1.2) on the interval C j = [x j-1/2 , x j+1/2 ), j ∈ Z. In other words, a piecewise constant approximation x → u(t n , x) of the conserved variables u = (ρ, y) is given by u(t n , x) = u n j for all x ∈ C j , j ∈ Z, n ∈ N. When n = 0, we set

u 0 j = 1 ∆x x j+1/2
x j-1/2 u 0 (x)dx, for all j ∈ Z,

where u 0 = (ρ 0 , y 0 ) ∈ D is a given initial data (we will restrict the study to Riemann-type initial data). Given a sequence (u n j ) j∈Z at time t n , we concentrate now on the computation of an approximate solution at the next time level t n+1 .

We will concentrate on Godunov scheme and show how to adapt it in order to match the constraint condition (1.2) at x = 0. We recall that, as pointed out in [START_REF] Chalons | Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling[END_REF], classical conservative schemes (like Godunov method) may generate important non-physical oscillations near contact discontinuities. For this reason we will restrict to Riemann data lying on the same second Riemann invariant, i.e. we take v l + p(ρ l ) = v r + p(ρ r ). More general cases can be treated for example combining the techniques presented here with the Transport-Equilibrium scheme described in [START_REF] Chalons | Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling[END_REF]. Note that, in any case, a contact discontinuity appears when applying the Riemann solver RS q 2 . For sake of completeness, we recall that classical Godunov scheme writes

u n+1 j = u n j - ∆t ∆x (f n j+1/2 -f n j-1/2 ) for all j ∈ Z, (5.2) 
where the numerical fluxes are given by

f n j+1/2 = f (u n j , u n j+1 ) = f (RS(u n j , u n j+1 )(0)) for all j ∈ Z, (5.3) 
and the usual CFL condition ∆t ∆x max

j∈Z {|λ i (u n j )|, i = 1, 2} ≤ 1 2 (5.4)
holds. In the following sections we describe how to modify the definition of the numerical flux (5.3) for j = 0. The simulations have been performed taking p(ρ) = ρ and ∆x = 0.002.

5.1

The Constrained Godunov scheme for RS q 1

We follow the idea introduced in [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF] for the scalar case. We redefine the numerical flux at the interface x 1/2 = 0 to take into account the imposed constraint (1.2). We denote by f n 1,j+1/2 , f n 2,j+1/2 the components of the classical Godunov flux:

f n j+1/2 = f n 1,j+1/2 f n 2,j+1/2 .
For j = 0, we replace it by f n 1/2 , where

f n 1,1/2 = min f n 1,1/2 , q , f n 2,1/2 = f n 1,1/2 f n 2,1/2 f n 1,1/2 = min f n 2,1/2 , q f n 2,1/2 f n 1,1/2 . ( 5.5) 
We stress that the above construction preserves conservation, in agreement with the conservative character of RS q 1 .

Theorem 5.1 (Maximum principle) Under the CFL restriction (5.4), the finite volume numerical scheme defined by (5.2), (5.3) and (5.5) satisfies the maximum principle property Figure 7: Test 1a : Solution of the constrained Riemann solver RS q 1 with data ρ l = ρ r = 1.5, v l = v r = 3 and q = 3: exact solution (dashed line), numerical approximation (continuous line). 1 with data ρ l = 4, ρ r = 1.5, v l = 0.5, v r = 3 and q = 3: exact solution (dashed line), numerical approximation (continuous line). 2 with data ρ l = ρ r = 1.5, v l = v r = 3 and q = 3: exact solution (dashed line), ghost cell method (dash-dotted line), our method (continuous line). The rectangles select the zoomed areas plotted in Figure 5.4. 2 with data ρ l = 4, ρ r = 1.5, v l = 0.5, v r = 3 and q = 3: exact solution (dashed line), ghost cell method (dash-dotted line), our method (continuous line). The rectangles select the zoomed areas plotted in Figure 5.6. 

inf l∈Z v 0 l + p(ρ 0 l ) ≤ v n j + p(ρ n j ) ≤ max l∈Z v 0 l + p(ρ 0 l ) 0 
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 2526 Figure 5: Notations used in the paper: case ρ1 > ρ2 .

  If ρ2 ≤ ρ1 , then we get that ρ m ≤ ρ2 and Tot.Var.(ρ 1 ) -Tot.Var.(ρ 2 ) = ρ2ρ m + |ρ mρ r | -|ρ 2ρ r | ≥ 0 by the triangular inequality. If ρ2 > ρ1 , then we get that ρ m > ρ2 and Tot.Var.(ρ 1 ) -Tot.Var.(ρ 2 ) = ρ2 + ρ m -2ρ 1 + |ρ mρ r | -|ρ 2ρ r | ≥ 2(ρ 2 -ρ1 ) > 0 by the triangular inequality. This completes the proof. ✷ 4.2 Total variation of the velocity v (i.e. the first Riemann invariant)

  Tot.Var.(ỹ 1 ) = y lŷ + |ŷ -y1 | + |y 1y r | . If ρ r ≤ ρ1 , then, by (1.3), we easily get that y r ≤ y2 ≤ y1 and consequently Tot.Var.(ỹ 1 ) = Tot.Var.(ỹ 2 ). If ρ r > ρ1 , then, by (1.3), y r > y2 > y1 and so Tot.Var.(ỹ 1 ) -Tot.Var.(ỹ 2 ) = 2(y 2 -y1 ).

  , we deduce that y1 > y2 > y m and so Tot.Var.(ỹ 2 ) = y lŷ + (ŷ -y2 ) + |y 2y r | ≤ y lŷ + (ŷ -y2 ) + |y 2y m | + |y my r | = y lŷ + (ŷy m ) + |y my r | = Tot.Var.(ỹ 1 ).
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 44 For every initial conditions (ρ l , v l ), (ρ r , v r ) ∈ D, we have that Tot.Var.( w1 ) ≤ Tot.Var.( w2 ).(4.4) 
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 8 Figure 8: Test 1b : Solution of the constrained Riemann solver RS q1 with data ρ l = 4, ρ r = 1.5, v l = 0.5, v r = 3 and q = 3: exact solution (dashed line), numerical approximation (continuous line).
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 9 Figure 9: Test 2a: Solution of the constrained Riemann solver RS q2 with data ρ l = ρ r = 1.5, v l = v r = 3 and q = 3: exact solution (dashed line), ghost cell method (dash-dotted line), our method (continuous line). The rectangles select the zoomed areas plotted in Figure5.4.
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 10 Figure 10: Test 2a: Detailed view of a part of the computational domain of Figure 5.3.
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 11 Figure 11: Test 2b: Solution of the constrained Riemann solver RS q2 with data ρ l = 4, ρ r = 1.5, v l = 0.5, v r = 3 and q = 3: exact solution (dashed line), ghost cell method (dash-dotted line), our method (continuous line). The rectangles select the zoomed areas plotted in Figure5.6.
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 12 Figure 12: Test 2b: Detailed view of a part of the computational domain of Figure 5.5.
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In this situation we have that f 1 (RS((ρ l , v l ), (ρ r , v r ))(0)) > q and so, by construction of RS q 1 ((ρ l , v l ), (ρ r , v r )) and RS q 2 ((ρ l , v l ), (ρ r , v r )), we deduce that ṽ1 (x) = ṽ2 (x) for a.e. x < 0. It is clear that

If v r = L 1 (ρ r ; ρ l , v l ), then Tot.Var.(ṽ

and so, by the triangular inequality, we deduce Tot.Var.(ṽ 1 ) ≥ Tot.Var.(ṽ 2 ).

). Again, Tot.Var.(ṽ 1 ) ≥ Tot.Var.(ṽ 2 ) by the triangular inequality.

The proof is so finished. ✷

Total variation of the generalized momentum y

This subsection deals with the total variation of the generalized momentum y = ρ(v + p(ρ)).

Proposition 4.3 Assume that hypothesis (1.3) holds. For every initial conditions (ρ l , v l ), (ρ r , v r ) ∈ D, we have that Tot.Var.(ỹ 1 ) ≥ Tot.Var.(ỹ 2 ). (4.3)

)), then Tot.Var.(ỹ 1 ) = Tot.Var.(ỹ 2 ). Therefore we assume that

In this situation we have that f 1 (RS((ρ l , v l ), (ρ r , v r ))(0)) > q and so ỹ1 (x) = ỹ2 (x) for a.e. x < 0. We define ŷ

for all j ∈ Z and all n ∈ N, where

Proof. We observe first that the above maximum principle property on the second Riemann invariant is satisfied by the classical Godunov scheme (5.2), (5.3) (see for example [5, Remark 3.1 (ii)] for a detailed computation). Thus we only need to check what happens for j = 0, 1.

and the scheme reduces to the classical Godunov scheme. Therefore we assume that

In this case, recalling the construction of RS q 1 , it is easy to see that

where û and ǔ1 are, respectively, the left and right traces at x = 0 of RS q 1 (u n 0 , u n 1 ). In fact, since RS (u n 0 , û) counts only waves of negative speed, we have that

On the other side, since RS (ǔ 1 , u n 1 ) counts only waves of positive speed, we have that

Hence the following bounds hold for j = 0, 1:

{w n l , ŵ, w1 } , and we conclude observing that ŵ = w1 = w n 0 . ✷

We have tested our method on Riemann data lying on the same 1-Riemann invariant, in order to avoid spurious oscillations due to the presence of contact discontinuities. More general data can be dealt with using the technique presented in [START_REF] Chalons | Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling[END_REF]. Figures 5.1, 5.2, shows that the numerical solutions are in good agreement with exact solutions. In particular, our scheme perfectly captures the nonclassical shock at x = 0.

The Constrained Godunov scheme for RS q 2

The Constrained Riemann Solver RS q 2 is not globally conservative at the point x = 0 (by definition, conservation holds only for the first equation in (1.1) and therefore only car density ρ is conserved). As a consequence, we look for a non-conservative numerical scheme, i.e. we define two numerical fluxes f n,-

We set f n,-

In order to capture the right trace at x = 0, we could envisage using a ghost cell type method (introduced in [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF], see also [START_REF] Merkle | The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques[END_REF] and references therein for other applications), computing the ghost value ǔn 1 corresponding to u n 1 , whose (ρ, v) components are given by

where

. This is obtained using the following flux f n,+ 2,1/2 = q (v n 1 + p(q/v n 1 )) , whenever f n 1,1/2 < q. Unfortunately, due to the convexity assumption (1.3) on the function ρ → ρp(ρ), the velocity component is overestimated during the projection step of Godunov scheme in (5.7) (see [START_REF] Chalons | Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling[END_REF]). Therefore, the right trace cannot be captured properly: the velocity component is overestimated and the density is underestimated, see Figures 5.3, 5.5. In fact, at each time-step, we have vn+1

, where the inequality is strict generally speaking.

In order to overcome this difficulty, we propose to simply keep the value of the velocity component fixed for j = 1, i.e. to replace the value obtained by (5.7) with f n,+ 2,1/2 = f n,-2,1/2 by v n+1 1 = v n 1 , and then updating the conservative component as

) , whenever f n 1,1/2 < q. This allows to capture precisely the right trace of the discontinuity at x = 0, as shown by numerical simulation in Figures 5.3, 5.5. Only, a small amplitude oscillation traveling at speed v = v r is produced, see Figures 5.4,5.6.