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Abstract: In this paper we propose a method to study the fragility of Smith predictor controllers used in haptics. In
order to develop controllers for real environments, a careful analysis must be taken into account for the variation of the
parameters. Generally, real systems present parameter variations which often lead the system to an unstable behavior.
Using a geometric approach, we derive a simple method to study the fragility of Smith predictors for two cases - constant
and uncertain delays. Illustrative examples complete the presentation.

Keywords: Smith predictor, delay, haptics.

1. INTRODUCTION

Virtual environments have become very popular and
are used in many domains, like prototyping (figure 1.a
example of prototyping using haptic interfaces and vir-
tual environment [7]), trainings for different devices and
assistance in completing difficult tasks (figure 1.b vir-
tual environment used for task assistance/supervision [2],
[4]).

In figure 2 we present the general scheme of a haptic
system. The ideal haptic system must have:
• position tracking error as small as possible between the
haptic interface and the virtual object,
• high degree of transparency, i.e. in free motion, the
force feedback felt at the haptic interface end must be
as small as possible and in case of hard contact, a stiff
response is desired.

The main problems of such systems are linked to the
delays and their effects on stability and transparency. For
complex virtual environments, the processing time can
increase substantially and can introduce unwanted effects
and behaviors. More precisely, in free motion the delay
effect can be felt by the viscosity phenomenon (high force
feedback felt at the haptic interface end), in the case of a
hard contact with the environment, the impact effect will
not be stiff, or the most unwanted situation is to loose
the system stability due to the delays. The delays must
be taken into account and included in the control laws.
However, a trade-off between stability, position tracking
error and transparency must be always made.

A classic solution for time delays problems is the
Smith predictor control which can predict the objects re-
sponse and compensate time delays.

In this paper we propose a method to study the fragility
of Smith predictor controllers used in haptics. In order to
develop controllers for real environments, a careful anal-
ysis must be taken into account for the variation of the

Fig. 1 a.Virtual Prototyping. b.Virtual Supervision.
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Fig. 2 General Scheme of a Haptic System

parameters. Generally, real systems present parameter
variations which often lead the system to an unstable be-
havior. In our opinion, the notion ofcontroller fragility
is more appropriate for such a study, see, for instance,
[1], [6], [9]. Roughly speaking, the fragility describes the
deterioration of closed-loop stability due to small vari-
ations of the controller parameters. Our intention is to
detect non-fragile controllers by appropriate construction
of the closed-loop stability regions in the corresponding
controller parameter-space. A more in depth discussion
on the effects induced by the system’s parameters on the
(closed-loop) stability of delay systems can be found in
[18], [16]. A simple geometric argument, inspired by the
ideas suggested in [10], will allow us to conclude on the
best controller‘s choice.

The remaining paper is organized as follows: in sec-
tion 2 the control scheme is presented. Next, the fragility
algorithm is described in Section 3. Illustrative examples
are considered in Section 4. Finally, some concluding re-
marks end the paper.



2. CONTROL SCHEME

In this section we will present the proposed control
scheme using Smith predictor.

We will start from theclassicaldynamic (nonlinear)
equations of motion for two similar robots in the frame-
work of haptic systems:

M1(x1)ẍ1(t) + C1(x1, ẋ1)ẋ1 = −F1(t) + Fh(t), (1)

M2(x2)ẍ2(t) + C2(x2, ẋ2)ẋ2 = F2(t)− Fe(t), (2)

wherex1, x2 are the haptic interface/virtual object posi-
tion, Fh, Fe are the human/environmental forces,F1, F2

are the force control signals,M1,M2 are the symmetric
and positive-definite inertia matrices, andC1, C2 are the
Coriolis matrices of the haptic interface and virtual object
systems, respectively.

Figure 3 presents the general control scheme of a hap-
tic interface and a virtual environment including control.

The main idea is to use two similar PD controllers,
one to control the haptic interface and another one for the
virtual object. The controller equations are there given as
follows:

F1(t) =
Kd(ẋ1(t)− ẋ2(t− τ2))
︸ ︷︷ ︸

delayed D-action

+Kp(x1(t)− x2(t− τ2))
︸ ︷︷ ︸

delayed P-action

,

(3)

F2(t) =
−Kd(ẋ2(t)− ẋ1(t− τ1))
︸ ︷︷ ︸

delayed D-action

−Kp(x2(t)− x1(t− τ1))
︸ ︷︷ ︸

delayed P-action

,

(4)

whereτ1, τ2 are the forward and backward finite constant
delays andKp,Kd are the PD control gains.

In order to minimize the delays effects felt by the hu-
man operator we will add a Smith predictor in the control
scheme of the haptic interface, figure 4.
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Fig. 3 General PD control scheme for haptic systems.
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Fig. 4 Haptic control scheme including Smith predictor.

Considering these modifications, equation 3 becomes:

F1(t) =

Kd(ẋ1(t)− ẋ2(t− τ2) + ˆ̇x2(t− (τ1 + τ2))− ˆ̇x2(t)
︸ ︷︷ ︸

delayed D-action

+Kp(x1(t)− x2(t− τ2) + x̂2(t− (τ1 + τ2))− x̂2(t))
︸ ︷︷ ︸

delayed P-action

,

(5)

where ˆ̇x2, x̂2 represent the estimated velocity and posi-
tion for virtual object.

We are proposing this asymmetric control scheme be-
cause in this context is more important to achieved the
desired behavior for the human operator. A second Smith
predictor inserted in the virtual controller will introduce
new uncertainties which will make the system more vul-
nerable to instability without adding additional improve-
ments to the human operator’s perception.

In this case the resulting controller on the haptic side
has the form below:

C =
Kp +Kds

1 + (Kp +Kds)SM(s)(1− e−sτ )
, (6)

whereτ = τ1 + τ2 andSm(s) represents the closed loop
transfer function of the virtual object control and model
used in the Smith predictor:

SM(s) =
(Kp +Kds)Sm(s)

1 + (Kp +Kds)Sm(s)
, (7)

andSm(s) = V (s) (the virtual object model).
Considering the controller above on the haptic side,

and a classic PD controller on the virtual side, the overall
closed loop transfer function of the system in the case of
fix delaysHx1/Fh

: C× R
2 × R+ 7→ C is given by:

Hx1/Fh
(s,Kp,Kd, τ) =

Q(s,Kp,Kd)

P (s,Kp,Kd, τ)
. (8)

Due to the system variations some uncertainty∆ on
the nominal delayvalue τ0 may be taken into account.
The uncertainty is considered bounded and it satisfy the
constraint:

|∆| < δ, δ > 0.

The delayτ can be written asτ = τ0+∆ and equation
(6) rewrites as follows:

C∆ =
Kp +Kds

1 + (Kp +Kds)SM(s)(1− e−sτ0 + e−s(τ0+∆))
,

(9)

and the overall closed loop transfer function is described
by the following equation (see [11], [17]):



Hx1/Fh
(s,Kp,Kd, τ,∆) =

Q(s,Kp,Kd)

P (s,Kp,Kd, τ,∆)
, (10)

where the characteristic equation is defined as follows:

P (s,Kp,Kd, τ,∆) = P1(s,Kp,Kd)

+ P2(s,Kp,Kd)(e
−τs − e−(τ+∆)s).

(11)

For more details regarding the stability regions for
Smith predictors subject to delay uncertainty, please re-
fer to [14].

In the rest of the paper, we will useP (s,Kp,Kd, τ,∆),
considering∆ = 0 for the case with fix and known de-
lays.

3. STABILITY ANALYSIS

The stability analysis of the system described by the
characteristic equation (10) will be performed in two
steps:
• Step 1: firstly, we consider that the delay value is per-
fectly known and constant (i.e.τ = τ0,∆ = 0);
• Step 2: secondly, we consider the controller gains are
fixed at step 1 and we derive the stability regions in the
delay parameter space(τ0,∆) (i.e. both the nominal de-
lay value and the uncertainty may vary).
For the brevity of the paper and without any loss of gen-
erality, we make the following:

Assumption 1: The polynomialsP and Q are such
thatdeg(Q) ≤ deg(P).

Assumption 2: The polynomialP does not have any
roots at the origin, that isP (0) 6= 0.

Assumption 3: The polynomialsP andQ do not have
common zeros.

Assumption 4: The polynomials P and Q satisfy the
following condition:

lim
s→∞

∣
∣
∣
∣

Q(s,Kp,Kd)

P (s,Kp,Kd, τ,∆)

∣
∣
∣
∣
<

1

2
.

For discussions on the implications of these assump-
tions the readers are referred to [8], [14], [5].

3.1 Stability in controller gains space
In the sequel, we recall some geometric results that

enable us to generate the stability crossing curves in the
space defined by the controller’s parameters (Kp, Kd)
(similar results for different types of dynamics can be
found in [5] - delay parameters space and [12], [15] -
some particular class of distributed delays). These curves
represent the collection of all pairs (Kp, Kd) for which
the characteristic equation has at least one root on the
imaginary axis of the complex plain.

3.1.1 Stability regions
According to the continuity of zeros with respect to the

system’s parameters (see, for instance, [3] for the conti-
nuity with respect to delays), the number of roots in the
right half plane (RHP) can change only when some zeros
appear and cross the imaginary axis. Therefore, a useful

concept is the frequency crossing setΩ defined as the set
of all real positiveω for which there exist at least a pair
(Kp, Kd) such that:

P (jω;Kp,Kd, τ,∆) = 0. (12)

We only need to consider positive frequenciesω, that
is Ω ⊂ (0,∞) since obviously,

P (jω;Kp,Kd, τ,∆) = 0 ⇐⇒ P (−jω;Kp,Kd, τ,∆) = 0.

(13)

Proposition 1: For a givenτ ∈ R+ andω ∈ Ω ⊂ R
∗
+

a corresponding crossing point (Kp, Kd) is given by the
solutions of the following system:
{

ℜ (P (jω;Kp,Kd, τ,∆)/s=jω) = 0,
ℑ (P (jω;Kp,Kd, τ,∆)/s=jω) = 0,

(14)

Remark 1: It is easy to see that∀ ω ∈ Ω we have
Q(jω) 6= 0. Otherwise,Q(jω)= 0, that contradicts As-
sumption 1.

Let ΩK∗

p ,K
∗

d
denotes the set of all frequenciesω > 0

satisfying (14) for at least one pair of (Kp, Kd) in the
rectangle| Kp |≤ K̄p, | Kd |≤ K̄d. Then, whenω varies
within some intervalΩl satisfying (14) define a contin-
uous curve. DenoteTl the curve corresponding toΩl,
∀l ∈ 1, . . . ,N and consider the following decomposi-
tions:

R0 + jI0 = j
∂H(s;Kp,Kd, τ)

∂s

∣
∣
∣
s=jω

, (15)

R1 + jI1 = −
∂H(s;Kp,Kd, τ)

∂Kd

∣
∣
∣
s=jω

, (16)

R2 + jI2 = −
∂H(s;Kp,Kd, τ)

∂Kp

∣
∣
∣
s=jω

. (17)

The implicit function theorem indicates that the tan-
gent ofTl can be expressed as follows:







dKp

dω

dKd

dω







=

(
R2 R1

I2 I1

)−1 (
R0

I0

)

=
1

R2I1 −R1I2

(
R1I0 −R0I1
R0I2 −R2I0

)

,

(18)

provided that:

R1I2 −R2I1 6= 0. (19)

In order to derive the stability region of the system
given by (8), [13] characterized the smoothness of the
crossing curves and the corresponding direction of cross-
ing.

Proposition 2: The curveTl is smooth everywhere ex-
cept possibly at the point corresponding tos = jω is a
multiple solution of (8).



3.1.2 Direction of Crossing

The next paragraph focuses on the characterization of
the crossing direction corresponding to the curves defined
by (14). We will call the direction of the curve that cor-
responds to increasingω the positive direction. We will
also call the region on the left hand side as we head in the
positive direction of the curvethe region on the left.

Proposition 3: Assumeω ∈ Ωl, Kp, Kd satisfy (14),
andω is a simple solution of (12) and:

P (jω′;Kp,Kd, τ,∆) 6= 0, ∀ω′ 6= ω, (20)

(i.e. (Kp, Kd) is not an intersection point of two curves
or different section of a single curve). Then, as (Kp, Kd)
moves from the region on the right to the region on the
left of the corresponding crossing curve, a pair of solution
of (8) crosses the imaginary axis to the right (throughs =
jω) if

R1I2 −R2I1 > 0. (21)

The crossing is to the left if the inequality is reversed.
Any given direction,(d1, d2), is to the left-hand side
of the curve if its inner product with the left-hand side

normal

(

−
∂Kd

∂ω
,
∂Kp

∂ω

)

is positive, i.e.,

−d1
∂Kd

∂ω
+ d2

∂Kp

∂ω
> 0, (22)

from which we have the following result.
Corollary 1: Letω, Kp andKd satisfy the same con-

dition as Proposition 3. Then as(Kp,Kd) crosses the
curve along the direction(d1, d2), a pair of solutions of
(16) crosses the imaginary axis to the right if

d1(R2I0 −R0I2) + d2(R1I0 −R0I1) > 0. (23)

The crossing is in the opposite direction if the inequality
is reversed.

3.2 Stability in delay parameters space

Let us consider now that the controller gains are fixed
Kp = K∗

p , Kd = K∗
d and discuss the influence of delay

parameters on the stability of the system. The following
results are presented in [14]:

Proposition 1: The crossing setΩ consists of a finite
number of intervals of finite length and it is determined
by solving

|
Q(jω,K∗

p ,K
∗
d)

P (jω,K∗
p ,K

∗
d , τ,∆)

| ≥
1

2
. (24)

In what follows we use the notationh(jω) =
P (jω,K∗

p ,K
∗

d ,τ,∆)

Q(jω,K∗

p ,K
∗

d
) , τ1 , τ0, τ2 , τ0 + ∆. For a given

ω ∈ Ω we may find the setTω consisting of all the pairs

(τ1, τ2) satisfyingH(jω,K∗
p ,K

∗
d , τ1, τ2) = 0 as follows:

τ1 = τu±1 (ω) =
∠h(jω) + (2u− 1)π ± q

ω
, (25)

u = u±
0 , u

±
0 + 1, u±

0 + 2, ...

τ2 = τv±2 (ω) =
∠h(jω) + 2vπ ∓ q

ω
, (26)

v = v±0 (u), v
±
0 (u) + 1, v±0 (u) + 2, ...

whereq ∈ [o, π] is given by:

q(jω) = cos−1

(
1

2|h(ω)|

)

(27)

andu+
0 , u

−
0 are the smallest integers (may be dependent

on ω) such that the corresponding valuesτ
u+

0
+

1 , τ
u−

0
−

1

are nonnegative, andv+0 andv−0 are integers dependent

on u such thatτ
v+

0
+

2 ≥ τu+1 , τ
v−

0
−

2 > τu−1 are satis-
fied. The position in Figure 5 corresponds to(τu+1 , τv+2 )
and the mirror image about the real axis corresponds to
(τu−1 , τv−2 ).

AO

B

Re

Im

q

Fig. 5 Triangle formed by 1,h(s)e−τ1s andh(s)e−τ2s.

If we define T +
ω,u,v and T −

ω,u,v as the singletons
(τu+1 (ω), τv+2 (ω)) and (τu−1 (ω), τv−2 (ω)) respectively,
then we can characterizeTω as follows:

Tω =




⋃

u≥u+

0
,v≥v+

0

T +
ω,u,v




⋃




⋃

u≥u−

0
,v≥v−

0

T −
ω,u,v





The set of stability crossing curves in delay parameter
space is defined by:

T =

N⋃

k=1

T k, T k =
⋃

ω∈Ωk

Tω (28)

Remark 2: The distance between(τ0, τ0) andT is a
measure of fragility of the controller(K∗

p ,K
∗
d ) w.r.t. de-

lay uncertainty.

4. FRAGILITY OF SMITH PREDICTORS

Based on [8], the main goal of this paper is to derive
the biggest positive valued such that for a stabilizing con-
troller with the Smith predictor built-in(K∗

p , K∗
d), the

system is also stabilized by any pairKp, Kd as long as:

√

(Kp −K∗
p )

2 + (Kd −K∗
d)

2 < d. (29)



This problem can be more generally reformulated as:
find the maximum controller gains deviationd such that
the number of unstable roots of (16) remains unchanged.

First, let us introduce some notation:

T =

N⋃

l=1

Tl , Tl = {(Kp,Kd)|ω ∈ Ωl}, (30)

−−→
k(ω) = (Kp(ω),Kd(ω))

T ,
−→
k∗ = (K∗

p ,K
∗
d )

T , (31)

whereK∗
p , K∗

d are fixed.
Let us also denote dT = min

l∈{1,...,N}
dl, where:

dl = min
{√

(Kp −K∗
p )

2 + (Kd −K∗
d)

2|(Kp,Kd) ∈ Tl

}

.

(32)

With the notation and the results above, we have:

Proposition 4: The maximum parameter deviation
from (K∗

p ,K∗
d ), without changing the number of unstable

roots of the closed-loop equation (12) can be expressed
as:

d = min

{

Kd∞, |K∗
p −Kp(0)|, min

ω∈Ωf

{∥
∥
∥
−−→
k(ω)−

−→
k∗

∥
∥
∥

}}

,

(33)

where

Kd∞ :=







min
{∣
∣
∣K∗

d −
∣
∣
∣
qn
pm

∣
∣
∣

∣
∣
∣ ,
∣
∣
∣K∗

d +
∣
∣
∣
qn
pm

∣
∣
∣

∣
∣
∣

}

if m = n− 1
0 if m < n− 1

wherem, n represent the order of the polynomialsP , Q
andΩf is the set of roots of the functionf : R+ 7→ R,

f(ω) ,
〈

(
−−→
k(ω)−

−→
k∗

)

,
d
−−→
k(ω)

dω

〉

(34)

The explicit computation of the maximum parameter de-
viation d can be summarized by the following algorithm:

Step 1: First, compute the ”degenerate” points of each
curve Tl (i.e. the roots ofR1I2 − R2I1 = 0 and the
multiple solutions of (8)).

Step 2: Second, compute the setΩf defined byPropo-
sition 4 (i.e. the roots of equationf(ω) = 0, wheref is
given by (34)).

Step 3: Finally, the corresponding maximum parame-
ter deviationdl is defined by (32).

Remark 3: (On the gains’ optimization):It is worth
mentioning that the geometric argument above can be
easily used for solving other robustness problems. Thus,
for instance, if one of the controller’s parameters is fixed
(prescribed), we can also explicitly compute the maxi-
mum interval guaranteeing closed-loop stability with re-
spect to the other parameter. In particular ifKd (”deriva-
tive”) is fixed, we can derive the corresponding stabiliz-
ing maximum gain interval.

5. NUMERICAL EXAMPLES

We will consider a virtual environment and a haptic
interface, figure 6, consists of one direct-drive motor and
an optical quadrature encoder with 2000 pts/rev (with a
gear ratio of 1/10). The controllers and the virtual sim-
ulation are running in real time mode (on RTAI Linux)
with a sampling time of 1 ms.

Fig. 6 Experimental Platform

The virtual object is modeled to be similar to haptic
interface. The virtual wall which results in force environ-
mentFe is defined by the following equation:

Fe = Ve = Kwall(x2 − xwall) +Bwallẋ2, (35)

whereKwall = 20000 andBwall = 10 represent the
stiffness and damping used to compute the virtual force
environment,xwall is the virtual wall position andx2, ẋ2

are the virtual object position and velocity.
In figure 7 we present the stability regionΓ for (Kp,

Kd) with a fix time delay,τ = τ1 + τ2 = 100ms. The
stability zones correspond to frequencyw ∈ [0, 100].
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Fig. 7 Stability area forKp andKd - K∗
p = 1228 ,K∗

d =
139 ,d = 102.

Remark 4: According to the literature only the posi-
tive gainsKp andKd must be considered.

Remark 5: It appears that we have a large choice of
non-fragile controllers and we have chosen to represent
graphically only the“best” non-fragile one.

In figure 8 we present the stability regionΓ for (Kp,
Kd) with a nominal time delay,τ0 = τ1 + τ2 = 100ms



and an uncertainty∆ = 25ms. The stability zones cor-
respond to frequencyw ∈ [0, 100].
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Fig. 8 Stability area forKp andKd - K∗
p = 915 ,K∗

d =
4.08 ,d = 1.98.

Remark 6: The choice of non-fragile controllers is
smaller than the previous case, but still there is consid-
erable interval of non-fragile gains. Similar to the previ-
ous case we have chosen to represent graphically only the
“best” non-fragile one.

6. CONCLUSIONS

An ideal haptic system must have asmall position
tracking error in restricted motion and aninsignificant
force feedback (low viscosity i.e. high degree of trans-
parency) in free motion.

In this paper, we have presented a simple method for
analyzing the Smith predictors’ fragility in the case of
haptics. Furthermore, the choice of non-fragile controller
is proposed by using some simple geometric arguments.
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