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Stability Crossing Boundaries and Fragility
Characterization of PID Controllers for SISO

Systems with I/O Delays

Irinel-Constantin Moarescu, @sar-Fernando Bhdez-Barrios, Silviu-lulian

Niculescu and Keqin Gu

Abstract

This paper focuses on the closed-loop stability analyssrgjle-input-single-output (SISO) systems
subject to input (or output) delays in the presence of PIBuawdlers. More precisely, using a geometric
approach, we present a simple and user-friendly methodhtictosed-loop stability analysis as well
as for the fragility of such PID controllers. The proposegmach is illustrated on several examples

encountered in the control literature.

Index Terms

PID, Delay, SISO, Fragility, Geometry

I. INTRODUCTION

As reported in the literature [4], [23], [26], more than 95%4tlwe control-loops in the paper
industries are controlled by SISO PID controllers. The ‘wapty” of PID controllers [3], [28]
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can be attributed to their particular distinct featuremicity and easy implementation. A long
list of PID tuning methods for controlling industrial praeses can be found in the literature,
see, e.g., [23], [3], [26], to cite only a few. For further aissions in the case of systems with
I/O delays, we refer to [26], [30], and the references threrei
This paper focuses on the design of PID controllers for SI§&esns in the presence of
I/O delays. The problem received a lot of attention in deleefsystems, see, e.g., [14] (ro-
bustness techniques design leading to fragile contrd)l¢®$ (non-fragile PID control design
procedure), [2] (appropriate index to measure the frggditPID controllers). In this context of
delay free systems, some remarks concerning the controlbeistness via coprime factorization
and robustness optimization tools can be found in [15], .[EB)wever, there exists only a
few results in the delay case as, for example, [27], wherg ¢stiable) first-order systems
were considered, the authors in [16] proposed a non-fragitgroller design for a linearized
TCP/AQM model, more recently, based on the D-compositiothoh the properties regarding
the increase in the number of unstable poles across the Bounéfithe PID gain were studied
in [25],whereas in [12], the lines that contain the boundafryhe stabilizing gain set for the ID
(integral-derivative) plane are obtained, finally, basedtlee extension of the Hermite-Biehler
theorem, in [24] a method to compute the set of stabiliziig §&in is obtained, but it requires
much computation.
In this paper, inspired by the geometric ideas developedlgt@l. [8] we start by developing
a simple method to derive the stability regions in the gairapeeters space of a PID-controller
for a SISO system subject to (constant) time-delay. And,negt propose a&imple algorithm
to analyze the fragility of a given PID-controller fany SISO system subject to 1/O delays.
The method is based on thmplicit Function Theorenpl0] and related properties, and requires
three “ingredients”:
(i) the construction of thestability crossing boundaries (surfaces) the parameter-space
defined by "P” (proportional), "I” (integral) and "D” (derative) gains,
(i) the explicit computation of the crossing directionW@rds stability or instability) when such
a surface is traversed,
(i) finally, the explicit computation of the distance ofree point to the closest stability crossing
boundaries.

In the procedure above, the first step sends back ta#uecomposition method suggested



by Neimark [22] in the 40s (see [18] for further comments) mthe parameter space approach
(see, for instance, [1], [6] or [26] and the references tingrén the sequel, the stability crossing
boundaries (surfaces for PID, curves for Pl or PD contrs)leepresent the collection of all
points for which the corresponding characteristic equatibthe closed-loop system has at least
one root on the imaginary axis. These boundaries define ditipaf of the parameter-space in
several regions, each region having a constant number ¢dhlasroots for all the parameters
inside the region. Next, using an argument based on imglioittion theorem one derives if a
region has more or fewer unstable roots compared with itghf@ring regions. This allows to
detect the regions with no unstable roots which corresponebhtroller gains guaranteing the
stability of the closed-loop system. This methodology hias advantages from the robustness
point of view. Precisely, choosing controller gains insalstability region and far from all the
stability crossing boundaries that bound the region, tlbikty of the closed-loop system is
ensured even for some small bounded variations of the dtertigains.

The remaining part of the paper is organized as follows: teelpm formulation and the class
of systems under consideration are presented in Sectidié.procedure to derive the stability
crossing boundaries is described in Section Ill. In SectleA we derive the frequencies for
which a crossing surface may be traversed and in SectioB e classify the boundaries
obtained in Ill. Section IlI-C present the methodology whienables us to derive if crossing
a stability surface in a given direction the closed-loopteys gains or looses some unstable
roots. In Section IV, the algorithm to analyze the fragilitfiya given PID controller is presented.

Section V presents some illustrative examples and conujutemarks end the paper.

Il. THE FREQUENCY MODEL

For the sake of brevity, let us consider now the classtiatly properSISO open-loop systems

with I/O delays given by the transfer function:

e =l (sl, — A) " be™, 1)

where (A, b, cT) is a state-space representation of the open-loop systermefsioned in the

Introduction, our aim is two-fold. First, design a PID caiker

7

1 ki
C(s):k(1+Tds+T ):kp+kds+§ (2)



that stabilizes the plant (1). Our second goal, is to demvagpropriate PID controllei;, k7, k7)
and the largest positive valuesuch that the controller (2) stabilizes the system (1) for &n
kqs andk;, as long as

Vb — k)2 + (ha— k) + (ks — k)2 < d.
It is clear that the closed-loop dynamics is characterizedhle equation:
14+ G(s)C(s) = 0, ©)

which rewrites as:

f(s; kp, ka, ;) := % + (kp + kgs + %) = 0. 4)
Our approach follows the lines presented in [17], [20]-[2¥pre precisely, we want to derive
the stability crossing boundarieg which is the set of paramete(s,, k4, k;) € R?. such that (4)
has imaginary solutions. As the parametéis, k., k;) cross the stability crossing boundaries,
some characteristic roots cross the imaginary axis.Wealssider() = {w € R | 3(k,, kq, k;) €
R? such thatf(jw; k,, kq, k;) = 0} the set of frequencies where the number of unstable roots

of (4) changes. The sét will be called stability crossing set

[Il. STABILITY CROSSING CHARACTERIZATIONS

Considering thaf) is known, the stability crossing boundaries are simply abi@rized by:

Proposition 1: The stability crossing boundaries associated to (4) areritbesl as follows:

(%5

QUw) ; ) ’
ki:kwg—kwg( — LIV
‘ P(jw)
Remark 1:For any fixedw* € (), one obtains a section of a stability crossing surface

Vw € Q. (5)

which consists in a straight line parallel to thig,, k;) plane and passing through the point
(—3.?- (%d‘“f) 0, wS (%eﬂ”)) . The slope of this line in thék,, ;) plane is always
positive and is given by?.
Remark 2:From thePropositionl it is clear thatk; = 0 represents a boundary.
Remark 3:Let the relative degree of the system (1) foe- 1. Then, the closed-loop system
(1) becomes a system akutral-type(see, e.g., [11], [18]) and
dn

Pn—1

n

,ki) and (kp,— —

Pn—1




belong to the stability crossing surfaces. Herg,; andg, represent the leading coefficients of

the polynomialsP(s) and Q(s), respectively.

A. Stability crossing sets

In the sequel, we present a practical methodology to dehgestability crossing set. For the
sake of brevity, we suppose the following technical assiwonps satisfied:

Assumption 1:There exist some boun sk;,k_;), (@, k:_;;> and (@, k:_;‘) of the controller
gains. N

These bounds can be arbitrarily fixed and, in principle, they chosen by the designer
according to the physical constraints of the model/colgroln this context, when Assumption
1 holds, the section of the stability crossing surface ole@ifor a fixedw € €) reduces to a
segment (see Remark 1).

Proposition 2: Consider that Assumption 1 holds. Then the stability cragsset() is a
union of bounded intervals consisting in all frequencied gimultaneously satisfy the following

conditions:
ks
. (6)
Jk <kg< Kk} stk < kg™ wS (Meiwf)gk_;.
— — P(jw)
Remark 4:Propositions 1 and 2 lead to the following algorithm to detiele both the stability

crossing sef2 and the stability crossing boundarigs

« Step 1:One solves the systeif < —% < k_;; getting a union of intervals.

« Step 2:For all w derived at the previofs%tue)p one computgsind derive the equation of
the line (k,4, k;) given by the second equation in (5).

. Step 3: Finally, one keeps only those frequenciedor which the line(ky, k;) derived at
the previous step intersects the rectarighg, k;); (k. k7); (K7, k7); (K3, k7).

Consider now, that eithet, or k; is fixed. Let us also denote by, h € {i,d} the crossing

curve whend or i is fixed and consider the following decomposition into reatl amaginary



parts:

, CO0f(s; ky, k
Ro+jly = J % ) (7)
s s=jw
. Of (s; kp, kn)
R+ 31 - : (8)
ok, s=je
‘ of(s;ky, k
Ry+ 3, = — % 9)
P s=jw

Then, sincef(s; k,, ks) is an analytic function of, k, and k;, the implicit function theorem
indicates that the tangent Gf, can be expressed as

dk, -1
o B Ry Ry Ry
% L I I
B 1 R Iy — Roly 10
Ryl — Ry 1y Rol, — Ryl ’
provided that
RyIy — Ryl # 0. (11)

It follows that 7, is smooth everywhere except possibly at the points wheheretll) is not

satisfied, or when
dky _ dky, _
do  dw

Remark 5:1f (12) is satisfied, then straightforward computationsvshs thatR, = I, = 0.

(12)

In other words,s = jw is a multiple solution of (15).

B. Classification of the stability crossing boundaries

It is worth noting here that,, k; and k; continuously depend ow. Therefore, in order to
classify the stability crossing boundaries we will firstsddy the intervals belonging to the
stability crossing set. Precisely, a deeper analysis gbddition 2 allows us to say that" is an
end of an interval belonging tQ if and only if one of the following condition is satisfied:

o Type 1: —ﬂ?ﬁ = k,, wherek; is eitherk; = @ or k; = k_; In this casew* € Q

and the stability crossing surface approach a segmentgla@the (k,, k;) plane given by



k, = k, and

—_

G(jwr)’

ki < ka <Ky, K < ki <k}

1 1 . . .
o Type 2. ——Q3—— = k. In this casev* € 2 and the stability crossing surface ends
w G(jw*)
1 1 1
in th int({ —R——m,——S 0 |, included in the(k,, k;) plane.
in ep0|n< Gl w*\SG(jw*)’ ) included in the(k,, k,;) plane

o Type 3: W' = k7. In this casew* € {2 and the stability crossing surface ends in

G(jwl*) ,
the point{ —R————,0, W' S —— , included in the(k,, k;) plane.

pone (.09 ) o) P

Similarly to [8], we classify the stability crossing boumds in 8 types in function of the

kind of the left and right ends of the corresponding freqyeamssing interval. Precisely, we
say that a crossing surface is of typk a,b € {1,2,3} if it corresponds to a crossing interval
(wi, wy) With w; of type a andw, of typeb. Let us notice that generally the intervdls, w,) are

closed.

C. Crossing direction

As explained in [7], [29], a pair of imaginary zerds, s) of the characteristic equation
f(s; kp ka,k;) = 0 cross the imaginary axis through the gategw , jw respectively, as
(ky, ka, ki) moves from one side of a stability crossing surface to theragide. The direction of
crossing may be calculated using implicit function theor@sndescribed in [8], [19]. Precisely,
the characteristic equatiofis; k,, k4, k;) = 0 defines an implicit functiors of variablesk,, k,

andk;. The definition off(s; k,, k4, k;) given by (4) allows us to compute the following partial

derivatives:
Js s2G2(s)
Ok,  kG2(s) — kgs2G2(s) + s2G'(s)’
302
G5 G 1s) | (13)
Okq kiG?(s) — kqs?G?(s) + s2G'(s)
0s sG?(s)

Oki  kiG2(s) — kqs2G2(s) + s2G'(s)
Let (k,, kq, k;) @ point belonging to a stability crossing surface andslet jiw, @ > 0 be the

corresponding imaginary zero of the characteristic equatietx = (x,, x4, z;) be a unit vector



that is not tangent to the surface. Let us also use the fcrhkg»vmiotation?> = (kp, kq, k;) and
Ko = (ky Foa, ).

Proposition 3: A pair of zeros of (4) moves from the left half complex planéd@) to the
right half complex plane (RHP) d¢,, k4, ;) moves from one side of a stability crossing surface
to the other side througt¥,, k4, k;) in the direction ofx if

> 0. (14)

3‘%(881’ + asx + asx)
= o %d + 3T
Ok, " Okg Ok; oo BT

The crossing is from the RHP to the LHP if the inequality (1glyeversed.

IV. FRAGILITY ANALYSIS OF PID CONTROLLERS

Consider now thePID fragility problem that is the problem of computing the maximum
controller parameters deviation without loosing the otbk®p stability. In other words, given

the parametersk;, k7, k7) such that the roots of the closed-loop characteristic éojuat

k*

Q(s) + P(s) (k; + ki 4 ?)e‘” —0, (15)
are located inC_ (that is the closed-loop system is asymptotically staldlayl the maximum
parameter deviatio@d € R, such that the roots of (3) stay located @ for all controllers
(kyp, ka, k;) satisfying:

V Uiy = k)2 + (kg — k)2 + (ks — k)2 < d.

This problem can be more generally reformulatedfesl the maximum parameter deviatian
such that the number of unstable roots of (3) remains unobadng

First, let us introduce some notation:

U7 7= {(kp, ka, ki) |w € u},
) = (@), kalw), ki), B = (k5 ki k)"

@) = (ka(w), k()" Ky = (k5 k)"

=
Il

wherea,b € {p,i,d}. Let us also denotéT:l {minN}dl, where
e{1,...,

= : _ %)2 _L.*\2 2
e, i\l =) G k)



A. PI-PD Controller Fragility

Let k; =k e R or k; = kf € R be fixed, we have the following result:

Proposition 4: The maximum parameter deviation, without changing the remalb unstable
roots of the closed-loop equation (3) can be expressed as:

Pl-Controller: Letk, = k; be fixed,

* . * . % %*
d}; = min {\kl |, min { Epi(w) — ki

LUEpri

}} . (16)

PD-Controller: Letk; = k; be fixed, thend;, =

. . . : PR T
pd:mm{kdoo, k, — k,(0) ,wre%lgd{ kpa(w) — K pa }} ; a7
with,
. min{k:é—g—; (kg + | } if m=n-1

if m<n-—1

andQy ,, a,b € {p,i,d} is the set of roots of the functiofi,, : R, — R,

"
fulw) <(i€2<w>—f?:b),dkj§cf“)>, (19

where ” (-, -)” means the inner product.

B. DI Projection

Let k, = k; € R be fixed, we have the following result:
Proposition 5: The maximum parameter deviation fraitj;, &), without changing the number

of unstable roots of the closed-loop equation (3) can beesgad as:

wiks—k; +wg%{% ejw”}

dy;=ming |k} |, min , (19)
wee i (we)* +1
where(2;. is the set of roots of the functiofi.. : R x R, — R,
QUw) ;
. k?* é k?* % JwT ) 20
f"?p( p,w) p T {P(jw)e (20)

Remark 6: Observe that (20) has an uncountable number of solutiomge\Ver inProposition

5 we have considered the set including the correspong@ifig:’) points.



C. PID Fragility Algorithm

In order to obtain the obtain the PID fragility we present tbkowing algorithm:

. Step 1:Let k,, € R? be fixed. Then, sef = min {d;,, d*,. d; }.

pi? “pdd

. Step 2:Sweep over all € [—%, %] and computet’, = k* + dsin6.

Step 3:Solve f (k;y,w) = 0 and denote by, the set of solutions.

Step 4: Compute,

) ' (we)?ky — K 4 weS {%eﬂ"”}
o, Vel
Step 5:If dj < dcosf then setd = d;/ cos# and go to step 2. Otherwise continue to step
2.
Step 6:If & = 7, the procedure is finish and is the PID fragility for the controller
(k2 k5 k).

V. |ILLUSTRATIVE EXAMPLES

In order to motivate the previous results, we consider inséguel some numerical examples.

A. PID fragility analysis
Example 1:Consider the following system [24]:

s —4s?+ s+ 2
e
s5 + 8s% + 3253 + 4652 + 465 + 17

G(s) = - (21)

By choosingk; € [0,3], we obtain the stability region depicted in Fig.1. Next, irder to
illustrate the proposed PID fragility-algorithm, considg:, k;, k;) = (2,3,3), leading to the
values in Table | and depicted in Fig.2.

TABLE |

PID FRAGILITY FOR THE EXAMPLE (21).

Controller Fragility Initial PID-Fragility
(ky,ky,ki) | (PI,PD,DI) | PID-Fragility | min{d",dj}

;= 1.68051
(2,3,3) | diy=1.33313 | d* = 1.27520 | dj = 1.26295
&, = 1.27520




Fig. 1. The PID stability region fok, € [0, £].

Fig. 2. PID-fragility for the controller(k;, k3, k) = (2,3, 3).

Example 2 (unstable, non-minimal phase syste@gnsider the following plant [17],

s — 2 1

28

-3¢ 2" (22)
82 — 58 + v
The interest in the analysis of this system, remains in thetfeat the closed-loop plant becomes

a system ofNeutral-Type Now, applying the same procedure as before, and consgiéfire
(0.32595,1.625) we obtain the following stability region.

G(s) =

For the fragility analysis, lets consider the control(éf, k. k;) = (2, —55. —2), leading to

the results summarized in Table II. Figure 4 illustrate saafesults.



Fig. 3. The PID stability region of Neutral-Type .

-2 05

TABLE I

PID FRAGILITY FOR THE EXAMPLE (22).

d; = 0.16782

Controller Fragility Initial PID-Fragility

(kp,k3.k7) | (PI,PD,DI) | PID-Fragility | min{d",d;}
dy; = 0.29314

(2,52, 22) | dpg =0.16758 | d* = 0.16758 | dj = 0.16453




B. Stability crossing boundaries classification

Example 3:Finally, lets consider the SISO plant [5],

—st -7 —25s+1
Gr1(5+2)(5+3) (s+4)(2+s+1)°
By choosing the rectangler < k£, < 5, —12 < k; < 5, 0 < k; < 10, we obtain the following

G(s) = ~25°, 23)

cases: Based in these results, the table Il classifies thesazited above.

02
015
Typel

0.1

0.05

0 wy~0.883365

wi ~0.37823

Fig. 5. Boundary classification Type 1 for the system (23).

TABLE 11l
CLASSIFICATION INTERVALS TYPE FOR THE SYSTEME23).

Interval Classification
[0.37823, 3.16356] Type 11
[0.37823, 0.89290) Type 12
[0.37823,0.41294] Type 13
[0.89290, 3.16356] Type 21
[0.41294, 3.16356] Type 31

041294, 0.89290] Type 32




0sAkp

Type?
044 w~0.892906

4

Fig. 6. Stability crossing boundaries classification fag #ystem (23). (Upper) Type 2. (Lower) Type 3.

VI. CONCLUSIONS

In this paper, we focused on stabilizing a class of SISO fisgatems with constant delay in
the input or output by using PID controllers. First, by expig the system properties we have
characterized the stability crossing boundaries in tharpater-set defined by the controller’s
parameters. Second, we have developed a simple geometratalod to construct the PID
stability region, that characterize the set of all stabilizcontroller parameter. Finally, a simple
geometric-based algorithm is derived for computing theifitx of PID-controllers. To prove
the efficiency of the proposed methods, several illusteaixamples have been considered. It
is important to note that such an idea can be easily exterapdper SISO systems with I/O

delays.



REFERENCES

[1] Ackermann, J., Blee, P., Bunte, T., Guvenc, L., KaesvaD., Kordt, M., Muhler, M. and Odenthal, DRobust control.
The parameter space approacBpringer: London, 2002.
[2] Alfaro, V.M.: PID Controller's Fragility, ISA Transactions, vol.46, pp.555-559, 2007.
[3] Astrom, K. J. and Hagglund, TRID Controllers: Theory, Design and Tunninipstrument Society of America, 2nd edition,
1995.
[4] Astrom, K. J. and Hagglund, Tthe future of PID contrglChem. Eng. Progress, vol.9, pp.1163-1175, 2001.
[5] Bajcinca, N.:Computation of stable regions in PID parameter space foretuelay systemsn W. Michiels(Ed.).,Proc.
of 5th IFAC workshop on time-delay syster@xford:Elsevier, 2005.
[6] Bhattacharyya, S.P., Chapellat, H. and Keel, L.Rabust control. The parametric approadPrentice Hall, 1995.
[7] Cooke, K. L. and van den Driessche, ®n zeroes of some transcendental equatiéhsikcialaj Ekvacioj, vol29, No.1,
7790, 1986.
[8] Gu, K., Niculescu, S.-I. and Chen, In stability crossing curves for general systems with twiaydein J. Math. Anal.
Appl, vol. 311, pp. 231-253, 2005.
[9] Ho, M.T.: Non Fragile PID Controller DesignProceeding of the 39th CDC, Sidney Australia, 2000.
[10] Guggenheimer, H.WDifferential geometryDover: New York, 1977).
[11] Hale, J. K. and Verduyn Lunel, S. Mintroduction to Functional Differential Equation®AMS, vol. 99, Springer-Verlag:
New York, 1993).
[12] Hohenbichler, N.All stabilizing PID controllers for time delay systemsutomatica, vol. 45, pp.2678-2684, 2009.
[13] Keel, L.H. and Bhattacharyya, S.P.: “Author’'s Repll?EE Trans. Automat. Contr., vol. 43, pp.1268, 1998.
[14] Keel, L.H. and Bhattacharyya, S.RRobust, Fragile or OptimallEEE Trans. Automat. Contr., vol. 42, pp.1098-1105,
1997.
[15] Mé&kila, P.M.: Comments on: Robust, Fragile, or Optim#EE Trans. Automat. Contr., vol. 43, pp.1265-1267, 1998.
[16] Melchor-Aguilar, D. and Niculescu, S.-IRobust non-fragile Pl controllers for delay models of TCBM networks
submitted, 2007.
[17] Méndez-Barrios, C.-F., Niculescu, S.-1., Moranest.-C. and Gu, K.:.On the Fragility of Pl Controllers for Time-Delay
SISO systems16th Mediterranean Conference on Control and AutomattieD’'08, 529-534, June 2008, Ajaccio, France.
[18] Michiels, W. and Niculescu, S.-IStability and stabilization of time-delay systems. An migiie-based approaciSIAM:
Philadelphia, 2007.
[19] Morarescu, C.-l., Niculescu, S.-I. and Gu, IStability crossing curves of shifted gamma-distributethglsystemsSIAM
Journal on Applied Dynamical Systems, v6|.No 2, pp. 475-493, 2007.
[20] Morarescu, C.I. and Niculescu, S.-Btability crossing curves of SISO systems controlled bgyeel output feedback.
Dynamics of Continuous, Discrete and Impulsive Systemsesd, vol. 14, No 5, pp. 659-678, 2007.
[21] Morarescu, I.-C., Niculescu, S.-I. and Gu, KOn the geometry of PI controllers for SISO systems with igslays-
IFAC Workshop on Time Delay Systems, TDS'07, 17-19 Septen#fl07, Nantes, France.
[22] Neimark, J.:D-subdivisions and spaces of quasi-polynomi&lskl. Math. Mech., vol. 13, pp.349-380, 1949.
[23] O’Dwyer, A.: Pl and PID controller tuning rules for time delay process: @nsmary(Technical report AOD-00-01, Dublin
Institute of Technology, Ireland, 2000).
[24] Ou, L.L., Zhang, W.D and Yu, L.Low-Order Stabilization of LTI Systems With Time Del®EE Trans. Automat. Contr.,
vol. 54(4), pp.774-787, 2010.



[25]

[26]
[27]

(28]
[29]
[30]

Saeki, M.:Properties of Stabilizing PID Gain Set in Parameter Spd&&EE Trans. Automat. Contr., vol. 52(9), pp.1710-
1715, 2007.

Silva, G.J., Datta, A., and Bhattacharrya, SERD Controllers for Time Delay SystemBirkhauser, Boston, 2005.

Silva, G.J., Datta, A., and Bhattacharrya, SIPID tuning revisited: Guaranteed stability and non-frati] in Proc.
American Contr. Conf., Anchorage, AK, 5000-5006, 2002.

Tan, K.K., Wang, Q.G. and Hang, C.QdAdvances in PID controlSpringer: Berlin, 1999.

Walton, K. and Marshall, J. EDirect method for TDS stability analysitEEE Proc.134, partD,101-107, 1987.

Zhong, Q.-C.:Robust control of time-delay syste@pringer: London, 2006.



