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Stability Crossing Boundaries and Fragility

Characterization of PID Controllers for SISO

Systems with I/O Delays

Irinel-Constantin Mor̆arescu, Ćesar-Fernando Ḿendez-Barrios, Silviu-Iulian

Niculescu and Keqin Gu

Abstract

This paper focuses on the closed-loop stability analysis ofsingle-input-single-output (SISO) systems

subject to input (or output) delays in the presence of PID-controllers. More precisely, using a geometric

approach, we present a simple and user-friendly method for the closed-loop stability analysis as well

as for the fragility of such PID controllers. The proposed approach is illustrated on several examples

encountered in the control literature.

Index Terms

PID, Delay, SISO, Fragility, Geometry

I. INTRODUCTION

As reported in the literature [4], [23], [26], more than 95% of the control-loops in the paper

industries are controlled by SISO PID controllers. The “popularity” of PID controllers [3], [28]
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can be attributed to their particular distinct features: simplicity and easy implementation. A long

list of PID tuning methods for controlling industrial processes can be found in the literature,

see, e.g., [23], [3], [26], to cite only a few. For further discussions in the case of systems with

I/O delays, we refer to [26], [30], and the references therein.

This paper focuses on the design of PID controllers for SISO systems in the presence of

I/O delays. The problem received a lot of attention in delay free systems, see, e.g., [14] (ro-

bustness techniques design leading to fragile controllers), [9] (non-fragile PID control design

procedure), [2] (appropriate index to measure the fragility of PID controllers). In this context of

delay free systems, some remarks concerning the controllerrobustness via coprime factorization

and robustness optimization tools can be found in [15], [13]. However, there exists only a

few results in the delay case as, for example, [27], where only (stable) first-order systems

were considered, the authors in [16] proposed a non-fragilecontroller design for a linearized

TCP/AQM model, more recently, based on the D-composition method, the properties regarding

the increase in the number of unstable poles across the boundary of the PID gain were studied

in [25],whereas in [12], the lines that contain the boundaryof the stabilizing gain set for the ID

(integral-derivative) plane are obtained, finally, based on the extension of the Hermite-Biehler

theorem, in [24] a method to compute the set of stabilizing PID gain is obtained, but it requires

much computation.

In this paper, inspired by the geometric ideas developed by Gu et al. [8] we start by developing

a simple method to derive the stability regions in the gain parameters space of a PID-controller

for a SISO system subject to (constant) time-delay. And next, we propose asimple algorithm

to analyze the fragility of a given PID-controller forany SISO system subject to I/O delays.

The method is based on theImplicit Function Theorem[10] and related properties, and requires

three “ingredients”:

(i) the construction of thestability crossing boundaries (surfaces)in the parameter-space

defined by ”P” (proportional), ”I” (integral) and ”D” (derivative) gains,

(ii) the explicit computation of the crossing direction (towards stability or instability) when such

a surface is traversed,

(iii) finally, the explicit computation of the distance of some point to the closest stability crossing

boundaries.

In the procedure above, the first step sends back to theD-decomposition method suggested



by Neimark [22] in the 40s (see [18] for further comments) or to the parameter space approach

(see, for instance, [1], [6] or [26] and the references therein). In the sequel, the stability crossing

boundaries (surfaces for PID, curves for PI or PD controllers) represent the collection of all

points for which the corresponding characteristic equation of the closed-loop system has at least

one root on the imaginary axis. These boundaries define a ”partition” of the parameter-space in

several regions, each region having a constant number of unstable roots for all the parameters

inside the region. Next, using an argument based on implicitfunction theorem one derives if a

region has more or fewer unstable roots compared with its neighboring regions. This allows to

detect the regions with no unstable roots which correspond to controller gains guaranteing the

stability of the closed-loop system. This methodology has also advantages from the robustness

point of view. Precisely, choosing controller gains insidea stability region and far from all the

stability crossing boundaries that bound the region, the stability of the closed-loop system is

ensured even for some small bounded variations of the controller gains.

The remaining part of the paper is organized as follows: the problem formulation and the class

of systems under consideration are presented in Section II.The procedure to derive the stability

crossing boundaries is described in Section III. In SectionIII-A we derive the frequencies for

which a crossing surface may be traversed and in Section III-B we classify the boundaries

obtained in III. Section III-C present the methodology which enables us to derive if crossing

a stability surface in a given direction the closed-loop system gains or looses some unstable

roots. In Section IV, the algorithm to analyze the fragilityof a given PID controller is presented.

Section V presents some illustrative examples and concluding remarks end the paper.

II. THE FREQUENCY MODEL

For the sake of brevity, let us consider now the class ofstrictly properSISO open-loop systems

with I/O delays given by the transfer function:

G(s):=
P (s)

Q(s)
e−sτ = cT (sIn − A)−1 be−sτ , (1)

where
(

A, b, cT
)

is a state-space representation of the open-loop system. Asmentioned in the

Introduction, our aim is two-fold. First, design a PID controller

C(s) = k

(

1 + Tds+
1

Tis

)

= kp + kds+
ki
s

(2)



that stabilizes the plant (1). Our second goal, is to derive an appropriate PID controller(k∗
p, k

∗
d, k

∗
i )

and the largest positive valued such that the controller (2) stabilizes the system (1) for any kp,

kd andki, as long as
√

(

kp − k∗
p

)2
+ (kd − k∗

d)
2 + (ki − k∗

i )
2 < d.

It is clear that the closed-loop dynamics is characterized by the equation:

1 +G(s)C(s) = 0, (3)

which rewrites as:

f(s; kp, kd, ki) :=
1

G(s)
+

(

kp + kds+
ki
s

)

= 0. (4)

Our approach follows the lines presented in [17], [20]-[21]. More precisely, we want to derive

thestability crossing boundariesT which is the set of parameters(kp, kd, ki) ∈ R3
+ such that (4)

has imaginary solutions. As the parameters(kp, kd, ki) cross the stability crossing boundaries,

some characteristic roots cross the imaginary axis.We alsoconsiderΩ = {ω ∈ R | ∃(kp, kd, ki) ∈

R3
+ such thatf(jω; kp, kd, ki) = 0} the set of frequencies where the number of unstable roots

of (4) changes. The setΩ will be calledstability crossing set.

III. STABILITY CROSSING CHARACTERIZATIONS

Considering thatΩ is known, the stability crossing boundaries are simply characterized by:

Proposition 1: The stability crossing boundaries associated to (4) are described as follows:


















kp = −ℜ

(

Q(jω)

P (jω)
ejωτ

)

ki = kdω
2 + ωℑ

(

Q(jω)

P (jω)
ejωτ

) , ∀ω ∈ Ω. (5)

Remark 1:For any fixedω∗ ∈ Ω, one obtains a section of a stability crossing surface

which consists in a straight line parallel to the(kd, ki) plane and passing through the point
(

−ℜ

(

Q(jω)

P (jω)
ejωτ

)

, 0, ωℑ

(

Q(jω)

P (jω)
ejωτ

))

. The slope of this line in the(kd, ki) plane is always

positive and is given byω2.

Remark 2:From theProposition1 it is clear thatki = 0 represents a boundary.

Remark 3:Let the relative degree of the system (1) beρ = 1. Then, the closed-loop system

(1) becomes a system ofneutral-type(see, e.g., [11], [18]) and
(

kp,

∣

∣

∣

∣

qn
pn−1

∣

∣

∣

∣

, ki

)

and

(

kp,−

∣

∣

∣

∣

qn
pn−1

∣

∣

∣

∣

, ki

)



belong to the stability crossing surfaces. Here,pn−1 andqn represent the leading coefficients of

the polynomialsP (s) andQ(s), respectively.

A. Stability crossing sets

In the sequel, we present a practical methodology to derive the stability crossing set. For the

sake of brevity, we suppose the following technical assumption is satisfied:

Assumption 1:There exist some bounds
(

k∗
p, k

∗
p

)

,
(

k∗
d, k

∗
d

)

and
(

k∗
i , k

∗
i

)

of the controller

gains.

These bounds can be arbitrarily fixed and, in principle, theyare chosen by the designer

according to the physical constraints of the model/controller. In this context, when Assumption

1 holds, the section of the stability crossing surface obtained for a fixedω ∈ Ω reduces to a

segment (see Remark 1).

Proposition 2: Consider that Assumption 1 holds. Then the stability crossing setΩ is a

union of bounded intervals consisting in all frequencies that simultaneously satisfy the following

conditions: 

















k∗
p ≤ −ℜ

(

Q(jω)

P (jω)
ejωτ

)

≤ k∗
p

∃ k∗
d ≤kd≤ k∗

d s.t. k∗
i ≤ kdω

2+ ωℑ

(

Q(jω)

P (jω)
ejωτ

)

≤k∗
i .

(6)

Remark 4:Propositions 1 and 2 lead to the following algorithm to determine both the stability

crossing setΩ and the stability crossing boundariesT :

• Step 1: One solves the systemk∗
p ≤ −ℜ

1

G(jω)
≤ k∗

p getting a union of intervals.

• Step 2: For all ω derived at the previous step one computeskp and derive the equation of

the line (kd, ki) given by the second equation in (5).

• Step 3: Finally, one keeps only those frequenciesω for which the line(kd, ki) derived at

the previous step intersects the rectangle[(k∗
d, k

∗
i ); (k

∗
d, k

∗
i ); (k

∗
d, k

∗
i ); (k

∗
d, k

∗
i )].

Consider now, that eitherkd or ki is fixed. Let us also denote byTh, h ∈ {i, d} the crossing

curve whend or i is fixed and consider the following decomposition into real and imaginary



parts:

R0 + jI0 = j
∂f(s; kp, kh)

∂s

∣

∣

∣

∣

s=jω

, (7)

R1 + jI1 = −
∂f(s; kp, kh)

∂kh

∣

∣

∣

∣

s=jω

, (8)

R2 + jI2 = −
∂f(s; kp, kh)

∂kp

∣

∣

∣

∣

s=jω

. (9)

Then, sincef(s; kp, kh) is an analytic function ofs, kp and kh, the implicit function theorem

indicates that the tangent ofTh can be expressed as






dkp
dω
dkh
dω






=





R2 R1

I2 I1





−1



R0

I0





=
1

R1I2 − R2I1





R1I0 − R0I1

R0I2 − R2I0



 , (10)

provided that

R1I2 −R2I1 6= 0. (11)

It follows that Th is smooth everywhere except possibly at the points where either (11) is not

satisfied, or when
dkp
dω

=
dkh
dω

= 0. (12)

Remark 5: If (12) is satisfied, then straightforward computations show us thatR0 = I0 = 0.

In other words,s = jω is a multiple solution of (15).

B. Classification of the stability crossing boundaries

It is worth noting here thatkp, kd and ki continuously depend onω. Therefore, in order to

classify the stability crossing boundaries we will first classify the intervals belonging to the

stability crossing set. Precisely, a deeper analysis of Proposition 2 allows us to say thatω∗ is an

end of an interval belonging toΩ if and only if one of the following condition is satisfied:

• Type 1: −ℜ
1

G(jω∗)
= k∗

p, wherek∗
p is eitherk∗

p = k∗
p or k∗

p = k∗
p. In this case,ω∗ ∈ Ω

and the stability crossing surface approach a segment parallel to the(kd, ki) plane given by



kp = k∗
p and

ki = kd · (ω
∗)2 + ω∗ℑ

1

G(jω∗)
,

k∗
d ≤ kd ≤ k∗

d, k∗
i ≤ ki ≤ k∗

i

• Type 2: −
1

ω∗
ℑ

1

G(jω∗)
= k∗

d. In this caseω∗ ∈ Ω and the stability crossing surface ends

in the point

(

−ℜ
1

G(jω∗)
,−

1

ω∗
ℑ

1

G(jω∗)
, 0

)

, included in the(kp, kd) plane.

• Type 3: ω∗ℑ
1

G(jω∗)
= k∗

i . In this caseω∗ ∈ Ω and the stability crossing surface ends in

the point

(

−ℜ
1

G(jω∗)
, 0, ω∗ℑ

1

G(jω∗)

)

, included in the(kp, ki) plane.

Similarly to [8], we classify the stability crossing boundaries in 8 types in function of the

kind of the left and right ends of the corresponding frequency crossing interval. Precisely, we

say that a crossing surface is of typeab, a, b ∈ {1, 2, 3} if it corresponds to a crossing interval

(ωl, ωr) with ωl of typea andωr of type b. Let us notice that generally the intervals(ωl, ωr) are

closed.

C. Crossing direction

As explained in [7], [29], a pair of imaginary zeros(s̄, s) of the characteristic equation

f(s; kp, kd, ki) = 0 cross the imaginary axis through the gates−jω , jω respectively, as

(kp, kd, ki) moves from one side of a stability crossing surface to the other side. The direction of

crossing may be calculated using implicit function theoremas described in [8], [19]. Precisely,

the characteristic equationf(s; kp, kd, ki) = 0 defines an implicit functions of variableskp, kd

andki. The definition off(s; kp, kd, ki) given by (4) allows us to compute the following partial

derivatives:

∂s

∂kp
=

s2G2(s)

kiG2(s)− kds2G2(s) + s2G′(s)
,

∂s

∂kd
=

s3G2(s)

kiG2(s)− kds2G2(s) + s2G′(s)
, (13)

∂s

∂ki
=

sG2(s)

kiG2(s)− kds2G2(s) + s2G′(s)
.

Let (k̄p, k̄d, k̄i) a point belonging to a stability crossing surface and lets = jω̄, ω̄ > 0 be the

corresponding imaginary zero of the characteristic equation. Letx = (xp, xd, xi) be a unit vector



that is not tangent to the surface. Let us also use the following notation
−→
k = (kp, kd, ki) and

−→
k ∗ = (k̄p, k̄d, k̄i).

Proposition 3: A pair of zeros of (4) moves from the left half complex plane (LHP) to the

right half complex plane (RHP) as(kp, kd, ki) moves from one side of a stability crossing surface

to the other side through(k̄p, k̄d, k̄i) in the direction ofx if

ℜ

(

∂s

∂kp
xp +

∂s

∂kd
xd +

∂s

∂ki
xi

)∣

∣

∣

∣

s=jω,
−→
k =

−→
k ∗

> 0. (14)

The crossing is from the RHP to the LHP if the inequality (14) is reversed.

IV. FRAGILITY ANALYSIS OF PID CONTROLLERS

Consider now thePID fragility problem, that is the problem of computing the maximum

controller parameters deviation without loosing the closed-loop stability. In other words, given

the parameters(k∗
p, k

∗
d, k

∗
i ) such that the roots of the closed-loop characteristic equation:

Q(s) + P (s)
(

k∗
p + k∗

ds+
k∗
i

s

)

e−sτ = 0, (15)

are located inC− (that is the closed-loop system is asymptotically stable),find the maximum

parameter deviationd ∈ R+ such that the roots of (3) stay located inC− for all controllers

(kp, kd, ki) satisfying:
√

(kp − k∗
p)

2 + (kd − k∗
d)

2 + (ki − k∗
i )

2 < d.

This problem can be more generally reformulated as:find the maximum parameter deviationd

such that the number of unstable roots of (3) remains unchanged.

First, let us introduce some notation:

T =
N
⋃

l=1

Tl, Tl =
{

(kp, kd, ki)
∣

∣ω ∈ Ωl

}

,

−−→
k(ω) = (kp(ω), kd(ω), ki(ω))

T ,
−→
k∗ =

(

k∗
p, k

∗
d, k

∗
i

)T
,

−→
kab(ω) = (ka(ω), kb(ω))

T ,
−→
k∗
ab = (k∗

a, k
∗
b )

T ,

wherea, b ∈ {p, i, d}. Let us also denotedT = min
l∈{1,...,N}

dl, where

dl= min
(kp,kd,ki)∈Tl

{√

(kp − k∗
p)

2+(kd − k∗
d)

2+(ki − k∗
i )

2
}

.



A. PI-PD Controller Fragility

Let kd = k∗
d ∈ R or ki = k∗

i ∈ R be fixed, we have the following result:

Proposition 4: The maximum parameter deviation, without changing the number of unstable

roots of the closed-loop equation (3) can be expressed as:

PI-Controller: Letkd = k∗
d be fixed,

d∗pi = min

{

|k∗
i |, min

ω∈Ωfpi

{∥

∥

∥

−→
kpi(ω)−

−→
k∗
pi

∥

∥

∥

}

}

. (16)

PD-Controller: Letki = k∗
i be fixed, thend∗pd =

d∗pd=min

{

kd∞,
∣

∣k∗
p − kp(0)

∣

∣, min
ω∈Ωfpd

{∥

∥

∥

−→
kpd(ω)−

−→
k∗
pd

∥

∥

∥

}

}

, (17)

with,

kd∞=







min
{∣

∣

∣
k∗
d −

∣

∣

∣

qn
pm

∣

∣

∣

∣

∣

∣
,
∣

∣

∣
k∗
d +

∣

∣

∣

qn
pm

∣

∣

∣

∣

∣

∣

}

if m = n− 1

∅ if m < n− 1

andΩfab, a, b ∈ {p, i, d} is the set of roots of the functionfab : R+ 7→ R,

fab (ω) ,

〈

(−→
kab (ω)−

−→
k∗
ab

)

,
d
−→
kab (ω)

dω

〉

, (18)

where ” 〈·, ·〉” means the inner product.

B. DI Projection

Let kp = k∗
p ∈ R be fixed, we have the following result:

Proposition 5: The maximum parameter deviation from(k∗
d, k

∗
i ), without changing the number

of unstable roots of the closed-loop equation (3) can be expressed as:

d∗di=min







|k∗
i |,min

ωℓ∈Ωk∗p







∣

∣

∣

∣

∣

∣

ω2
ℓk

∗
d−k∗

i +ωℓℑ
{

Q(jωℓ)
P (jωℓ)

ejωℓτ
}

√

(ωℓ)4 + 1

∣

∣

∣

∣

∣

∣













, (19)

whereΩk∗p
is the set of roots of the functionfk∗p : R× R+ 7→ R,

fk∗p
(

k∗
p, ω

)

, k∗
p + ℜ

{

Q(jω)

P (jω)
ejωτ

}

. (20)

Remark 6:Observe that (20) has an uncountable number of solutions, however inProposition

5 we have considered the set including the corresponding(k∗
d, k

∗
i ) points.



C. PID Fragility Algorithm

In order to obtain the obtain the PID fragility we present thefollowing algorithm:

• Step 1: Let k∗
pid ∈ R3 be fixed. Then, setd = min

{

d∗pi, d
∗
pd, d

∗
di

}

.

• Step 2: Sweep over allθ ∈
[

−π
2
, π
2

]

and computek∗
pθ = k∗

p + d sin θ.

• Step 3: Solvefk∗p
(

k∗
pθ, ω

)

= 0 and denote byΩθ the set of solutions.

• Step 4: Compute,

d∗θ = min
ωℓ∈Ωθ







∣

∣

∣

∣

∣

∣

(ωℓ)
2k∗

d − k∗
i + ωℓℑ

{

Q(jωℓ)
P (jωℓ)

ejωℓτ
}

√

(ωℓ)4 + 1

∣

∣

∣

∣

∣

∣







.

• Step 5: If d∗θ < d cos θ then setd = d∗θ/ cos θ and go to step 2. Otherwise continue to step

2.

• Step 6: If θ = π
2
, the procedure is finish andd is the PID fragility for the controller

(

k∗
p, k

∗
d, k

∗
i

)

.

V. ILLUSTRATIVE EXAMPLES

In order to motivate the previous results, we consider in thesequel some numerical examples.

A. PID fragility analysis

Example 1:Consider the following system [24]:

G(s) =
s3 − 4s2 + s+ 2

s5 + 8s4 + 32s3 + 46s2 + 46s+ 17
e−s. (21)

By choosingk∗
p ∈

[

0, 9
2

]

, we obtain the stability region depicted in Fig.1. Next, in order to

illustrate the proposed PID fragility-algorithm, consider
(

k∗
p, k

∗
d, k

∗
i

)

= (2, 3, 3), leading to the

values in Table I and depicted in Fig.2.

TABLE I

PID FRAGILITY FOR THE EXAMPLE (21).

Controller Fragility Initial PID-Fragility
(

k∗

p , k
∗

d, k
∗

i

)

(PI, PD,DI) PID-Fragility min {d∗, d∗θ}

d∗pi = 1.68051

(2, 3, 3) d∗pd = 1.33313 d∗ = 1.27520 d∗θ = 1.26295

d∗di = 1.27520



Fig. 1. The PID stability region forkp ∈
[

0, 9

2

]

.

Fig. 2. PID-fragility for the controller
(

k∗

p, k
∗

d, k
∗

i

)

= (2, 3, 3).

Example 2 (unstable, non-minimal phase system):Consider the following plant [17],

G(s) =
s− 2

s2 − 1
2
s+ 13

4

e−
1

2
s. (22)

The interest in the analysis of this system, remains in the fact that the closed-loop plant becomes

a system ofNeutral-Type. Now, applying the same procedure as before, and considering k∗
p ∈

(0.32595, 1.625) we obtain the following stability region.

For the fragility analysis, lets consider the controller
(

k∗
p, k

∗
d, k

∗
i

)

=
(

5
8
,− 1

10
,−2

5

)

, leading to

the results summarized in Table II. Figure 4 illustrate sucha results.
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Fig. 3. The PID stability region of Neutral-Type .

TABLE II

PID FRAGILITY FOR THE EXAMPLE (22).

Controller Fragility Initial PID-Fragility
(

k∗

p , k
∗

d, k
∗

i

)

(PI,PD,DI) PID-Fragility min {d∗, d∗θ}

d∗pi = 0.29314
(

5

8
, −1

10
, −2

5

)

d∗pd = 0.16758 d∗ = 0.16758 d∗θ = 0.16453

d∗di = 0.16782

Fig. 4. PID-fragility for the controller
(

k∗

p, k
∗

d, k
∗

i

)

=
(

5

8
,− 1

10
,− 2

5

)

.



B. Stability crossing boundaries classification

Example 3:Finally, lets consider the SISO plant [5],

G(s) =
−s4 − 7s3 − 2s+ 1

(s+ 1) (s+ 2) (s+ 3) (s+ 4) (s2 + s+ 1)
e−

1
20

s. (23)

By choosing the rectangle:0 ≤ kp ≤ 5, −12 ≤ ki ≤ 5, 0 ≤ kd ≤ 10, we obtain the following

cases: Based in these results, the table III classifies the cases cited above.

Fig. 5. Boundary classification Type 1 for the system (23).

TABLE III

CLASSIFICATION INTERVALS TYPE FOR THE SYSTEMS(23).

Interval Classification

[0.37823, 3.16356] Type 11

[0.37823, 0.89290] Type 12

[0.37823, 0.41294] Type 13

[0.89290, 3.16356] Type 21

[0.41294, 3.16356] Type 31

[0.41294, 0.89290] Type 32



Fig. 6. Stability crossing boundaries classification for the system (23). (Upper) Type 2. (Lower) Type 3.

VI. CONCLUSIONS

In this paper, we focused on stabilizing a class of SISO linear systems with constant delay in

the input or output by using PID controllers. First, by exploiting the system properties we have

characterized the stability crossing boundaries in the parameter-set defined by the controller’s

parameters. Second, we have developed a simple geometricalmethod to construct the PID

stability region, that characterize the set of all stabilizing controller parameter. Finally, a simple

geometric-based algorithm is derived for computing the fragility of PID-controllers. To prove

the efficiency of the proposed methods, several illustrative examples have been considered. It

is important to note that such an idea can be easily extended to proper SISO systems with I/O

delays.
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[1] Ackermann, J., Blee, P., Bünte, T., Güvenc, L., Kaesbauer, D., Kordt, M., Muhler, M. and Odenthal, D.:Robust control.

The parameter space approach, Springer: London, 2002.

[2] Alfaro, V.M.: PID Controller’s Fragility, ISA Transactions, vol.46, pp.555-559, 2007.
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