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Event-triggered and self-triggered stabilization of distibuted networked
control systems

Romain Postoyan, Paulo Tabuada, Dragan NeSi¢, Adolfa Ant

Abstract— Event-triggered and self-triggered control have far on the so-called one packet transmission problem, which
recently been proposed as implementation strategies thatoo-  corresponds to the case when all the states are sent together
i a0 e e [ cone], o n @ single packet. This generally mplies he collocaién o
loop, some researchers have started to investig%te hovg\]/ tleesew a_‘" sensors and, for multiple-input control SySte_ms’ azdlo
implementation strategies can be applied when closing mufile- ~ tion of all actuators as well. Such an assumption does not
feedback loops in the presence of physically distributed ssors  hold in many cases. Thus, significant work on distributed
and actuators. In this paper, we consider a scenario where event-triggered control has recently appeared in [12]].[22
the distributed sensors, actuators, and controllers commuicate  These papers focus on a setup where sensors decide locally
via a shared wired channel. We use our recent prescriptive : -
framework for the event-triggered control of nonlinear sysems Wher,] they need to transmit their m_easurements. Proposed
to develop novel policies suitable for the considered distouted ~ Solutions may however be conservative as they allow several
scenario. Afterwards, we explain how self-triggering rules can ~ sensors to transmit simultaneously.
be deduced from the developed event-triggered strategies. In this paper, we consider a network setup where a central
| INTRODUCTION coordinator is available and only one group of sensors or

’ actuators (that forms aode can transmit at each trans-

Today's control systems are frequently implemented ovehission instant. This central coordinator grants access to
networks as these types of structures present many agle node selected according to a given scheduling protocol
vantages in terms of flexibility and cost. In this setupwhenever a predefined triggering rule is satisfied. We follow
controllers communicate with sensors and actuators tiroughe same approach as in [16], which is a particular case of
the network, not in a continuous fashion but rather ahis study since we considered networks that have one node
discrete time instants when the channel is available for thgnhly. Modeling the problem using the hybrid formalism of
control system. Traditionally, the time interval betweamt [8] we apply the prescriptive framework in [16] to syntheesi
successive transmissions is constrained to be less thame\@nt-triggering rules fonetworked control systen{sICS).
fixed constantl’, which is called themaximum allowable |t has to be noted that existing strategies are not directly
transmission intervalMATI) (see e.g. [6], [13], [20]). In  applicable since only a subset of sensors and actuators get
order to achieve a desired performande,is generally access to the network at a transmission instant. Hence, we
chosen asmallas technology and network load permit. Thisadapt a policy developed in [16] and develop new event-
strategy, although easy to implement and analyze, repieseftiggering rules for classes of NCS governed by uniformly
a conservative solution that may unnecessarily overload tiylobally asymptotically stable (UGAS) protocols (see [14]
communication channel. Indeed, one would expect that thewamples of UGAS protocols are the round-robin protocol
transmission instants should not satisfy a prefixed boutd bgr the try-once-discard protocol [20] as shown in [13]. To
rather be based on the current state of the system, the dhang best of the authors’ knowledge, we believe that thisés th
occupancy and the desired performance. Drawing intuitiofiyst time that event-triggered control is addressed fohsuc
from this idea, event-triggered control has been develdéped NCS.
reduce the need for feedback while guaranteeing satisfacto The scheme we introduce in this paper can be seen as a
levels of performance. It involves closing the loop whemevecentralized event-triggering policy for physically dibtited
a predefined state-dependent triggering condition isf&tis control systems, which in practice would require constant
e.g.[3], [4], [9], [19]. This technique reduces resource usaggommunication between the sensors/actuators and the co-
such as communication bandwidth or computational time angtdinator (since the decision depends on the current value
provides a high degree of robustness since the state isieonipf the system states). To overcome this problem, we show
uously monitored. Most work in this direction has focused s@ow self-triggered implementations (see [1], [2], [21]hdze
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wherexp € R"" is the plant state and € R™= the con- protocol. The time instants at which communication needs
trol input. The following stabilizing dynamic state-feetitx to be established are decided by the central coordinator

controller is designed: according to the current state of the dynamical system,
. - 5 in the spirit of event-triggered control. This central node
ic = fe(zc,zp),  u=gclae,zp), (2)  receives information from the sensors and the controller

where o € R" s the controller state. We consider a@nd evaluates a so-called triggering rule in order to decide
scenario where the controller (2) communicates with th&hether communication is needed to guarantee stability for
plant (1) via a shared centralized network. the control system. Since the triggering condition usually

Since state measurements and control inputs are no long&Pends on the state of the plant and the controller, such

t;, j € Z=, systems (1) and (2) become: the sensors, the controller and the central coordinator. To
overcome this handicap, we propose in this paper a self-

ip = fp(zp,0)  VLE[tj_1,4] triggered implementation that emulates the designed event

ic = fo(ze,¥p) VtE[tj—1,t4] (3) triggered policy, where the next transmission is decided

u = golre,Tp), based on the last data received by the coordinator (see

whereip anda denote the variables respectively generategfecnon V). Since transmission times are known in advance
from the most recent transmitted plant state and contraitinpUnder this policy, the self-triggered policy also faciéa the
through the network. Between two transmission instantSChedulability analysis for the network. _

they are generated by the in-network processing algorithm e model the problem using the hybrid formalism of [8],

modeled by functiong'» and f-- similar to [6], [7]. We group together the states of the plant
. y R gr Je and the controller in the variable = (zp,2¢) € R™ and
zp = fplxp,xc,p,0) VtE [tj_1,tj] ) we denote byx € Zx( the counter variable that may be
i@ = folzp,xc,ip,a) Vi€ [t 1,t)]. required to model protocols such as round-robin for insganc

) (see [13]). It has to be noted that additional variables may
Zero-order-hold devices are often used so thatand @ a|so be introduced for designing the triggering rule. For
are kept constant oft;_1,t;] i.e. fp = 0 and fo = 0. instance, we will see in Section IV-A that the event-trigggr
Nevertheless, we allow for other types of |mplementat_|onsstrategy in [19] is not applicable to the considered distebl
Sensors and actuators are grouped imodes depending NCS unless we introduce an appropriate auxiliary variable.
on their spatial location. At each transmission instant, Qe will also show in Section IV-B that the time-triggered
single node gets access to the channel according to thgjicy in [6] can be modified to obtain event-triggering mile
scheduling protocol and transmit its data. We model thighanks to the use of a clock-like variable. Thus, we denote

process as follows: by n € R all auxiliary variables. The model can be written
ip(ty) = xp(ty) +hp(je(t;)) as. _—
W) = ulty) + huet;) © A
j i u\J» 7)) e = fe(x,e) c C
wheree = (e;,, ey), With e,., = &p —zp ande,, = @ — u, “ =0 ¢
denoting the networked-induced error. Thus, vectois o= folz,e,mm) (6)
partitioned as: = (eq, ..., e;). At each transmission instant wto= w
t;, functionshp, h, are typically such that if the nodegets et = he(r,e) g€ D
access to the network, the corresponding efy@xperiences KT o= k+l ’
a jump while the other components effemain unchanged; o= hy(z,ek,m)

usually e;(t7) = 0 but this assumption is not needed in .
general. I(n'7 t)hat way)p and he can be used to model Whered = (z,e, r,1). We usej = fy(q) andq™ = hqy(q)
common scheduling protocols such as round-robin (RR) ndenote (6). The sets” and D are closed, included in
try-once-discard (TOD) [20], see [13] for more details. * (ng = ng + ne + 1 + ny) and respectively denote the

The sequence of transmission instanfs j € Z.o, is 10w and the jump set. Typically, the system flows Grand
traditionally defined such that< t; —t,_, < T (as in [20], ©XPeriences a jump o), where the triggering condition
[13], [6]), whereT € R-, denotes the MATI and € R~ is IS satisfied. Wheny € C'U D, the system can either jump
an arbitrary small constant which models the fact that thef? flow, the latter only if flowing keepg in C. We call
exists a minimum amount of time between two transmission? = he(r, e) the protocol wheréie = (hp, hy) as in [13],
In this study, we resort to a different paradigm: transroissi 6]. Functionsf,, hu,
are triggered according to a criterion that depends on the

-

variables of the overall system. The underlying idea behingd, :(z, e Ip(zp,ge(ro, ip) + €u) >

this paradigm is to reduce the usage of the communication felze,@p) ) X
bandwidth by transmitting data only when needed to ensure fr(zp, $c7xp,gc(ifca Ip)+ eu)
the desired stability properties. ) —fp(zp,go(zo, p) + eu)

We consider the following implementation architecture.fe :(z,€) —| fc(zp,zc,@p,9c(zc,Tp) + €u)
Sensors, actuators and controllers exchange information —%(Ic,fp)fc(zc,ip) - %(xc,fp)
through a network, where the schedule is dynamically de- xfp(zp,rc,ip, gc(vc,ip) + eu)

cided by a central coordinator. The order at which the
network is assigned to each node is defined by means of tibereip = zp + e,,., are assumed to be continuous.



The main problem addressed in this paper is to defing.r.t. to networked-induced error, which is equivalenthe t
appropriate event-triggering rules, that is, to define apps  following assumption (see Theorem 1 in [18]).

ate flow and jump seté’ and D for system (6) in order to  Assumption 1. There exists a smooth Lyapunov function

ensure asymptotic stability properties of (6) while redgci v . rre 5 R, ay,ay,o,y € Ko such that for all
the number of transmissions as much as possible. Afterwardsec Rrn=: ay (=) < V(z) < ay(|z]), and for all (z,¢) €

we explain how self-t_rigge_ring c_ont_jitions may be deriveggne+ne:

from a known event-triggering criterion. (VV(2), fo(z,e)) < —a(V(z)+7(e). (8)
We suppose that the protocol is uniformly globally asymp-
totically stable (UGAS) [14], i.e., that the following hald

o . . Assumption 2. There existiW : R R™ — R,
We recall in this section the framework of [16], originally Tw 2 K. and p € [0,1) such %ﬁa? for all (x 6)206

developed for sampled-data systems. It is based on t =0 x R" the following is satisfied:
following theorem that provides sufficient conditions that =

ensure asymptotic stability properties for system (6).al c ayy(le])
be regarded as a variation of the general results in [5]. Wk +1,he(r,e))

IIl. A PRESCRIPTIVE FRAMEWORK FOR THE
EVENT-TRIGGERED CONTROL OFNCS

Wik, e) < aw(lel) (9)
pW(k,e). (20)
Theorem 1. Consider system (6) and supposgD) C  The round-robin and try-once-discard protocols have been

(€ U D) and that there exist a locally Lipschitz functionshown to satisfy this property in [13], as well as other
R:R"™ — R and a continuous functiom : R™ — R"™  yr510c0ls (see [14] for instance). We note that whes 0

IAINA

with n,, < n, such that the following conditions hold: we recover the situation in [16] where all nodes transmit at
() There existvy,@r € Ko suchthatforany; € CUD:  each transmission instant (i.e.(x,e) = 0 in (6)) (notice
ag(l(z,e,v(n))]) < R(q) <r(|(z,e,v(n))]). that (9) implies (10) in that case).
(i) There existsar € K. such that for at ¢ € C: In view of (8), for anyo € K, with o(s) < s for s > 0,
R°(q; f4(q)) < —ar(R(q)). we have thaty(le|) < oo a(V(z)) implies:
(i) Forall g € D, R(hy(q)) < R(q).
(iv) Solutions to (6)( ﬁ:gw)e) a sén)ﬂglobal dwell timen (VV(@), fa(z,e)) < —([-0)oa(V(z)).  (11)
R\ A, where A = {q: (z,e,v(n)) = 0}. Instead of comparinde| and |z| to derive the triggering
Then the seid is S-GAS. rule as in [19], [16], we use the Lyapunov functiti(x, e¢)

. ich is characteristic of the protocol. According to (9 w
Theorem 1 can be used as a framework for the synthess‘@fave thatle| < QEVI(W('% ¢)). Therefore we can conclude

event-triggering rules for (6). The main idea is to desiga th - o 1
triggering criterion so that there exists a Lyapunov fumati that W(Wf(ﬁ’e)i < V(x)l (Where7(<s) DR ;7.0

for the overall system (6) that decreases on flows, do&gy (), for s = 2)1 'me :FS 7(|e|)h— oo O‘.Ejv(x)zc' tlgat mf_
not increase at jumps and guarantees the existence Oire%urn ensu(;e?( 2] oflowing t el m_a!nl ea of [19], a first
minimal interval of times between two jumps outside thealt empt to define the triggering rule is:

stable set. This approach has been used to investigate the FW(k,e)) > V(x). (12)
stability of other types of hybrid systems.g, see [15], [6]).
General guidelines on how to apply Theorem 1 to synthesi
triggering conditions for system (6) can be found in Sectio

}E this way, the flow and the jump sets of the corresponding
gystem (6) are:

IV in [16]. The main difference with [_16] is that the- C = L@ enr): 3(W(ke) < V(z)
dependency of the Lyapunov functidhwill depend on the (13)
considered scheduling protocol as we show it in Section IV. D = J(z,ek):7W(k,e))>V(x);.

IV. EVENT-TRIGGERED STRATEGIES The problem with this policy is that we have no guarantee

. . that(z, e, k) enters intoC after a jump. Indeed, while in [19]
_We apply the framework of Section Ill to synthesize eventagar each jump is reset td), here typically only a subvector
triggering rules for NCS. Two strategies are proposed byl is yeset to zero after each transmission (see Section i#). Th

others can be developed by using Theorem 1. may not be enough fof(W (, ¢)) to become less thai(z).

A. Using a threshold-like variable As a consequence, th_e triggering rule (12)_ may generate
_ i ) several transmissions in a row before entering iGtdhat

~ First, we show that the event-triggering strategy proposeg unrealistic and contradicts item (iv) of Theorem 1. To

in [19] for sampled-data systems is not directly applicablgvercome this drawback, we introduce a variable R>

to distributed NCS. Hence, we redesign this technique agth the following dynamics:

in [16] by introducing an auxiliary variable. It has to be S +_ %

noted that the method in Section V.B in [16] cannot be 1 o), " V(W €)), (14)

applied ‘off-the-shelf’ here as we need to adapt the styategvhere § is any locally Lipschitz clas#,, function. The

to the protocol. We suppose that the controller (2) has beeystem is now modeled as:

designed to make the closed-loop system (1) input-to-stabl , _ folz,e) ot =
5 — + —
é = fe(z,e eT = he(k,e
1We consider theR° (¢; f4(q)), the Clarke derivative oR (see [16]), by . {)e( e) qeC, + _ el 1’ ) q€ D,
abuse of notation, althougR is not necessarily locally Lipschitz iR. This 'i - ko= ’f +
is justified since the component ¢f (¢) corresponding tos is 0. 7 = —4(n) nt = 3(W(k,e))

2See Definition 2 in [16] (15)



whereq = (z, e, k,n) and the set€” and D are defined as (i) For all (z,e, k) € R™ 1" x Z>(:

> 5(W(r.e)) andn = 0} VO (a: Sl 0) < —ollal) — olle]) — HA()
< 5(W(k,e)) andy > 0. +G(z,e)W?(k, ¢). (18)

(16) In [6], L and G are supposed to be constant that implies
The variablen can be regarded as a decreasing threshold ehat systemi = f,(x,e) is L»-gain stable fromW to
~(W) in view of (14), and thus we enter int@ after a jump. H. Making L and G state-dependent allows us to enlarge
Indeed, we have thaj™ = 3(W (k,e)) > 4(pW(k,e)) > the studied class of systems and to eventually obtain less
~(W(k*,eT)) according to (10), (14) and singe< 1 and conservative upper bounds in (17) and (18) that will help to
7 is strictly increasing, therefore™ € C. We are now enlarge the inter-event intervals. Model (6) becomes here:
able to apply Theorem 1 to guarantee stability properties

for system (15) and the existence of dwell times. Its proof x = fa(ze)
is based on Theorem 1 with the Lyapunov functiBfy) = ¢ = ge(xa e) geC
max{V (x),3(W(k,e)),n} andv(n) = n. 7’;” _ ConL(r.e) - — Glae)

Theorem 2. Consider system (15) and suppose the fol- . _ ’ ’ (19)
lowing conditions hold. et = he(ke)

(i) Assumptions 1-2 are satisfied. t = K:_ 1’ qe D,

(i) Function¥(W) is locally Lipschitz ine. o= a

(iii) For any compact sef C R"=""< there existly, Lo €
R>( such that for any(z,e) € S, k € Z>, whereq = (z, e, k,7), a is any constant ifp, o) andn € R
. plays the role of mentioned above and is called a clock-like
(VV (@), fula,e))| < Li(V(z) +5(W(k,e))) variable (see [6]). The sets and D are:

AOVS (e feme)l < La(V(@) +3(F (5,e). C—{anciuta), D={gn—af) (@0

(iv) There exists € [0,1) such thatlim 12 — ¢,
§—>

) 0 70s) ] Note that, instead of setting™ to p~! at jumps as in [6],
ThenA = {q : (x,e,n) = 0} is S-GAS and solutions 0 we consider any: € (p, oc) that may help generating larger
(15) have a semiglobal dwell time d&f*+\ A. inter-execution intervals.

Items (iii) and (iv) need to be added to guarantee the Remark 1. We focus in this paper on NCS for which

ex_istence of dwell times compared_ to Theorem 3 in [16]0nly one node among the nodes communicates at each
It is easy to check that condition (iv) of Theorem 2 holds,znsmission instant so that > 0. Whenp = 0, as in [16]

when? is polynomial or homogeneous of degree& Z~o.  \ye can redefine the sets in (20) as follows:= {g:ne
B. Using a clock-like variable [b,c]}, D ={q:n=0b} where0 < b < c some constants.

In [6], NCS with time-triggered execution are modeled as a The following theorem ensures the stability of system
hybrid system similar to (6) by introducing a clock variable (19) and the existence of dwell times. It can be seen as an
that would correspond tg = 7 in (6). The flow and the jump @pplication of Theorem 1 wittR(q) = V(z) + nW?(x, )
sets are defined as being bigger or not than a given fixed andv(n) = 0.
bound7" known as the MATI. This constart corresponds  Theorem 3. Consider system (19) and suppose Assump-
to the time it takes for the solution of the ordinary diffeti@h  tion 2-3 hold with W locally Lipschitz ine. Then the set
equation( = —2L¢ — v(¢* + 1) to decrease from™' to A = {q : (z,¢) = 0} is S-GAS and solutions to (19) have
p, where L andy are some constants (see (5) in [6]) anda semiglobal dwell time o™\ A.

p € (0,1) is given by Assumption 2, which is assumed

to hold. In this subsection, we reduce the conservativeness V. SELF-TRIGGERED CONTROL

of the strategy in [6] by making the ordinary differential  ag mentioned before, the proposed event-triggering
equation that defines state-dependent. This allqws US ©gschemes in Section IV require the coordinator to contin-
consider a larger class of systems and to potentially ealarg, sy evaluate the triggering condition. This may induce

the inter-execution intervals compared to [6]. We supposg gjgnificant cost in terms of communication, computation
that Assumption 2 is satisfied wily" locally Lipschitz ine 00" 4g power. To overcome these drawbacks, a possible
and that the following holds. solution lies in the self-triggered strategy. Self-trigegbcon-

Assumption 3. There exist a locally Lipschitz function trol considers the mathematical model of the control system
V : R"™ — R and continuous function#/ : R"* — R>o, and the last measurement of the plant states and/or the last
L,G : R"™*"e — Rsq, ay,av € Koo, 0 : R — R con-  control input in order to derive the next transmission insta
tinuous, positive definite such that the following condiio It represents a model-based emulation of event-triggered
holds. control in the sense that it identifies the time instants a@tlwvh

(i) Forall (z,e, k) € R%+"e x Zq, the jump condition is satisfied. In this section, we suppose

. B that an event-triggering strategy has been designed sath th
We(e; fe(z,€)) < L(z,e)W (k,e) + H(z), (17)  the following conditions hold.

whereW comes from Assumption 2. Assumption 4. The conditions of Theorem 1 hold and
(i) Forall z € R™: ay(|z]) < V(z) <ay(|z]). item (iii) is satisfied onC' U D for system (6) with flow



and jump sets of the forrd’ = {q : T'(¢9) < 0} and parameters choice in (21), we introduce an arbitrary small
D ={q:T(q) > 0} wherel" : R™ — R>. constants: € Ry in (22) to guarantee the existence of a

Assumption 4 requires data transmission at the followinfj'stified since Assumption 4 implies the existence of such a
time instant, forj € Z-o: constant time (semiglobally), in view of item (iv) of Theane

1. The following theorem shows that the properties ensured
7(j) = inf{t > t;_1,(t,j—1) € dom¢ : T'(4(t,j—1)) = 0}, by the considered event-triggering strategy are maintiine

where ¢ is a solution to (6). In order to guarantee stability,under the proposed self-triggering rules. ) )

data transmission needs to occur no later thgj). When =~ Theorem 4. Let f, andI' be smooth functions ifx, e, n).

only the previous measurement of the state is available, thinder Assumption 4, the sgt= {q : (x,e,v(n)) =0} is S-
computation ofr(j) in an exact way is in most cases notGAS for system (22) and solutions to (22) have a semiglobal
possible. The self-triggered strategy computes a lowenou dwell time onR"7\ A.

for 7(;) at which the next jump will occur. In [2], this lower  gelf-triggering rules can be derived for the event-trigger
bound is taken to be&(j) = A(j)t., whereA(j) is strictly  strategies developed in Section IV as follows. For Section

positive and satisfies for eadh, j) € dom¢: IV-B, we takeI'(q) = n — ap®. The functionT is smooth
n—1 and we assume thaf,, f., L, G are smooth functions in
ZQ(U} D)(o(t;, )N (4) = 0, (21) (z,e,m). Embedding system (19) into (22) allows us to
P 1 obtain a self-triggered control technique. The conclusion

o L of Theorem 4 apply as all the required conditions hold.

“’C"f‘grf‘%e rkaigtalgen%telcj thia E%Qe”"a“"%%“ofra'fngi;gs For the event-triggered control of Section IV-A, we cannot
L =Ly (L D), (LyD)(2) = 5 f(2) @and Lyl = f. The yagina o) — 5(1W(k, €)) — max{V(z), 7} asT will not be

parameters, € R-, andg; € R are coefficients computed smooth. Therefore, we defirig (q) = (W (x, ) — 7 and

from f, and I'. We assume that’ and f, are smooth Ta(q) = 5(W(k,e)) — V(z). By assuming tha§(W) and

funct|.ons In.(x,.e,n).‘ By abuse of notation we consider theV are smooth ir: andz respectively, we see that andT

ith L_|e denyatlve_ﬁfql“ even t_hou_g_hfq gndr may not  5re smooth iz, e,n). We modify the jump equation for,

be d|ﬁerentlable ink (this is justified sincex = 0 on in (22) as follows:7; = max{Ai(k)t., Aa(k)t, } where\;

flows). Equation (21) corresponds to the bound provided i@ isfies (21) with® = Ty, i € {1,2}. Under this setup, the

Theorem V.4 in [2]. Guidelines for the design parametetyqitions of Theorem 4 are satisfied provided thatf.. s
t, are provided in Section VIII-A in [2], and the set of .4 slrrlmoth. ISfied provi hatfe,

parameters; have to be chosen to satisfy inequality (V.12)
in [2]. We refer to [2] for a more detailed description of VI. I LLUSTRATIVE EXAMPLE

the roles played by these coefficients and how to compute 1, jjystrate the proposed strategy, we consider the cbntro

them frpm the expressions of, .and L. .The parameter ¢ a jet engine compressor. We borrow the model from [10]:
n > 1 in (21) represents a design choice that trades the

. . 3 1
accuracy of the_ bound for the_ compL_JtatlorjaI' complexity. In b1 = —wg — o2? — Zg? E9 = u, (24)
other words, high values af imply times 7(j) closer to
7(j) (and therefore less transmissions), but at the cost @fheres; represents the mass flow, is the pressure rise
solving a more complex algebraic equation. Since we Maynd 4, is the throttle mass flow. In this model the origin
now transmit beforel'(q) = 0, we suppose item (iii) of has peen translated to the desired equilibrium point, hence

Theorem 1 holds o’ U D (and not onlyD) in order to  the objective is to steefz;, =) to zero. The control law
guarantee that the considered Lyapunov function still dogs — 4, — 44, — 923 — 3% is designed to stabilize the
not increase at jumps. This additional condition typicallysystem. This controller is connected to the two sensors
comes for free as it is the case in Section IV for instancneasuringz; and z» through a network under the TOD
The problem is modeled as follows: protocol. For simplicity, we consider that the controller

is connected to the actuator. Nonetheless, as pointed out

3,1 z {q(q) jeC previously in this paper, the developed framework accounts
o= 0 for the more realistic case of the controller and the actuato
= hy(q) (22) not being collocated. We implement the event-triggering
4 = Na\g o~ strategy proposed in Section IV-A. Assumption 1 is satisfied
=0 eD ;
LT q ’ with V(z) = %x% + %(:102 — 371)%, a(s) = —0.066s,
7y = max{A(k)ts, e} ~(s) = 4.37-10%2 +9.10- 10°* for s > 0. Assumption 2 is

wherer, € R is a clock variable and, € R is used to satisfied forlV(e) = |¢| for the TOD protocol, where; and
define the next transmission instafit= (¢, 71, 72), and the €2 represent the network-induced errors farand,, and

setsC and D are: with p = ,/I*Tl = % as the number of nodes is= 2 (see
~ =~ Proposition 5 in [13]). We seleet(s) = 0.9s in (11) and thus
C={:melnl}, D={T:nzn} @) obtainy (W (k, e)) := 7.34 - 10(5|)e|2 +1.52-10%|e|*. The

It is shown in [2] that the formula in (21) can be usedYalmip software [11] was used to compute, v and

to design7(j) that is very close tor(j). Nevertheless, to (W (k,e)). We now construct a linear differential equation

prevent from the situation where the self-triggering téagha  for the auxiliary variablen: » = —0.01n, with initial

of [2] generates conservative times because of an inadequabndition (0,0) = 5000. It is expected that larger values



n N S1 G2 S3

r'i;: 4 —8.06-10° —226.07 481.76 —258.47
'y 3 —1.46-103 —1.21-10%  4.94.103 -
TABLE |
PARAMETERS FOR THE SELFTRIGGERED TECHNIQUE
Periodic [6] Event-triggered  Self-triggered
0.010 0.061 0.046
TABLE 1l

AVERAGE INTER-TRANSMISSION TIME FOR200INITIAL CONDITIONS.

novel event-triggering rules for distributed NCS. We have
then shown how self-triggering conditions can then been
derived (under some conditions) by applying the techniques
in [2]. This work represents the first step towards a more
fundamental question in distributed networked controlegi

a set of physically distributed sensors and actuators, how
should communication between the different nodes be sched-
uled? Ad-hoc solutions to this problem include the TOD
protocol, where the node with the largest network-induced
error information is granted access to the communication
channel. The presented framework can be further explored
&{) design communication protocols that decide the order at

of 7(0,0) would enlarge the transmission times, at the co
of a degradation in performance. It can be verified tha
items (ii)-(iv) of Theorem 2 hold (we use the fact that
is a polynomial function to show item (iv) of Theorem 2). [1]
We derive as well a self-triggered emulation of the event-
g9
triggered technique of Section IV-A. As detailed at the end
of Section V, we considel;(q) := 5(W(k,e)) — n and
I2(q) :=7(W(k,e)) = V(x). The design parameters for the [3]
self-triggering condition are reported in Table I. In bot#ses
we considered, = 103, [4]
We compare the event-triggered strategy herein proposed
with a periodic implementation. In order to compute a period [5]
we apply the technique in [6]. For an operating ball of radius
1, the obtained period & = 0.010. For the comparison, we [g]
consider 200 different initial conditions randomly dibtrted
in a ball of radius 1. Table Il shows the average inter-
transmission time under the three different strategiesh Bo
the event-triggered and the self-triggered strategy ofdpa
the periodic approach. The gap between the event-triggeredl
and the self-triggered inter-transmission times is duehto t
conservativeness of the technique in [2]. To further iHatt  [9]
the proposed approach, we depict as well the evolution of
the transmission times and the network-induced error undgg
the self-triggered strategy for a particular initial camah
(2(0,0) = (0.95,—0.14), (0,0) = (0,0)). The plot shows [11]
how the network grants access to the node with the larggsh;
error. Likewise, the transmission times vary according to
the current state of the plant. This fact suggests that ﬂfﬁ]
rigid periodic paradigm overloads unnecessarily the ngtwo
and the flexibility and adaptability of event-triggered toh
(and consequently self-triggered control) is able to refax
requirement and reduce network usage.

(7]

[14]
[15]
[16]

0.1

01
0.00
0.08

0.07

‘Transmission times[s]

[17]

0.06

0.05

0.04

o 0.2 0.4 0.6 0.8 1 12

(18]

[19]
[20]

Network-induced error

o 0.2 0.4

[21]

0.6
timels]

Fig. 1. Evolution of the transmission times and the netwdsikeluced [22]
error under the self-triggered strategy.
VIl. CONCLUSION

We have used the prescriptive framework in [16] orig-
inally developed for sampled-data systems to synthesize

\{yhich each node needs to send information.
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