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Event-triggered and self-triggered stabilization of distributed networked control systems

Event-triggered and self-triggered control have recently been proposed as implementation strategies that considerably reduce the resources required for control. Although most of the work so far has focused on closing a single control loop, some researchers have started to investigate how these new implementation strategies can be applied when closing multiplefeedback loops in the presence of physically distributed sensors and actuators. In this paper, we consider a scenario where the distributed sensors, actuators, and controllers communicate via a shared wired channel. We use our recent prescriptive framework for the event-triggered control of nonlinear systems to develop novel policies suitable for the considered distributed scenario. Afterwards, we explain how self-triggering rules can be deduced from the developed event-triggered strategies.

I. INTRODUCTION

Today's control systems are frequently implemented over networks as these types of structures present many advantages in terms of flexibility and cost. In this setup, controllers communicate with sensors and actuators through the network, not in a continuous fashion but rather at discrete time instants when the channel is available for the control system. Traditionally, the time interval between two successive transmissions is constrained to be less than a fixed constant T , which is called the maximum allowable transmission interval (MATI) (see e.g. [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF]). In order to achieve a desired performance, T is generally chosen as small as technology and network load permit. This strategy, although easy to implement and analyze, represents a conservative solution that may unnecessarily overload the communication channel. Indeed, one would expect that the transmission instants should not satisfy a prefixed bound but rather be based on the current state of the system, the channel occupancy and the desired performance. Drawing intuition from this idea, event-triggered control has been developed to reduce the need for feedback while guaranteeing satisfactory levels of performance. It involves closing the loop whenever a predefined state-dependent triggering condition is satisfied, e.g. [START_REF] Arzén | A simple event-based PID controller[END_REF], [START_REF] Aström | Comparison of Riemann and Lebesgue sampling for first order stochastic systems[END_REF], [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. This technique reduces resource usage such as communication bandwidth or computational time and provides a high degree of robustness since the state is continuously monitored. Most work in this direction has focused so far on the so-called one packet transmission problem, which corresponds to the case when all the states are sent together in a single packet. This generally implies the collocation of all sensors and, for multiple-input control systems, collocation of all actuators as well. Such an assumption does not hold in many cases. Thus, significant work on distributed event-triggered control has recently appeared in [START_REF] Mazo | Decentralized event-triggered control over wireless sensor/actuator networks[END_REF], [START_REF] Wang | Asymptotic stability in distributed eventtriggered networked control systems with delays[END_REF]. These papers focus on a setup where sensors decide locally when they need to transmit their measurements. Proposed solutions may however be conservative as they allow several sensors to transmit simultaneously.

In this paper, we consider a network setup where a central coordinator is available and only one group of sensors or actuators (that forms a node) can transmit at each transmission instant. This central coordinator grants access to the node selected according to a given scheduling protocol whenever a predefined triggering rule is satisfied. We follow the same approach as in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF], which is a particular case of this study since we considered networks that have one node only. Modeling the problem using the hybrid formalism of [START_REF] Goebel | Solution to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF], we apply the prescriptive framework in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] to synthesize event-triggering rules for networked control systems (NCS). It has to be noted that existing strategies are not directly applicable since only a subset of sensors and actuators get access to the network at a transmission instant. Hence, we adapt a policy developed in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] and develop new eventtriggering rules for classes of NCS governed by uniformly globally asymptotically stable (UGAS) protocols (see [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF]). Examples of UGAS protocols are the round-robin protocol or the try-once-discard protocol [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF] as shown in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. To the best of the authors' knowledge, we believe that this is the first time that event-triggered control is addressed for such NCS.

The scheme we introduce in this paper can be seen as a centralized event-triggering policy for physically distributed control systems, which in practice would require constant communication between the sensors/actuators and the coordinator (since the decision depends on the current value of the system states). To overcome this problem, we show how self-triggered implementations (see [START_REF] Anta | To sample or not to sample: self-triggered control for nonlinear systems[END_REF], [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF], [START_REF] Wang | Self-triggered feedback control systems with finite-gain L 2 stability[END_REF]) can be derived from a known event-triggering strategy by applying the techniques in [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF]. Under this paradigm, the coordinator decides the next time instant at which communication should occur based on the last received information.

The proofs are omitted for space reasons and can be found in [START_REF] Postoyan | Event-triggered and self-triggered stabilization of distributed networked control systems[END_REF].

II. PROBLEM STATEMENT

Due to space constraints, we omit the description of the notation and definitions used throughout this paper and refer the reader to Section II in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF]. Consider the plant:

ẋP = f P (x P , u), (1) 
where x P ∈ R nP is the plant state and u ∈ R nu the control input. The following stabilizing dynamic state-feedback controller is designed:

ẋC = f C (x C , x P ), u = g C (x C , x P ), (2) 
where x C ∈ R nC is the controller state. We consider a scenario where the controller (2) communicates with the plant (1) via a shared centralized network. Since state measurements and control inputs are no longer continuously available but only at given transmission instants t j , j ∈ Z >0 , systems (1) and (2) become:

ẋP = f P (x P , û) ∀t ∈ [t j-1 , t j ] ẋC = f C (x C , xP ) ∀t ∈ [t j-1 , t j ] u = g C (x C , xP ), (3) 
where xP and û denote the variables respectively generated from the most recent transmitted plant state and control input through the network. Between two transmission instants, they are generated by the in-network processing algorithm modeled by functions fP and fC :

ẋP = fP (x P , x C , xP , û) ∀t ∈ [t j-1 , t j ] u = fC (x P , x C , xP , û) ∀t ∈ [t j-1 , t j ]. (4) 
Zero-order-hold devices are often used so that xP and û are kept constant on [t j-1 , t j ] i.e. fP = 0 and fC = 0. Nevertheless, we allow for other types of implementations.

Sensors and actuators are grouped into l nodes depending on their spatial location. At each transmission instant, a single node gets access to the channel according to the scheduling protocol and transmit its data. We model this process as follows:

xP (t + j ) = x P (t j ) + h P (j, e(t j )) û(t + j ) = u(t j ) + h u (j, e(t j )),

where e = (e xP , e u ), with e xP = xPx P and e u = ûu, denoting the networked-induced error. Thus, vector e is partitioned as e = (e 1 , . . . , e l ). At each transmission instant t j , functions h P , h u are typically such that if the node i gets access to the network, the corresponding error e i experiences a jump while the other components of e remain unchanged; usually e i (t + j ) = 0 but this assumption is not needed in general. In that way, h P and h C can be used to model common scheduling protocols such as round-robin (RR) or try-once-discard (TOD) [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF], see [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] for more details.

The sequence of transmission instants t j , j ∈ Z >0 , is traditionally defined such that ε ≤ t jt j-1 ≤ T (as in [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF], [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]), where T ∈ R >0 denotes the MATI and ε ∈ R >0 is an arbitrary small constant which models the fact that there exists a minimum amount of time between two transmissions. In this study, we resort to a different paradigm: transmissions are triggered according to a criterion that depends on the variables of the overall system. The underlying idea behind this paradigm is to reduce the usage of the communication bandwidth by transmitting data only when needed to ensure the desired stability properties.

We consider the following implementation architecture. Sensors, actuators and controllers exchange information through a network, where the schedule is dynamically decided by a central coordinator. The order at which the network is assigned to each node is defined by means of the protocol. The time instants at which communication needs to be established are decided by the central coordinator according to the current state of the dynamical system, in the spirit of event-triggered control. This central node receives information from the sensors and the controller and evaluates a so-called triggering rule in order to decide whether communication is needed to guarantee stability for the control system. Since the triggering condition usually depends on the state of the plant and the controller, such setup requires in general continuous communication between the sensors, the controller and the central coordinator. To overcome this handicap, we propose in this paper a selftriggered implementation that emulates the designed eventtriggered policy, where the next transmission is decided based on the last data received by the coordinator (see Section V). Since transmission times are known in advance under this policy, the self-triggered policy also facilitates the schedulability analysis for the network.

We model the problem using the hybrid formalism of [START_REF] Goebel | Solution to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF], similar to [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved event-triggering[END_REF]. We group together the states of the plant and the controller in the variable x = (x P , x C ) ∈ R nx and we denote by κ ∈ Z ≥0 the counter variable that may be required to model protocols such as round-robin for instance (see [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]). It has to be noted that additional variables may also be introduced for designing the triggering rule. For instance, we will see in Section IV-A that the event-triggering strategy in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] is not applicable to the considered distributed NCS unless we introduce an appropriate auxiliary variable. We will also show in Section IV-B that the time-triggered policy in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] can be modified to obtain event-triggering rules thanks to the use of a clock-like variable. Thus, we denote by η ∈ R nη all auxiliary variables. The model can be written as:

ẋ = f x (x, e) ė = f e (x, e) κ = 0 η = f η (x, e, κ, η)      q ∈ C x + = x e + = h e (κ, e) κ + = κ + 1 η + = h η (x, e, κ, η)      q ∈ D, (6) 
where q = (x, e, κ, η). We use q = f q (q) and q + = h q (q) to denote [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. The sets C and D are closed, included in R nq (n q = n x + n e + 1 + n η ) and respectively denote the flow and the jump set. Typically, the system flows on C and experiences a jump on D, where the triggering condition is satisfied. When q ∈ C ∪ D, the system can either jump or flow, the latter only if flowing keeps q in C. We call e + = h e (κ, e) the protocol where h e = (h P , h u ) as in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. Functions f η , h η ,

f x :(x, e) → f P (x P , g C (x C , xP ) + e u ) f C (x C , xP ) f e :(x, e) →       fP (x P , x C , xP , g C (x C , xP ) + e u ) -f P (x P , g C (x C , xP ) + e u ) fC (x P , x C , xP , g C (x C , xP ) + e u ) -∂gC ∂xC (x C , xP )f C (x C , xP ) -∂gC ∂ xP (x C , xP ) ×f P (x P , x C , xP , g C (x C , xP ) + e u )       (7)
where xP = x P + e xP , are assumed to be continuous.

The main problem addressed in this paper is to define appropriate event-triggering rules, that is, to define appropriate flow and jump sets C and D for system [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] in order to ensure asymptotic stability properties of (6) while reducing the number of transmissions as much as possible. Afterwards, we explain how self-triggering conditions may be derived from a known event-triggering criterion.

III. A PRESCRIPTIVE FRAMEWORK FOR THE

EVENT-TRIGGERED CONTROL OF NCS We recall in this section the framework of [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF], originally developed for sampled-data systems. It is based on the following theorem that provides sufficient conditions that ensure asymptotic stability properties for system [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. It can be regarded as a variation of the general results in [START_REF] Cai | Smooth Lyapunov functions for hybrid systems part II: (pre)asymptotically stable compact sets[END_REF].

Theorem 1. Consider system [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] and suppose h q (D) ⊂ (C ∪ D) and that there exist a locally Lipschitz function R : R nq → R and a continuous function υ : R nη → R nυ with n υ ≤ n η such that the following conditions hold:

(i) There exist α R , α R ∈ K ∞ such that for any q ∈ C ∪D: α R (|(x, e, υ(η))|) ≤ R(q) ≤ α R (|(x, e, υ(η))|). (ii) There exists α R ∈ K ∞ such that for all 1 q ∈ C: R • (q; f q (q)) ≤ -α R (R(q)). (iii) For all q ∈ D, R(h q (q)) ≤ R(q).
(iv) Solutions to [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] have a semiglobal dwell time2 on R nq \A, where A = q : (x, e, υ(η)) = 0 . Then the set A is S-GAS.

Theorem 1 can be used as a framework for the synthesis of event-triggering rules for [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. The main idea is to design the triggering criterion so that there exists a Lyapunov function for the overall system (6) that decreases on flows, does not increase at jumps and guarantees the existence of a minimal interval of times between two jumps outside the stable set. This approach has been used to investigate the stability of other types of hybrid systems (e.g., see [START_REF] Nešić | Stability properties of reset systems[END_REF], [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]). General guidelines on how to apply Theorem 1 to synthesize triggering conditions for system (6) can be found in Section IV in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF]. The main difference with [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] is that the edependency of the Lyapunov function R will depend on the considered scheduling protocol as we show it in Section IV.

IV. EVENT-TRIGGERED STRATEGIES

We apply the framework of Section III to synthesize eventtriggering rules for NCS. Two strategies are proposed but others can be developed by using Theorem 1.

A. Using a threshold-like variable

First, we show that the event-triggering strategy proposed in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] for sampled-data systems is not directly applicable to distributed NCS. Hence, we redesign this technique as in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] by introducing an auxiliary variable. It has to be noted that the method in Section V.B in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] cannot be applied 'off-the-shelf' here as we need to adapt the strategy to the protocol. We suppose that the controller (2) has been designed to make the closed-loop system (1) input-to-stable w.r.t. to networked-induced error, which is equivalent to the following assumption (see Theorem 1 in [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF]).

Assumption 1. There exists a smooth Lyapunov function

V : R nx → R, α V , α V , α, γ ∈ K ∞ such that for all x ∈ R nx : α V (|x|) ≤ V (x) ≤ α V (|x|)
, and for all (x, e) ∈ R nx+ne : ∇V (x), f x (x, e) ≤ -α(V (x)) + γ(|e|).

(8) We suppose that the protocol is uniformly globally asymptotically stable (UGAS) [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF], i.e., that the following holds.

Assumption 2. There exist W : R ≥0 × R ne → R ≥0 , α W , α W ∈ K ∞ and ρ ∈ [0, 1) such that for all (κ, e) ∈ Z ≥0 × R ne the following is satisfied:

α W (|e|) ≤ W (κ, e) ≤ α W (|e|) (9) W (κ + 1, h e (κ, e)) ≤ ρW (κ, e). ( 10 
)
The round-robin and try-once-discard protocols have been shown to satisfy this property in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], as well as other protocols (see [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF] for instance). We note that when ρ = 0 we recover the situation in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] where all nodes transmit at each transmission instant (i.e. h e (κ, e) = 0 in ( 6)) (notice that ( 9) implies [START_REF] Krstić | Lean backstepping design for a jet engine compressor model[END_REF] in that case).

In view of ( 8), for any σ ∈ K ∞ with σ(s) < s for s > 0, we have that γ(|e|) ≤ σ • α(V (x)) implies:

∇V (x), f x (x, e) ≤ -(I -σ) • α(V (x)). (11) 
Instead of comparing |e| and |x| to derive the triggering rule as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF], we use the Lyapunov function W (κ, e) which is characteristic of the protocol. According to (9), we have that |e| ≤ α -1 W (W (κ, e)). Therefore we can conclude that γ(W (κ, e)) ≤ V (x) (where γ(s

) = α -1 • σ -1 • γ • α -1 W (s), for s ≥ 0) implies γ(|e|) ≤ σ • α(V (x))
, that in return ensures [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF]. Following the main idea of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], a first attempt to define the triggering rule is:

γ(W (κ, e)) ≥ V (x). (12) 
In this way, the flow and the jump sets of the corresponding system (6) are:

C = (x, e, κ) : γ(W (κ, e)) ≤ V (x) D = (x, e, κ) : γ(W (κ, e)) ≥ V (x) . (13) 
The problem with this policy is that we have no guarantee that (x, e, κ) enters into C after a jump. Indeed, while in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] after each jump e is reset to 0, here typically only a subvector e i is reset to zero after each transmission (see Section II).This may not be enough for γ(W (κ, e)) to become less than V (x).

As a consequence, the triggering rule (12) may generate several transmissions in a row before entering into C that is unrealistic and contradicts item (iv) of Theorem 1. To overcome this drawback, we introduce a variable η ∈ R ≥0 with the following dynamics:

η = -δ(η), η + = γ(W (κ, e)), (14) 
where δ is any locally Lipschitz class-K ∞ function. The system is now modeled as:

ẋ = f x (x, e) ė = f e (x, e) κ = 0 η = -δ(η)      q ∈ C, x + = x e + = h e (κ, e) κ + = κ + 1 η + = γ(W (κ, e))      q ∈ D, (15) 
where q = (x, e, κ, η) and the sets C and D are defined as C = q : max{V (x), η} ≥ γ(W (κ, e)) and η ≥ 0 D = q : max{V (x), η} ≤ γ(W (κ, e)) and η ≥ 0 .

(16) The variable η can be regarded as a decreasing threshold on γ(W ) in view of ( 14), and thus we enter into C after a jump. Indeed, we have that η + = γ(W (κ, e)) ≥ γ(ρW (κ, e)) ≥ γ(W (κ + , e + )) according to [START_REF] Krstić | Lean backstepping design for a jet engine compressor model[END_REF], ( 14) and since ρ < 1 and γ is strictly increasing, therefore q + ∈ C. We are now able to apply Theorem 1 to guarantee stability properties for system [START_REF] Nešić | Stability properties of reset systems[END_REF] and the existence of dwell times. Its proof is based on Theorem 1 with the Lyapunov function R(q) = max{V (x), γ(W (κ, e)), η} and υ(η) = η. Theorem 2. Consider system [START_REF] Nešić | Stability properties of reset systems[END_REF] and suppose the following conditions hold.

(i) Assumptions 1-2 are satisfied.

(ii) Function γ(W ) is locally Lipschitz in e.

(iii) For any compact set S ⊂ R nx+ne , there exist L 1 , L 2 ∈ R ≥0 such that for any (x, e) ∈ S, κ ∈ Z ≥0 ,

| ∇V (x), f x (x, e) | ≤ L 1 (V (x) + γ(W (κ, e))) |γ(W ) • (e; f e (x, e))| ≤ L 2 (V (x) + γ(W (κ, e)

)).

(iv) There exists ǫ ∈ [0, 1) such that lim s→0 γ(ρs) γ(s) = ǫ. Then A = {q : (x, e, η) = 0} is S-GAS and solutions to [START_REF] Nešić | Stability properties of reset systems[END_REF] have a semiglobal dwell time on R nq \A.

Items (iii) and (iv) need to be added to guarantee the existence of dwell times compared to Theorem 3 in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF]. It is easy to check that condition (iv) of Theorem 2 holds when γ is polynomial or homogeneous of degree k ∈ Z >0 .

B. Using a clock-like variable

In [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], NCS with time-triggered execution are modeled as a hybrid system similar to (6) by introducing a clock variable τ that would correspond to η = τ in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. The flow and the jump sets are defined as τ being bigger or not than a given fixed bound T known as the MATI. This constant T corresponds to the time it takes for the solution of the ordinary differential equation ζ = -2Lζγ(ζ 2 + 1) to decrease from ρ -1 to ρ, where L and γ are some constants (see [START_REF] Cai | Smooth Lyapunov functions for hybrid systems part II: (pre)asymptotically stable compact sets[END_REF] in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]) and ρ ∈ (0, 1) is given by Assumption 2, which is assumed to hold. In this subsection, we reduce the conservativeness of the strategy in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] by making the ordinary differential equation that defines ζ state-dependent. This allows us to consider a larger class of systems and to potentially enlarge the inter-execution intervals compared to [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. We suppose that Assumption 2 is satisfied with W locally Lipschitz in e and that the following holds.

Assumption 3. There exist a locally Lipschitz function V : R nx → R and continuous functions H : R nx → R ≥0 , L, G : R nx+ne → R ≥0 , α V , α V ∈ K ∞ , ̺ : R → R continuous, positive definite such that the following conditions holds.

(i) For all (x, e, κ) ∈ R nx+ne × Z ≥0 , W • (e; f e (x, e)) ≤ L(x, e)W (κ, e) + H(x), [START_REF] Postoyan | Event-triggered and self-triggered stabilization of distributed networked control systems[END_REF] where W comes from Assumption 2.

(ii) For all x ∈ R nx : α V (|x|) ≤ V (x) ≤ α V (|x|).
(iii) For all (x, e, κ) ∈ R nx+ne × Z ≥0 :

V • (x; f x (x, e)) ≤ -̺(|x|) -̺(|e|) -H 2 (x) +G(x, e)W 2 (κ, e). (18) 
In [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], L and G are supposed to be constant that implies that system ẋ = f x (x, e) is L 2 -gain stable from W to H. Making L and G state-dependent allows us to enlarge the studied class of systems and to eventually obtain less conservative upper bounds in ( 17) and ( 18) that will help to enlarge the inter-event intervals. Model ( 6) becomes here:

ẋ = f x (x, e) ė = f e (x, e) κ = 0 η = -2ηL(x, e) -η 2 -G(x, e)      q ∈ C x + = x e + = h e (κ, e) κ + = κ + 1 η + = a      q ∈ D, (19) 
where q = (x, e, κ, η), a is any constant in (ρ, ∞) and η ∈ R plays the role of ζ mentioned above and is called a clock-like variable (see [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]). The sets C and D are:

C = q : η ∈ [aρ 2 , a] , D = q : η = aρ 2 , ( 20 
)
Note that, instead of setting η + to ρ -1 at jumps as in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], we consider any a ∈ (ρ, ∞) that may help generating larger inter-execution intervals. Remark 1. We focus in this paper on NCS for which only one node among the l nodes communicates at each transmission instant so that ρ > 0. When ρ = 0, as in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF], we can redefine the sets in [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF] as follows: C = q : η ∈ [b, c] , D = q : η = b where 0 < b < c some constants.

The following theorem ensures the stability of system [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] and the existence of dwell times. It can be seen as an application of Theorem 1 with R(q) = V (x) + ηW 2 (κ, e) and υ(η) = 0. Theorem 3. Consider system [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] and suppose Assumption 2-3 hold with W locally Lipschitz in e. Then the set A = {q : (x, e) = 0} is S-GAS and solutions to [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] have a semiglobal dwell time on R nq \A.

V. SELF-TRIGGERED CONTROL

As mentioned before, the proposed event-triggering schemes in Section IV require the coordinator to continuously evaluate the triggering condition. This may induce a significant cost in terms of communication, computation time and power. To overcome these drawbacks, a possible solution lies in the self-triggered strategy. Self-triggered control considers the mathematical model of the control system and the last measurement of the plant states and/or the last control input in order to derive the next transmission instant. It represents a model-based emulation of event-triggered control in the sense that it identifies the time instants at which the jump condition is satisfied. In this section, we suppose that an event-triggering strategy has been designed such that the following conditions hold.

Assumption 4. The conditions of Theorem 1 hold and item (iii) is satisfied on C ∪ D for system [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] with flow and jump sets of the form C = {q : Γ(q) ≤ 0} and D = {q : Γ(q) ≥ 0} where Γ : R nq → R ≥0 . Formally speaking, the event-triggered control strategy in Assumption 4 requires data transmission at the following time instant, for j ∈ Z >0 :

τ (j) = inf{t > t j-1 , (t, j-1) ∈ dom φ : Γ(φ(t, j-1)) = 0},
where φ is a solution to [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. In order to guarantee stability, data transmission needs to occur no later than τ (j). When only the previous measurement of the state is available, the computation of τ (j) in an exact way is in most cases not possible. The self-triggered strategy computes a lower bound for τ (j) at which the next jump will occur. In [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF], this lower bound is taken to be τ (j) = λ(j)t * , where λ(j) is strictly positive and satisfies for each (t j , j) ∈ dom φ:

n-1 i=0 ς i (L i fq Γ)(φ(t j , j))λ i (j) = 0, (21) 
where we have denoted the ith Lie derivative of Γ along f as

L i f Γ = L f (L i-1 f Γ), (L f Γ)(x) = ∂Γ ∂x f (x)
and L 0 f Γ = f . The parameters t * ∈ R >0 and ς i ∈ R are coefficients computed from f q and Γ. We assume that Γ and f q are smooth functions in (x, e, η). By abuse of notation we consider the ith Lie derivative L i fq Γ even though f q and Γ may not be differentiable in κ (this is justified since κ = 0 on flows). Equation ( 21) corresponds to the bound provided in Theorem V.4 in [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF]. Guidelines for the design parameter t * are provided in Section VIII-A in [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF], and the set of parameters ς i have to be chosen to satisfy inequality (V.12) in [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF]. We refer to [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF] for a more detailed description of the roles played by these coefficients and how to compute them from the expressions of q and Γ. The parameter n > 1 in (21) represents a design choice that trades the accuracy of the bound for the computational complexity. In other words, high values of n imply times τ (j) closer to τ (j) (and therefore less transmissions), but at the cost of solving a more complex algebraic equation. Since we may now transmit before Γ(q) = 0, we suppose item (iii) of Theorem 1 holds on C ∪ D (and not only D) in order to guarantee that the considered Lyapunov function still does not increase at jumps. This additional condition typically comes for free as it is the case in Section IV for instance. The problem is modeled as follows:

q = f q (q) τ1 = 1 τ2 = 0    q ∈ C q + = h q (q) τ + 1 = 0 τ + 2 = max{λ(κ)t * , ε}    q ∈ D, (22) 
where τ 1 ∈ R ≥0 is a clock variable and τ 2 ∈ R ≥0 is used to define the next transmission instant, q = (q, τ 1 , τ 2 ), and the sets C and D are:

C = q : τ 1 ∈ [0, τ 2 ] , D = q : τ 1 ≥ τ 2 . ( 23 
)
It is shown in [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF] that the formula in [START_REF] Wang | Self-triggered feedback control systems with finite-gain L 2 stability[END_REF] can be used to design τ (j) that is very close to τ (j). Nevertheless, to prevent from the situation where the self-triggering technique of [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF] generates conservative times because of an inadequate parameters choice in [START_REF] Wang | Self-triggered feedback control systems with finite-gain L 2 stability[END_REF], we introduce an arbitrary small constant ε ∈ R >0 in [START_REF] Wang | Asymptotic stability in distributed eventtriggered networked control systems with delays[END_REF] to guarantee the existence of a minimal interval of time between two transmissions. This is justified since Assumption 4 implies the existence of such a constant time (semiglobally), in view of item (iv) of Theorem 1. The following theorem shows that the properties ensured by the considered event-triggering strategy are maintained under the proposed self-triggering rules. Theorem 4. Let f q and Γ be smooth functions in (x, e, η). Under Assumption 4, the set A = { q : (x, e, υ(η)) = 0} is S-GAS for system [START_REF] Wang | Asymptotic stability in distributed eventtriggered networked control systems with delays[END_REF] and solutions to [START_REF] Wang | Asymptotic stability in distributed eventtriggered networked control systems with delays[END_REF] have a semiglobal dwell time on R n q \ A.

Self-triggering rules can be derived for the event-triggered strategies developed in Section IV as follows. For Section IV-B, we take Γ(q) = ηaρ 2 . The function Γ is smooth and we assume that f x , f e , L, G are smooth functions in (x, e, η). Embedding system [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] into [START_REF] Wang | Asymptotic stability in distributed eventtriggered networked control systems with delays[END_REF] allows us to obtain a self-triggered control technique. The conclusions of Theorem 4 apply as all the required conditions hold. For the event-triggered control of Section IV-A, we cannot define Γ(q) = γ(W (κ, e)) -max{V (x), η} as Γ will not be smooth. Therefore, we define Γ 1 (q) = γ(W (κ, e))η and Γ 2 (q) = γ(W (κ, e)) -V (x). By assuming that γ(W ) and V are smooth in e and x respectively, we see that Γ 1 and Γ 2 are smooth in (x, e, η). We modify the jump equation for τ 2 in [START_REF] Wang | Asymptotic stability in distributed eventtriggered networked control systems with delays[END_REF] as follows: τ + 2 = max{λ 1 (κ)t * , λ 2 (κ)t * } where λ i satisfies [START_REF] Wang | Self-triggered feedback control systems with finite-gain L 2 stability[END_REF] with Γ = Γ i , i ∈ {1, 2}. Under this setup, the conditions of Theorem 4 are satisfied provided that f x , f e , δ are smooth.

VI. ILLUSTRATIVE EXAMPLE

To illustrate the proposed strategy, we consider the control of a jet engine compressor. We borrow the model from [START_REF] Krstić | Lean backstepping design for a jet engine compressor model[END_REF]:

ẋ1 = -x 2 - 3 2 x 2 1 - 1 2 x 3 1 , ẋ2 = u, (24) 
where x 1 represents the mass flow, x 2 is the pressure rise and u is the throttle mass flow. In this model the origin has been translated to the desired equilibrium point, hence the objective is to steer (x 1 , x 2 ) to zero. The control law u = 4x 1 -4x 2 -9 2 x 2 1 -3 2 x 3 1 is designed to stabilize the system. This controller is connected to the two sensors measuring x 1 and x 2 through a network under the TOD protocol. For simplicity, we consider that the controller is connected to the actuator. Nonetheless, as pointed out previously in this paper, the developed framework accounts for the more realistic case of the controller and the actuator not being collocated. We implement the event-triggering strategy proposed in Section IV-A. Assumption 1 is satisfied with V

(x) = 1 2 x 2 1 + 1 2 (x 2 -3x 1 ) 2 , α(s) = -0.066s, γ ( 
s) = 4.37 • 10 4 s 2 + 9.10 • 10 6 s 4 for s ≥ 0. Assumption 2 is satisfied for W (e) = |e| for the TOD protocol, where e 1 and e 2 represent the network-induced errors for x 1 and x 2 , and with ρ = l-1 l = 1 √ 2 as the number of nodes is l = 2 (see Proposition 5 in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]). We select σ(s) = 0.9s in [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF] and thus we obtain γ(W (κ, e)) := 7.34 • 10 5 |e| 2 + 1.52 • 10 8 |e| 4 . The Yalmip software [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF] was used to compute α, γ and γ(W (κ, e)). We now construct a linear differential equation for the auxiliary variable η: η = -0.01η, with initial condition η(0, 0) = 5000. Periodic [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] Event-triggered Self-triggered 0.010 0.061 0.046 of η(0, 0) would enlarge the transmission times, at the cost of a degradation in performance. It can be verified that items (ii)-(iv) of Theorem 2 hold (we use the fact that γ is a polynomial function to show item (iv) of Theorem 2). We derive as well a self-triggered emulation of the eventtriggered technique of Section IV-A. As detailed at the end of Section V, we consider Γ 1 (q) := γ(W (κ, e))η and Γ 2 (q) := γ(W (κ, e)) -V (x). The design parameters for the self-triggering condition are reported in Table I. In both cases we considered t * = 10 -3 .

We compare the event-triggered strategy herein proposed with a periodic implementation. In order to compute a period, we apply the technique in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. For operating ball of radius 1, the obtained period is T = 0.010. For the comparison, we consider 200 different initial conditions randomly distributed in a ball of radius 1. Table II shows the average intertransmission time under the three different strategies. Both the event-triggered and the self-triggered strategy outperform the periodic approach. The gap between the event-triggered and the self-triggered inter-transmission times is due to the conservativeness of the technique in [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF]. To further illustrate the proposed approach, we depict as well the evolution of the transmission times and the network-induced error under the self-triggered strategy for a particular initial condition (x(0, 0) = (0.95, -0.14), e(0, 0) = (0, 0)). The plot shows how the network grants access to the node with the largest error. Likewise, the transmission times vary according to the current state of the plant. This fact suggests that the rigid periodic paradigm overloads unnecessarily the network, and the flexibility and adaptability of event-triggered control (and consequently self-triggered control) is able to relax this requirement and reduce network usage. 

VII. CONCLUSION

We have used the prescriptive framework in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] originally developed for sampled-data systems to synthesize novel event-triggering rules for distributed NCS. We have then shown how self-triggering conditions can then been derived (under some conditions) by applying the techniques in [START_REF] Anta | Exploiting isochrony in self-triggered control[END_REF]. This work represents the first step towards a more fundamental question in distributed networked control: given a set of physically distributed sensors and actuators, how should communication between the different nodes be scheduled? Ad-hoc solutions to this problem include the TOD protocol, where the node with the largest network-induced error information is granted access to the communication channel. The presented framework can be further explored to design communication protocols that decide the order at which each node needs to send information.
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 1 Fig. 1. Evolution of the transmission times and the networked-induced error under the self-triggered strategy.

  It is expected that larger values

	n	ς 0	ς 1	ς 2	ς 3
	Γ 1 : 4	-8.06 • 10 3	-226.07	481.76	-258.47
	Γ 2 : 3	-1.46 • 10 3	-1.21 • 10 3	4.94 • 10 3	-
			TABLE I		
	PARAMETERS FOR THE SELF-TRIGGERED TECHNIQUE.

TABLE II AVERAGE

 II INTER-TRANSMISSION TIME FOR 200 INITIAL CONDITIONS.

We consider the R • (q; fq(q)), the Clarke derivative of R (see[START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF]), by abuse of notation, although R is not necessarily locally Lipschitz in κ. This is justified since the component of fq(q) corresponding to κ is 0.

See Definition 2 in[START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] 
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