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Some remarks on vehicle following control
systems with delays

Woihida Aggoune∗, Irinel-Constantin Morărescu†, Silviu-Iulian Niculescu‡

Abstract

In this paper, we consider the problem of vehicle following con-
trol with delay. To solve the problem of traffic congestion, one of the
solutions to be considered consists in organizing the traffic into pla-
toons, that is groups of vehicles including a leader and a number of
followers ”tightly” spaced, all moving in a longitudinal direction. Ex-
cepting the stability of individual cars, the problem of avoidance of
slinky type effects will be explicitly discussed. Sufficient conditions
on the set of control parameters to avoid such a phenomenon will be
explicitly derived in a frequency-domain setting.

1 INTRODUCTION

Traffic congestion(irregular flow of traffic) became an important problem
in the last decade mainly to the exponential increasing of the transportation
around medium- and large-size cities. One of the ideas to help solving this
problem was the use of automatic control to replace human drivers and their
low-predictable reaction with respect to traffic problems.As an example,
human drivers have reaction time between0.25 − 1.25 sec of around30m
or more at60kms/hour (see, for instance, Sipahi and Niculescu [2007] for a
complete description of human drivers reactions, and further comments on
existing traffic flow models).
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Gif-sur-Yvette, France, E-mail:Silviu.Niculescu@lss.supelec.fr

1
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A way to solve this problem is to organize the traffic intoplatoons, con-
sisting in groups of vehicles including a leader and a numberof followers
in a longitudinal direction. In this case, the controller ofeach vehicle of a
platoon would use the sensor information to try to reach the speed and ac-
celeration of the preceding vehicle. Another problem to be considered is the
so-calledslinky-type effect(see, e.g. Burnhamet al. [1974], Ioannou and
Chien [1993], Shiekholslam and Desoer [1993] and the references therein).
This is a phenomenon of amplification of the spacing errors between subse-
quent vehicles as vehicle index increases.

In Huang and Ren [1998], a control scheme to solve this multi-objective
control problem was proposed. Known asautonomous intelligent cruise con-
trol, the controller in this scheme has access only to the relative state infor-
mation of the preceding vehicle. This study is made under theassumptions
that the leading vehicle performs a maneuver in finite time before reaching
a steady state, and that prior to a maneuver, all the vehiclesmove at the
same steady speed. The stability analysis of the system in closed-loop was
performed by using a Lyapunov-Razumikhin approach leadingto conserva-
tive conditions. The slinky-effect type phenomenon was discussed and some
sufficient conditions to avoid slinky effects have been proposed, but without
any explicit attempt in computing the whole set of controller’s parameters
guaranteeing the requested property. To the best of the authors’ knowledge,
such a problem has not received a definitive answer.

The aim of this paper is to give better answers to the problem mentioned
above - construction of explicit control laws guaranteeingsimultaneously
individual stability and the avoidance of the slinky-type effect phenomenon.
We use a frequency-domain method to give necessary and sufficient con-
ditions for the individual stability analysis by computingthe explicit delay
bounds guaranteeing asymptotic stability. Next, we shall explicitly compute
bounds on the controller’s gains ensuring the avoidance of the slinky effects.

The remaining paper is organized as follows: In Section 2, the problem
formulation is presented. In Section 3, we state and prove our main results
concerning the stability of the system and the slinky effectavoidance con-
ditions. In section 4, an illustrative example is presented. Finally, some
concluding remarks end the paper.
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2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

The general schema of a platoon ofn vehicles is represented below, where
xi(t) is the position of theith vehicle with respect to some reference point
O andHi is the minimum separation distance allowable between the corre-
sponding vehicles.

… 1i-1i

i i i
v H

direction of travel

Lead car

1 1i i l
x x x x

Figure 1: Platoon configuration

The goal is to maintain a distanceλvi +Hi between vehiclei andi− 1,
whereλ is a prescribed headway constant andvi the corresponding velocity
(see Huang and Ren [1998]). The spacing errorδi between the vehiclesi and
(i− 1) is defined as :

δi(t) = xi−1(t)− xi(t)− (λvi +Hi)

in the case of system (1).
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2.1 Model of vehicle dynamics

For each vehicle of the platoon, the model is of the form:











ẋi(t) = vi(t)
v̇i(t) = γi(t)

γ̇i(t) = − 1

η
γi(t) +

1

mη
ui(t− τi)− 1

mη
TL,

(1)

wherexi(t), vi(t) andγi(t) represent respectively the position, the speed
and the acceleration of theith vehicle. Here,η is the vehicle’s engine time-
constant,m is the vehicle mass,TL is the load torque on the engine speed,
gear ratio, grade change etc., and it is assumed to be constant. τi is the
total (corresponding) delay (including fueling and transport, etc.) for theith
vehicle (see Huang and Ren [1997] for more details).

2.2 Control law

In Huang and Ren [1998], the proposed control law is given by:

ui(t) = k′sδi(t) + k′v δ̇i(t) + TL, (2)

wherek′s andk′v are design constants. If one applies the control law (2) to
the system (1), we shall obtain the following third order delay equation:

d3

dt3
δi(t) = −α

d2

dt2
δi(t)− ksδi(t− τi)

−(kv + λks)
d

dt
δi(t− τi)− λkv

d2

dt2
δi(t− τi)

+ksδi−1(t− τi−1) + kv
d

dt
δi−1(t− τi−1),

(3)

whereks andkv are derived fromk′s andk′v by an appropriate re-scaling.
For the sake of simplicity, the corresponding computationsare omitted (see
Huang and Ren [1997] and Huang and Ren [1998]).

2.3 Frequency domain formulation

2.3.1 Individual stability

A basic control requirement for the overall system is the asymptotic stability
of the ith vehicle if the preceding, the(i − 1)th, is at steady-state (i.e. the



Vehicle following control systems with delays 5

spacing errors verify:δi−1 = δ̇i−1 = 0). In this case, the system is described
by:

d3

dt3
δi(t) = −α

d2

dt2
δi(t)− ksδi(t− τi)

−(kv + λks)
d

dt
δi(t− τi)− λkv

d2

dt2
δi(t− τi).

(4)

Taking the Laplace transform, under zero initial conditions, we obtain a
third-order transcendental equation of the form

Γi(s, τi) , s3 + αs2 + [λkvs
2 + (kv + λks)s+ ks]e

−τis

= Q(s) + P (s)e−sτ = 0. (5)

Assumption 1 (a) P (0) 6= 0

(b) The polynomialsP (s) andQ(s) do not have common zeros

If Assumption 1.(a) is violated, then 0 is a zero ofΓi(s, τi) for anyτi ∈ R+.
Therefore, the system is never asymptotically stable. If assumption 1.(b) is
not satisfied,P (s) andQ(s) have a common factorc(s) 6= constant. Sim-
plifying by c(s) we get a system described by (5) which satisfies assumption
1.(b).

The individual vehicle stability is guaranteed if and only if Γ has all its
roots in the left half complex plane. This depends on the delay magnitudeτi.

Then the problem of stability can be formulated as a researchof param-
etersα, λ, ks andkv such that this condition is ensured.

2.3.2 Avoiding slinky effect

The second part of the multi-objective problem previously defined consist
in controlling the slinky effect. The goal is to find sufficient conditions to
guarantee that we avoid such a phenomenon. Considering the system (3)
and applying the Laplace transform, one gets

G(s) , δi(s)/δi−1(s) =
(ks + skv)e

−τi−1s

(ks + (kv + λks)s+ λkvs2)e−τis + αs2 + s3
.

(6)
One has noslinky-type effectif:

|G(jw)| = | δi(jw)

δi−1(jw)
| < 1 (7)

for anyw > 0 (see Ioannou and Chien [1993], Shiekholslam and Desoer
[1993], Swaroopet al. [1994]). Then the problem turns out in finding the set
of parameters(ks, kv) and the delaysτi such that the stability of the system
(4) is guaranteed and the condition (7) is satisfied.
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3 MAIN RESULTS

3.1 Delay stability margin

Before proceeding further, we consider the case without delay. The closed-
loop system free of delay is asymptotically stable when the polynomialΓi(s, 0)
is Hurwitz. Sinceα, ks, kv ∈ R+, the third-order polynomial:

s3 + (α+ λkv)s
2 + (kv + λks)s + ks = 0 (8)

is Hurwitz if and only if:

(α+ λkv)(kv + λks) > ks, (9)

which is equivalent to

λk2v + (α+ λ2ks)kv + (αλ− 1)ks > 0. (10)

Note that a sufficient condition for (10) is:

kv >
1− αλ

λ2
.

Denote now byΩ the set of crossing frequencies, that is the set of reals
ω > 0, such that±jω is a solution of the characteristic equation (5). Then
the following statement holds.

Proposition 1 Consider the characteristic equation (5) associated to the
system (4). Then:

(a) the crossing frequency setΩ is not empty

(b) the system is asymptotically stable for all delaysτi ∈ (0, τ⋆) whereτ⋆

is defined by:

τ⋆ = min
ω∈Ω

{

τk(ω) | τk(ω) > 0, k ∈ Z

}

, (11)

where

τk(ω) =
1

ω
((2k + 1)π + ∠(Q(jw)) − ∠(P (jw))

Proof. (a) Straightforward. Assume by contradiction that the delay-independent
stability holds. As discussed in Niculescu [2001], a necessary condition for
delay-independent stability is the Hurwitz stability ofQ, and this is not the
case.
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(b) Since the system free of delay is asymptotically stable,the conclusion
of (a) leads to the existence of a delay marginτ⋆, such that the system is
asymptotically stable for all delaysτ ∈ [0, τ⋆). Furthermore atτ = τ⋆ the
system becomes unstable if and only if the characteristic equation (5) has at
least one roots = jw on the imaginary axis. In other words if there exists
w ∈ Ω a crossing frequency. Since

P (jw)

Q(jw)
= −e−jwτ (12)

one can derive the delay values corresponding to each crossing frequencyω
as:

τk(ω) =
1

ω

(

(2k + 1)π +∠(Q(jw)) − ∠(P (jw)
)

(13)

Obviouslyτ∗ is the smallest positive value that satisfies the previous relation.

The condition(a) above simply says that the corresponding system can-
not be delay-independent asymptotically stable, and the condition (b) above
gives an explicit expression of the delay marginτ⋆.

3.2 Stability analysis in controller parameter space (kv, ks)

In the sequel, we study the behavior of the system for a fixed delay valueτ .
More precisely, for a givenτ = τ∗ we search the crossing frequenciesω and
the correspondingcrossing pointsin the parameter space(kv, ks) defined by
the control law such thatQ(jω, kv , ks, τ

∗) + P (jω, kv , ks, τ
∗)e−jωτ∗ = 0.

According to the continuity of zeros with respect to the delay parame-
ters, the number of roots in the right-half plane (RHP) can change only when
some zeros appear and cross the imaginary axis. Thus, it is natural to con-
sider thefrequency crossing setΩ consisting of all real positiveω such that
there exist at least a pair(kv , ks) for which

H(jω, kv , ks, τ
∗) , Q(jω) + P (jω)e−jωτ = 0. (14)

Remark 1 Using the conjugate of a complex number we get

H(jω, kv , ks, τ) = 0 ⇔ H(−jω, kv , ks, τ) = 0.

Therefore, it is natural to consider only positive frequencies, that isΩ ⊂
(0,∞).

Considering that the setΩ and the parametersα, λ are known we can easily
derive all the crossing points in the parameter space(kv , ks).
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Proposition 2 For a givenτ > 0 andω ∈ Ω the corresponding crossing
point (kv , ks) is given by:

kv =
ω2(1− αλ) cos ωτ + ω(α+ λω2) sinωτ

1 + λ2ω2
(15)

ks =
ω2(λω2 + α) cos ωτ + ω3(αλ− 1) sinωτ

1 + λ2ω2
(16)

Proof. Using the decomposition of the equation (14) into real and imaginary
part, straightforward computation lead us to

kv + λks = ω(ω cosωτ + α sinωτ), (17)

ks − λkvω
2 = ω2(α cosωτ − ω sinωτ) (18)

and further we can derive the result stated above.
To illustrate our purpose, let us consider the case whereα = 5, λ = 1 and
τ = 0.5, then for eachω ∈ Ω the corresponding crossing points(kv , ks) are
represented in the following figure.

−30 −20 −10 0 10 20 30
−800

−600

−400

−200

0

200

400

600

800

kv

ks

Figure 2: Crossing points

Remark 2 For all ω ∈ Ωwe haveP (jω) 6= 0. Indeed, it is easy to see that if
ω ∈ Ω, then there exists at least one pair(kv, ks) such thatH(jω, k, T, τ) =
0. Therefore, assuming thatP (jω) = 0 we get alsoQ(jω) = 0 which
contradicts assumption 1.(b).

Since we are interested to find the crossing points(kv , ks) such thatkv and
ks arefinite the frequency crossing setΩ is characterized by the following:
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Proposition 3 The frequency crossing setΩ consists of a finite number of
intervals of finite length.

Proof. It is obvious from the equations (15) and (16) that the controller
parameterskv andks approach infinity whenω → ∞. Thus, in order to
have finite values forkv andks we have to impose an upper limit for the
variation ofω. On the other hand, consideringΩ ⊂ (0,M ], it is clear that
the inequalitieskv > 0 andks > 0 are simultaneously satisfied forω into a
finite number of intervals included in(0,M ].

Let us suppose thatΩ =

N
⋃

ℓ=1

Ωℓ. Then (15) and (16) define a continuous

curve. Using the notations introduced in the previous paragraph and the
technique developed in Guet al. [2005a] and Morărescuet al. [2007], we
can easily derive the crossing direction corresponding to this curve.

More exactly, let us denoteTℓ the curve defined above and consider the
following decompositions into real and imaginary parts:

R0 + jI0 =
j

s

∂H(s, kv , ks, τ)

∂s

∣

∣

∣

∣

s=jω

R1 + jI1 = − 1

s

∂H(s, kv, ks, τ)

∂kv

∣

∣

∣

∣

s=jω

,

R2 + jI2 = − 1

s

∂H(s, kv, ks, τ)

∂ks

∣

∣

∣

∣

s=jω

.

Then, sinceH(s, kv, ks, τ) is an analytic function ofs, kv andks, the im-
plicit function theorem indicates that the tangent ofTℓ can be expressed as







dkv
dω
dks
dω






=

1

R1I2 −R2I1

(

R1I0 −R0I1
R0I2 −R2I0

)

, (19)

provided that
R1I2 −R2I1 6= 0. (20)

It follows thatTℓ is smooth everywhere except possibly at the points where
either (20) is not satisfied, or when

dkv
dω

=
dks
dω

= 0. (21)

From the above discussions, we can conclude with the following:
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Proposition 4 The curveTℓ is smooth everywhere except possibly at the
point corresponding tos = jω such thats = jω is a multiple solution
of (14).

Proof. If (21) is satisfied then staightforward computations show us that
R0 = I0 = 0. In other wordss = jω is a multiple solution of (14).

On the other hand,

R1I2 −R2I1 = −ω(1 + λ2ω2) < 0, ∀ω > 0.

The next paragraph focuses on the characterization of the crossing direc-
tion corresponding to each of the curves defined by (15) and (16) (see, for
instance, Morărescu [2006] or Morărescu and Niculescu [2007] for similar
results for different problems).

We will call the direction of the curve that corresponds to increasingω
the positive direction. We will also call the region on the left hand side as
we head in the positive direction of the curvethe region on the left.

Proposition 5 Assumeω ∈ Ωℓ, kv, ks satisfy (15) and (16) respectively, and
ω is a simple solution of (14) andH(jω′, kv, ks, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω
(i.e. (kv , ks) is not an intersection point of two curves or different sections
of a single curve).

Then a pair of solutions of (14) cross the imaginary axis to the right,
through s = ±jω if R1I2 − R2I1 > 0. The crossing is to the left if the
inequality is reversed.

Remark 3 In the proof of Proposition 4 we have shown thatR1I2−R2I1 is
always negative. Thus, a system described by (14) may have more than one
stability region in controller parameter space(kv, ks) if one of the following
two items are satisfied:

• it has one or more crossing curves with some turning points (the di-
rection ofTℓ in controller parameter space changes).

• it has at least two different crossing curves with opposite direction in
(kv, ks) - space.

3.3 Avoiding slinky effects

Now, we treat the second part of the multi-objective problemunder consid-
eration. This correspond to the characterization of the conditions guarantee-
ing that we avoid slinky-effects. We consider the system (3). Applying the
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Laplace transform one obtains:

G(s) =
δi(s)

δi−1(s)
=

(ks + skv)e
−τi−1s

(ks + (kv + λks)s+ λkvs2)e−τis + αs2 + s3
. (22)

There is no slinky effect if :

|G(jw)| < 1, ∀ω > 0 (23)

This condition can be rewritten as:

A(w, τi)(w) = w2B(w, τi) ≥ 0 (24)

with

B(w, τi)(w) = w4 − 2λkvsin(wτi)w
3+

(λ2k2v + α2 + 2(αλkv − kv − λks)cos(wτi))w
2+

2(ks − α(kv + λks))sin(wτi)w ++λ2k2s − 2αkscos(wτi)
(25)

which should be satisfied for allw ∈ IR.
The objective is to define conditions on the parameters of thecontroller, in
order to satisfy this constraint.
Consider first the caseτi = 0. Then, we have:

B(w, 0) = w4 +
[

(λkv + α)2 − 2(kv + λks)
]

w2

+ λ2k2s − 2αks

(26)

A necessary condition for the positivity ofB(w, 0) is

λ2k2s − 2αks > 0, (27)

which implies that:

ks ∈ (
2α

λ2
,+∞) (28)

Under this condition, the positivity ofB(w, 0) is guaranteed if:
[

(λkv + α)2 − 2(kv + λks)
]2 ≤ 4(λ2k2s − 2αks). (29)

which leads to:

−2ksλ

√

1− 2α

λ2ks
≤ (λkv + α)2 − 2(kv + λks)

≤ 2ksλ

√

1− 2α

λ2ks

(30)
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In order to complete this analysis, we want to characterize the set of param-
eterskv guaranteeing the previous inequality under the constraint(28).
If we consider first the right part of (30), which is equivalent to:

λ2k2v + 2(λα− 1)kv + α2 − 2λks(1 +

√

1− 2α

λ2ks
) ≤ 0

we can remark that if

ks > max{2α
λ2

,
2αλ− 1

2λ3
} (31)

then there exists at least one positive valuekv, such that the right part of (30)
is satisfied. Moreoverkv should satisfy:

max{0, 1− αλ−
√
∆1

λ2
} ≤ kv ≤ 1− αλ+

√
∆1

λ2
. (32)

where

∆1 = 1− 2αλ + 2λ3ks
(

1 +

√

1− 2α

λ2ks

)

.

The left inequality in (30) can be rewritten as:

λ2k2v + 2(λα− 1)kv + α2 − 2λks(1−
√

1− 2α

λ2ks
) ≥ 0

This leads to the following condition onkv :

kv∈(−∞,
1− αλ−

√
∆2

λ2
] ∪ [

1− αλ+
√
∆2

λ2
,+∞). (33)

where

∆2 = 1− 2αλ+ 2λ3ks
(

1−
√

1− 2α

λ2ks

)

is assumed to be positive. If∆2 < 0, then the left part of (30) will be satisfied
for all positivekv. Finally, using the conditions (32) and (33) function of
the sign of∆2, it follows thatkv must be chosen in the intersection of the
intervals defined by (32) and (33).

Now we analyze the sign ofB(w, τi) whenτi ≥ 0. We consider again
the expression given in (24) ofB(w, τi).
For the terms involvingcos(wτi), we have:

−2αkscos(wτi) ≥ −2αks

and
2(αλkv − kv − λks)cos(wτi) ≥ −2|αλkv − kv − λks|.
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Concerning the terms involvingsin(wτi), sincesin(wτi) ≤ wτi for w > 0
then:

−2λkvsin(wτi)w
3 ≥ −2λkvτiw

4 ≥ −2λkvτ
⋆w4

and
2(ks − α(kv + λks))sin(wτi)w

≥ −2|ks − α(kv + λks)|τiw2

≥ −2|ks − α(kv + λks)|τ⋆w2.

Therefore,

B(w, τi) ≥ (1− 2λkvτ
⋆)w4 + [λ2k2v + α2

−2|αλkv − kv − λks| −2τ⋆|ks − α(kv + λks)|]w2

+λ2k2s − 2αks

≥ (1− 2λkvτ
⋆)w4 + [(λkv − α)2 − 2kv − 2λks

−2τ⋆ks −2τ⋆α(kv + λks)]w
2 + λ2k2s − 2αks≥0.

Let us set :

C(w, τ⋆) = (1− 2λkvτ
⋆)w4 + [(λkv − α)2 − 2kv

−2λks − 2τ⋆ks − 2τ⋆α(kv + λks)]w
2+λ2k2s−2αks

We suppose that :
1− 2λkvτ

⋆ > 0. (34)

Then the positivity ofC(w, τ⋆) is ensured if (28) is satisfied and if we have:

[(λkv − α)2 − 2kv − 2λks − 2τ⋆ks

−2τ⋆α(kv + λks)]
2≤ 4(1− 2λkvτ

⋆)(λ2k2s − 2αks).
(35)

This leads to the condition:

−2ksλ

√

(1− 2α

λ2ks
)(1 − 2λkvτ

⋆) ≤

(λkv − α)2 − 2kv − 2λks−2τ⋆(ks+α(kv + λks))

≤ 2ksλ

√

(1− 2α

λ2ks
)(1− 2λkvτ

⋆)

(36)
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Now, we search to define the set of parameterskv which satisfy these in-
equalities.

If we consider the right part of (36), which can be rewritten as:

λ2k2v − 2(1 + αλ+ ατ⋆)kv + α2 −2τ⋆(ks + αλks)

−2λks
(

1 +

√

(1− 2α

λ2ks
)(1− 2λkvτ

⋆)
)

≤ 0,

(37)

with kv under the square root.

Since1− 2λkvτ
⋆ ≤ 1 and1− 2α

λ2ks
≤ 1 then

λ2k2v − 2(1 + αλ+ ατ⋆)kv + α2 −2τ⋆(ks + αλks)

−2λks
(

1 +

√

(1− 2α

λ2ks
)(1− 2λkvτ

⋆)
)

≤ λ2k2v−2(1 + αλ+ ατ⋆)kv+α
2−2τ⋆(ks + αλks)

−2λks
(

1 + (1− 2λkvτ
⋆)(1− 2α

λ2ks
)
)

(38)

Thus, if we can findkv such that:

λ2k2v − 2(1 + αλ+ 5ατ⋆ − 2τ⋆λ2ks)kv

+α2 − 2τ⋆(1 + αλ)ks − 4λks +
4α

λ
≤ 0

(39)

then the right part of (36), would be satisfied.
A necessary condition to guarantee this previous conditionis to have:

∆1,τ⋆ =
(

1 + αλ+ 5ατ⋆ − 2τ⋆λ2ks

)2

−λ2

(

α2 − 2τ⋆(1 + αλ)ks − 4λks +
4α

λ

)

≥ 0

(40)

and then under this condition, we choosekv as follows :

max{0, a1 −
√

∆1,τ⋆

λ2
} ≤ kv ≤ a1 +

√

∆1,τ⋆

λ2
. (41)
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wherea1 = 1 + αλ+ 5ατ⋆ − 2τ⋆λ2ks.

We can remark that (40) can be rewritten as:

4τ⋆
2

λ4k2s + 2λ2
(

2λ− τ⋆(1 + 10ατ⋆ + αλ)
)

ks

+(1 + 5ατ⋆)2 + 2αλ[5ατ⋆ − 1] ≥ 0

Note that this last inequality leads to the following condition onks:

ks ∈
(

−∞, ξ1]
⋃

[ξ2,+∞
)

(42)

where

ξ1=
λ2

(

2λ− τ⋆(1 + 10ατ⋆ + αλ)
)

−
√

∆1,τ⋆

4τ⋆2λ4

and

ξ2=
λ2

(

2λ− τ⋆(1 + 10ατ⋆ + αλ)
)

+
√

∆1,τ⋆

4τ⋆2λ4
.

∆1,τ⋆=λ4
(

2λ− τ⋆(1 + 10ατ⋆ + αλ)
)2− 4τ⋆

2

λ4[(1 + 5ατ⋆)2 + 2αλ(5ατ⋆ − 1)]

which is supposed to be positive. If it is not the case, then the condition (40)
is verified for allks ≥ 0.

We consider now the left part of (36), which can be rewritten as :

0≤λ2k2v −2(1 + αλ+ ατ⋆)kv+α
2−2τ⋆(ks + αλks)

−2λks
(

1−
√

(1− 2α

λ2ks
)(1 − 2λkvτ

⋆)
)

.

(43)

Proceeding as above, we have:

λ2k2v − 2(1 + αλ+ ατ⋆)kv + α2 − 2τ⋆(ks + αλks)

−2λks
(

1− (1− 2λkvτ
⋆)(1 − 2α

λ2ks
)
)

≤λ2k2v −2(1 + αλ+ ατ⋆)kv + α2−2τ⋆(ks + αλks)

−2λks
(

1−
√

(1− 2α

λ2ks
)(1 − 2λkvτ

⋆)
)

(44)
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If there existskv such that:

0 ≤ λ2k2v − 2(1 + αλ+ ατ⋆

+2τ⋆λ2ks(1−
2α

λ2ks
))kv

+α2 − 2τ⋆(ks + αλks)− 2λks
(

1− (1− 2α

λ2ks
)
)

(45)

then the left part of (36), will be verified.

This inequality can be simplified as :

0 ≤ λ2k2v − 2(1 + αλ− 3ατ⋆ + 2τ⋆λ2ks)kv

+α2 − 2τ⋆(1 + αλ)ks −
4α

λ

(46)

This is satisfied for allkv such that :

kv ∈
(

−∞,
1 + αλ− 3ατ⋆ + 2τ⋆λ2ks −

√

∆2,τ⋆

λ2
]

⋃

[
1 + αλ− 3ατ⋆ + 2τ⋆λ2ks +

√

∆2,τ⋆

λ2
,+∞

)

.

(47)

where

∆2,τ⋆ =
(

1 + αλ− 3ατ⋆ + 2τ⋆λ2ks

)2

−λ2

(

α2 − 2τ⋆(1 + αλ)ks −
4α

λ

)

(48)

is supposed to be positive.

If this quantity is negative, then the inequality (45) and byconsequence (43),
would be satisfied for allkv ≥ 0.

The positivity of∆2,τ⋆ can be rewritten as:

4τ⋆
2

λ4k2s + 6λ2τ⋆[1 + α− 2ατ⋆]ks

+(1− 3ατ⋆)2 + 6αλ(1 − ατ⋆) ≥ 0
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which leads to the condition onks given by:

ks ∈
(

−∞,
3λ2τ⋆(2ατ⋆ − 1− α)−

√

∆2,τ⋆

4λ4τ⋆2
]

⋃

[
3λ2τ⋆(2ατ⋆ − 1− α) +

√

∆2,τ⋆

4λ4τ⋆2
,+∞

)

.

(49)

if ∆2,τ⋆ defined by :

∆2,τ⋆ = 9λ4τ⋆
2

[1 + α− 2ατ⋆]2

−4λ4τ⋆
2

[(1− 3ατ⋆)2 + 6αλ(1 − ατ⋆)]

(50)

is positive.
It is clear that if∆2,τ⋆ is negative, then the positivity of∆2,τ⋆ would be
satisfied for allks ≥ 0.
Now the hypothesis of negativity of∆2,τ⋆, which would imply that the left
part of (36) is satisfied for allkv positive, turns out to write that :

4τ⋆
2

λ4k2s + 6λ2τ⋆[1 + α− 2ατ⋆]ks

+(1− 3ατ⋆)2 + 6αλ(1 − ατ⋆) ≤ 0

which is satisfied for

max{0,
3λ2τ⋆(2ατ⋆ − 1− α)−

√

∆2,τ⋆

4λ4τ⋆2
} ≤ ks

≤
3λ2τ⋆(2ατ⋆ − 1− α) +

√

∆2,τ⋆

4λ4τ⋆2
.

(51)

where∆2,τ⋆ is assumed to be positive.
In conclusion, the determination of the parameterskv andks guarantee-

ing that (36) is satisfied, can be summarized for the right part of (36), by the
choice ofkv in the interval defined by (41) under the necessary conditionthat
∆1,τ⋆ is positive. And for the left part of (36), we can choose anykv > 0 or
kv in the interval defined by (47), according to the sign of∆2,τ⋆ .
We can note that∆1,τ⋆ and∆2,τ⋆ are function ofks. Their sign are condi-
tioned by the sign of∆1,τ⋆ and∆2,τ⋆ .
In the following section, we illustrate our results with some examples.
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4 Simulation results

We consider a platoon of 4 following vehicles. We suppose that initially
these vehicles travel at the the steady-state velocity ofv0 = 20m/s. The
following figure correspond to the velocity and acceleration profile of the
lead vehicle.
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Figure 3: Velocity profile of the lead vehicle
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Figure 4: Acceleration profile of the lead vehicle

We assume that the safety distance is characterized byλ = 1 andHi =
2m with α = 5. We choose the controller parametersks = 19 andkv =
0.12. Then by Proposition 1, we obtain theoptimal delay marginequal to
τ∗ = 0.215. The system (4) is then asymptotically stable for all delays
τ < 0.215.

We arrive to the same conclusion by using the Matlab package DDE-
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BIFTOOL (bifurcation analysis of delay differential equations), (see Engel-
borghset al. [2001], Engelborghset al. [2002]) to represent the rightmost
roots of the characteristic equation. Indeed, if we choose the limit value of
the delayτ = 0.215 then we can observe that rightmost roots of the charac-
teristic equation are on the imaginary axis. When we choose adelay larger,
the system is unstable since there exists roots in the right half plane.
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Figure 5: Rightmost roots of the characteristic equation for τ = 0.215
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Figure 6: Rightmost roots of the characteristic equation for τ = 0.25

Now, if we consider the second part of the multi-objective problem, we
can remark that the conditions to avoid slinky-effect We canalso note that
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in order to have no slinky effects we just have to restrict this bound toτ =
0.0504.
Then, if we choose a delayτ = 0.2, we can observe the phenomenon of
slinky effect. This is what we can observe in the following figures.
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If we choose a delayτ = 0.05, then we can remark that there is no slinky
effect.

Thus, in order to guarantee the individual stability of vehicles of the
platoon and to avoid the slinky effect phenomenon, it suffices to choose the
delayτ ≤ min(0.215, 0.0504) = 0.0504.

5 CONCLUSIONS

In this paper, we have considered the problem of vehicle following con-
trol system. For a given controller structure, we have developed conditions
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Figure 7: Control responses of 4 following vehicles with time delay 0.2 s
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Figure 8: Control responses of 4 following vehicles with time delay 0.05 s

guaranteeing the individual stability of each vehicle of the platoon, and the
derived conditions depend on the size of the delay. Moreover, we considered
the problem of slinky-effect phenomenon, and we proposed sufficient con-
ditions to avoid it. We have given an explicit characterization of some sets
of controller parameters which solve the problem.
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