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OPTIMAL CONCENTRATION INEQUALITIES FOR DYNAMICAL

SYSTEMS

JEAN-RENÉ CHAZOTTES, SÉBASTIEN GOUËZEL

Abstract. For dynamical systems modeled by a Young tower with exponential tails, we
prove an exponential concentration inequality for all separately Lipschitz observables of
n variables. When tails are polynomial, we prove polynomial concentration inequalities.
Those inequalities are optimal. We give some applications of such inequalities to specific
systems and specific observables.
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1. Introduction

Let X be a metric space. A function K on Xn is separately Lipschitz if, for all i, there
exists a constant Lipi(K) with

|K(x0, . . . , xi−1, xi, xi+1, . . . , xn−1)−K(x0, . . . , xi−1, x
′
i, xi+1, . . . , xn−1)| ≤ Lipi(K)d(xi, x

′
i),

for all points x1, . . . , xn, x
′
i in X.

Consider a stationary process (Z0, Z1, . . . ) taking values in X. We say that this process
satisfies an exponential concentration inequality if there exists a constant C such that, for
any separately Lipschitz function K(x0, . . . , xn−1), one has

(1.1) E(eK(Z0,...,Zn−1)−E(K(Z0,...,Zn−1))) ≤ eC
∑n−1

j=0 Lipj(K)2 .

One should stress that this inequality is valid for all n (i.e., the constant C does not depend
on the number of variables one is considering). An important consequence of such an
inequality is a control on the deviation probabilities: for all t > 0,

P

(
|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))| > t

)
≤ 2e

− t2

4C
∑n−1

j=0
Lipj(K)2 .
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This inequality follows from the inequality P(Y > t) ≤ e−λtE(eλY ) (λ > 0) with Y =
K(Z0, . . . , Zn−1) − E(K(Z0, . . . , Zn−1)), then we use inequality (1.1) and optimize over λ

by taking λ = t/(2C
∑n−1

j=0 Lipj(K)2).
In some cases, it is not reasonable to hope for such an exponential inequality. One says

that (Z0, Z1, . . . ) satisfies a polynomial concentration inequality with moment Q ≥ 2 if there
exists a constant C such that, for any separately Lipschitz function K(x0, . . . , xn−1), one
has

(1.2) E

(
|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))|Q

)
≤ C



n−1∑

j=0

Lipj(K)2



Q/2

.

An important consequence of such an inequality is a control on the deviation probabilities:
for all t > 0,

(1.3) P(|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))| > t) ≤ Ct−Q



n−1∑

j=0

Lipj(K)2



Q/2

.

The inequality (1.3) readily follows from (1.2) and the Markov inequality. However, it is
weaker in general. We will say that (Z0, Z1, . . . ) satisfies a weak LQ concentration inequality
if (1.3) holds for any separately Lipschitz function K.

For instance, if Z0, Z1, . . . is an i.i.d. process, then it satisfies an exponential concentration
inequality if Zi is bounded [Led01, Page 68], a polynomial concentration inequality with
moment Q ≥ 2 if Zi ∈ LQ [BBLM05], and a weak LQ concentration inequality if P(|Zi| >
t) ≤ Ct−Q (while we could not locate a proper reference in the literature, this follows easily
from classical martingale techniques and a weak LQ Rosenthal-Burkholder inequality – see
Theorem 6.3 below).

Our main goal in this article is to study processes coming from dynamical systems: we
consider a map T on a metric space X, and an invariant probability measure µ. Un-
der suitable assumptions, we wish to show that the process (x, Tx, . . . ) (where x is dis-
tributed following µ) satisfies concentration inequalities. Equivalently, we are interested
in the concentration properties of the measure µn on Xn given by dµn(x0, . . . , xn−1) =
dµ(x0)δx1=Tx0 · · · δxn−1=Txn−2 . This is not a product measure but, if the map T is suffi-

ciently mixing, one may expect that T k(x) is more or less independent of x is k is large,
making the process (x, Tx, . . . ) look like an independent process to some extent.

Such questions have already been considered in the literature. In particular, [CMS02]
proves that a (non-necessarily Markov) piecewise uniformly expanding map of the inter-
val satisfies an exponential concentration inequality. Polynomial concentration inequalities
(with moment 2, also called Devroye inequalities) have been proved in less expanding situa-
tions (exponential Young towers – including Hénon maps – in [CCS05a], intermittent map
with parameter close enough to 0 in [CCRV09]). Our goal is to prove optimal concentration
inequalities for the same kind of systems. In particular, we will prove that Young towers
with exponential tails satisfy an exponential concentration inequality, and that in Young
towers with polynomial tails one can get polynomial concentration with a moment directly
related to the tails of the return time on the basis of the tower.

Concentration inequalities are a tool to bound systematically the fluctuations of ‘com-
plicated’ observables of the form K(x, Tx, . . . , T n−1x). For instance, the function K can
have a complicated analytic expression or can be implicitly defined (e.g. as an optimization
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problem). If we are able to get a good estimate of the Lipschitz constants, we can apply the
concentration inequality we have at our disposal. Various examples of observables have been
studied in [CMS02, CCS05b, CCRV09]. Since we establish here optimal concentration in-
equalities, this improves automatically the bounds previously available for these observables.
We shall state explicitly some of the new results which can be obtained.

Outline of the article: The proofs we will use for different classes of systems are all
based on classical martingale arguments. It is enlightening to explain them in the simplest
possible situation, subshifts of finite type endowed with a Gibbs measure. We will do so
in Section 2. The following 4 sections are devoted to proofs of concentration inequalities
in various kinds of dynamical systems with a combinatorial nature, namely Young towers
with exponential tails in Section 3, with polynomial tails in Section 4 (the invertible case is
explained in Section 5), and with weak polynomial tails in Section 6. Several applications to
concrete dynamical systems and to specific observables are described in Section 7. Finally,
an appendix is devoted to the proof of a particularly technical lemma.

In this paper, the letter C denotes a constant that can vary from line to line (or even on
a single line).

2. Subshifts of finite type

In this section, we describe a strategy to prove concentration inequalities. It is very
classical, uses martingales, and was for instance implemented for dynamical systems in
[CMS02] and for weakly dependent processes in [Rio00]. Our proofs for more complicated
systems will also rely on this strategy. However, it is enlightening to explain it in the most
simple situation, subshifts of finite type.

2.1. Unilateral subshifts of finite type. Let X ⊂ ΣN be the state space of a topologi-
cally mixing one-sided subshift of finite type, with an invariant Gibbs measure µ, and the
combinatorial distance d(x, y) = βs(x,y) where β < 1 is some fixed number and s(x, y) is the
separation time of x and y, i.e., the minimum number n such that T nx and T ny do not be-
long to the same element of the Markov partition. Writing x = (x0x1 . . . ) and y = (y0y1 . . . ),
then s(x, y) = inf{n : xn 6= yn}.

Theorem 2.1. The system (X,T, µ) satisfies an exponential concentration inequality.

Fix a separately Lipschitz function K(x0, . . . , xn−1). We consider it as a function on XN

depending only on the first n coordinates (therefore, we will write Lipi(K) = 0 for i ≥ n).
We endow XN with the measure µ∞ limit of the µN when N → ∞. On XN, let Fp be the
σ-algebra of events depending only on the coordinates (xj)j≥p (this is a decreasing sequence
of σ-fields). We want to write the function K as a sum of reverse martingale differences
with respect to this sequence. Therefore, let Kp = E(K|Fp) and Dp = Kp − Kp+1. The
function Dp is Fp-measurable and E(Dp|Fp+1) = 0. Moreover, K − E(K) =

∑
p≥0Dp.

The main point of the proof is to get a good bound on Dp:

Lemma 2.2. There exist C > 0 and ρ < 1 such that, for any p, one has

|Dp| ≤ C

p∑

j=0

ρp−j Lipj(K).
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We then use the Hoeffding-Azuma inequality (see e.g. [MS86, Page 33] or [Led01, Page
68]), saying that for such a sum of martingale increments,

E(e
∑P−1

p=0 Dp) ≤ e
∑P−1

p=0 sup |Dp|2 .

The Cauchy-Schwarz inequality gives



p∑

j=0

ρp−j Lipj(K)




2

≤




p∑

j=0

ρp−j Lipj(K)2


 ·




p∑

j=0

ρp−j


 ≤ C

p∑

j=0

ρp−j Lipj(K)2.

Summing over p, we get
∑P−1

p=0 sup |Dp|2 ≤ C
∑

j Lipj(K)2. Using the Hoeffding-Azuma

inequality at a fixed index P , and then letting P tend to infinity, we get E(e
∑
Dp) ≤

eC
∑

Lipj(K)2 , which is the desired exponential concentration inequality since
∑
Dp = K −

E(K).
It remains to prove Lemma 2.2. Let g denote the inverse of the jacobian of T , and g(k) the

inverse of the jacobian of T k. Let L denote the transfer operator associated to the map T ,
defined by duality by

∫
u·v◦T dµ =

∫
Lu·v dµ. It can be written as Lu(x) =∑Ty=x g(y)u(y).

In the same way, Lku(x) =∑T ky=x g
(k)(y)u(y). One can define a Markov chain by jumping

from a point x to one of its preimages y with the probability g(y), then L is simply the
Markov operator corresponding to this Markov chain. In particular,

Kp(xp, xp+1, . . . ) = E(K|Fp)(xp, xp+1, . . . ) = E(K(X0, . . . ,Xp−1, xp, . . . )|Xp = xp)

=
∑

T p(y)=xp

g(p)(y)K(y, . . . , T p−1y, xp, . . . ).

To prove that Dp is bounded, i.e., Kp is close to Kp+1, one should show that this quantity
does not depends too much on xp. The preimages of xp under T p equidistribute in the space,
therefore one should be able to show that Kp is close to an integral quantity. This is done
in the following lemma.

Lemma 2.3. We have
∣∣∣∣Kp(xp, . . . )−

∫
K(y, . . . , T p−1y, xp, . . . ) dµ(y)

∣∣∣∣ ≤ C

p−1∑

j=0

Lipj(K)ρp−1−j,

where C > 0 and ρ < 1 only depend on (X,T ).

This lemma implies in particular that Kp(xp, xp+1, . . . )−Kp(x
′
p, xp+1, . . . ) is bounded by

C
∑p

j=0 Lipj(K)ρp−j. Averaging over the preimages x′p of xp+1, we get the same bound for

Dp(xp, xp+1, . . . ), proving Lemma 2.2.

Proof of Lemma 2.3. The equidistribution of the Markov chain starting from xp is formu-
lated most conveniently in terms of the transfer operators, which act on functions of one
variable. Therefore, we will eliminate the variables x0, . . . , xp−1 one after the other. Let us
fix a point x∗ in X, we decompose Kp as

Kp(xp, . . . ) =

p−1∑

i=0

∑

T p(y)=xp

g(p)(y)(K(y, . . . , T iy, x∗, . . . , x∗, xp, . . . )

−K(y, . . . , T i−1y, x∗, . . . , x∗, xp, . . . ))

+K(x∗, . . . , x∗, xp, . . . ).
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For fixed i, we may group together those points y ∈ T−p(xp) that have the same image
under T i, splitting the sum

∑
T p(y)=xp

as
∑

T p−i(z)=xp

∑
T i(y)=z . Since the jacobian is mul-

tiplicative, one has g(p)(y) = g(i)(y)g(p−i)(z). Let us define a function

fi(z) =
∑

T iy=z

g(i)(y)(K(y, . . . , T iy, x∗, . . . , x∗, xp, . . . )

−K(y, . . . , T i−1y, x∗, . . . , x∗, xp, . . . ))

=
∑

T iy=z

g(i)(y)H(y, . . . , T iy).

(2.1)

Denoting by L the transfer operator (which satisfies Lkf(x) =
∑

T k(z)=x g
(k)(z)f(z)), we

obtain

Kp(xp, . . . ) =

p−1∑

i=0

Lp−ifi(xp) +K(x∗, . . . , x∗, xp, . . . ).

The function H is bounded by Lipi(K), hence |fi| ≤ C Lipi(K) (since
∑

T iy=z g
(i)(y) = 1

by invariance of the measure). To estimate the Lipschitz norm of fi, we write

fi(z)− fi(z
′) =

∑
(g(i)(y)− g(i)(y′))H(y, . . . , T iy)

+
∑

g(i)(y′)(H(y, . . . , T iy)−H(y′, . . . , T iy′)),
(2.2)

where z and z′ are two points in the same partition element, and their respective preimages y,
y′ are paired according to the cylinder of length i they belong to. A distortion control gives
|g(i)(y) − g(i)(y′)| ≤ Cg(i)(y)d(z, z′), hence the first sum is bounded by C Lipi(K)d(z, z′).
For the second sum, substituting successively each T jy with T jy′, we have

|H(y, . . . , T iy)−H(y′, . . . , T iy′)| ≤ 2

i∑

j=0

Lipj(K)d(T jy, T jy′) ≤ 2

i∑

j=0

Lipj(K)βi−jd(z, z′).

Summing over the different preimages of z, we deduce that the Lipschitz norm of fi is
bounded by C

∑i
j=0 Lipj(K)βi−j .

Let C be the space of Lipschitz functions on X, with its canonical norm ‖f‖C = sup |f |+
Lip(f). The operator L has a spectral gap on C: there exist C > 0 and ρ < 1 such

that
∥∥Lkf −

∫
f dµ

∥∥
C
≤ Cρk ‖f‖C . We get

∥∥Lp−ifi −
∫
fi dµ

∥∥
C
≤ Cρp−i

∑i
j=0 Lipj(K)βi−j .

This bound in C implies in particular a bound for the supremum. Increasing ρ if necessary,
we can assume ρ ≥ β. Summing those bounds, one obtains

∣∣∣Kp(xp, . . . )−
p−1∑

i=0

∫
fi dµ−K(x∗, . . . , x∗, xp, . . . )

∣∣∣

≤ C

p−1∑

i=0

ρp−i
i∑

j=0

Lipj(K)ρi−j ≤ C

p−1∑

j=0

Lipj(K)ρp−j(p − j)

≤ C ′
p−1∑

j=0

Lipj(K)(ρ′)p−j,

for any ρ′ ∈ (ρ, 1).
Finally, when one computes the sum of the integrals of fi, there are again cancelations,

leaving only
∫
K(y, . . . , T p−1y, xp, . . . ) dµ(y). �
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2.2. Bilateral subshifts of finite type. We consider now XZ ⊂ ΣZ the state space of
a topologically mixing bilateral subshift of finite type, together with an invariant Gibbs
measure µZ. For two points x = (. . . x−1x0x1 . . . ) and y = (. . . y−1y0y1 . . . ) in XZ, let sZ
be their bilateral separation time, i.e., inf{|n| : xn 6= yn}, and define a distance dZ(x, y) =
βsZ(x,y) for some β < 1. We denote a function on Xn

Z
by KZ(x0, . . . , xn−1), to emphasize

the dependence both on the past and the future.

Theorem 2.4. The system (XZ, T, µZ) satisfies an exponential concentration inequality.

This is stronger than Theorem 2.1, which proves this statement for functions KZ(x0, . . . ,
xn−1) depending only on the future (xi)

∞
0 of each variable. We will deduce Theorem 2.4

from this statement by an approximation argument, by sending everything far away in the
future.

Proof. Let us first assume that XZ is the full shift. We fix a function KZ(x0, . . . , xn−1)
depending both on the past and future of the variables. For N ∈ N, we define KN (x0, . . . ,
xn+N−1) = KZ(xN , . . . , xn+N−1). Thanks to the invariance of the measure, it is equivalent
to prove concentration inequalities for KZ or KN .

Let us now define a function ΦN : Xn+N
Z

→ Xn+N
Z

depending only of the future of the

variables, and let us write K̃N = KN ◦ ΦN . Since this function only depends on the future,
Theorem 2.1 applies to it.

We set ΦN (x0, . . . , xn+N−1) = (y0, . . . , yn+N−1), where the yi are defined inductively as
follows. First, let us choose an arbitrary past (p)−1

−∞, and let y0 = ((p)−1
−∞, (x0)

∞
0 ): it only

depends on the future of x0. If y0, . . . , yi−1 are already defined, we let yi = ((yi−1)
0
−∞, (xi)

∞
0 ).

In other words,

(2.3) yi = ((p)−1
−∞, (x0)0, (x1)0, . . . , (xi−1)0, (xi)

∞
0 ),

with an origin laid on (xi)0. This defines the function ΦN , only depending on the future of
the points.

Let us study the Lipschitz constants of K̃N = KN ◦ ΦN . If we fix xj for j 6= i and vary
xi, then we change yj for j ≥ i, at its coordinate with index −(j − i). Therefore,

Lipi(K̃N ) ≤
∑

j≥i

Lipj(KN )β
j−i.

With Cauchy-Schwarz inequality, we get
∑

Lipi(K̃N )
2 ≤ C

∑
Lipi(KN )

2 = C
∑

Lipi(KZ)
2,

for some constant C. Applying Theorem 2.1 to K̃N and changing variables by x′ = TNx,
we obtain
∫
eK̃N (T−Nx′,...,T−1x′,x′,...,Tn−1x′) dµZ(x

′)

≤ e
∫
K̃N (T−Nx′,...,T−1x′,x′,...,Tn−1x′) dµZ(x

′)eC
∑n−1

i=0 Lipi(KZ)
2
.

By construction, the function K̃N (T
−Nx′, . . . , T−1x′, x′, . . . , T n−1x′) converges to KZ(x

′,
. . . , T n−1x′) when N tends to infinity. Hence, the previous equation gives the desired
exponential concentration.

When XZ is not the full shift, there is an additional difficulty: one can not define ΦN as
above, since a point defined in (2.3) might use forbidden transitions. We should therefore
modify the definition of ΦN as follows. For any symbol a of the alphabet, we fix a legal
past p(a) of a. We define ΦN (x0, . . . , xN+n−1) = (y0, . . . , yN+n−1) by y0 = (p((x0)0), (x0)

∞
0 )

(this point is admissible). Then, if the transition from (xi−1)0 to (xi)0 is permitted, we
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let yi = ((yi−1)
0
−∞, (xi)

∞
0 ), and otherwise we let yi = (p((xi)0), (xi)

∞
0 ). Therefore, the

points yi only use permitted transitions. The rest of the argument goes through without
modification. �

3. Uniform Young towers with exponential tails

There are two different definitions of Young towers, given respectively in [You98] and
[You99]. The difference is on the definition of the separation time: in the first definition, one
considers that the dynamics is expanding at every iteration, while in the second definition
one considers that the dynamics is expanding only when one returns to the basis of the
tower. Therefore, there is less expansion with the second definition than with the first one,
making it more difficult to handle. We will say that Young towers in the first sense are
uniform, while Young towers in the second sense are non-uniform. In this section, we work
with the (easier) first definition, which turns out to be the most interesting when dealing
with exponential tails. Here is the formal definition of a uniform Young tower: it is a space
∆ satisfying the following properties.

(1) This space is partitioned into subsets ∆α,ℓ (for α ∈ N and ℓ ∈ [0, φ(α)− 1], where φ
is an integer-valued return time function). The dynamics sends bijectively ∆α,ℓ on
∆α,ℓ+1 if ℓ < φ(α) − 1, and ∆α,φ(α)−1 on ∆0 :=

⋃
α∆α,0.

(2) The distance is given by d(x, y) = βs(x,y) where β < 1 and s(x, y) is the separation
time for the whole dynamics, i.e., the first n such that T nx and T ny are not in the
same element of the partition.

(3) There is an invariant probability measure µ such that the inverse g of its jacobian
satisfies |g(x)/g(y) − 1| ≤ Cd(Tx, Ty) for any x and y in the same element of the
partition.

(4) We have gcd(φ(α) : α ∈ N) = 1 (i.e., the tower is aperiodic).

When the return time function φ has exponential tails, i.e., there exists c0 > 0 with∫
∆0
ec0φ dµ < ∞, we say that the tower has exponential tails. We will write h(x) = ℓ if

x ∈ ∆α,ℓ: this is the height of the point in the tower. For x ∈ ∆, we will also denote by πx

its projection in the basis, i.e., the unique point y ∈ ∆0 such that T h(x)(y) = x.

Theorem 3.1. Let (∆, T, µ) be a uniform Young tower with exponential tails. It satisfies
an exponential concentration inequality: there exists C > 0 such that, for any n ∈ N, for
any separately Lipschitz function K(x0, . . . , xn−1),

(3.1)

∫
eK(x,Tx,...,Tn−1x) dµ(x) ≤ e

∫
K(x,...,Tn−1x) dµ(x)eC

∑n−1
i=0 Lipi(K)2 .

Let us first remark that, for any ǫ0 > 0, it is sufficient to prove the theorem for functions
K such that Lipi(K) ≤ ǫ0 for all i. Assume indeed that this is the case, and let us prove
the general case. Let K(x0, . . . , xn−1) be a separately Lipschitz function. Let us fix an
arbitrary point x∗ in ∆. To any (x0, . . . , xn−1), we associate (y0, . . . , yn−1) by yi = xi
if Lipi(K) ≤ ǫ0 and yi = x∗ otherwise. The function K̃(x0, . . . , xn−1) = K(y0, . . . , yn−1)

satisfies Lipi(K̃) ≤ ǫ0 for all i. Moreover,

|K − K̃| ≤
∑

i

Lipi(K)1(Lipi(K) > ǫ0) ≤
∑

i

Lipi(K)2/ǫ0.

Therefore, the inequality (3.1) for K̃ readily implies the same inequality for K, with a
different constant C ′ = C + 2/ǫ0.
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Let us now fix a suitable ǫ0 (the precise conditions will be given in the proof of Lemma 3.3),
and let us consider a function K with Lipi(K) ≤ ǫ0 for all i. To prove the exponential concen-
tration inequality, we follow the strategy of Section 2. Let Kp(xp, . . . ) = E(K|Fp)(xp, . . . ),
the first step is to prove an analogue of Lemma 2.3. Since the transfer operator has a
spectral gap on a suitable space of functions, as shown by Young in [You98], we can easily
mimic the proof of this lemma.

Lemma 3.2. For all xp ∈ ∆0,

∣∣∣∣Kp(xp, . . . )−
∫
K(y, . . . , T p−1y, xp, . . . ) dµ(y)

∣∣∣∣ ≤ C

p−1∑

j=0

Lipj(K)ρp−1−j,

where C > 0 and ρ < 1 only depend on ∆.

The main difference with the subshift case is that this bound is only valid for h(xp) = 0.
It is of course false if h(xp) is large, since there is no averaging mechanism in this case.

Proof. As in the proof of Lemma 2.3, we write

Kp(xp, . . . ) =

p−1∑

i=0

Lp−ifi(xp) +K(x∗, . . . , x∗, xp, . . . ),

where the function fi is bounded by Lipi(K), and the Lipschitz norm of fi on any partition

element is at most C
∑i

j=0 Lipj(K)ρi−j for some ρ < 1.

Let C be the space of function on ∆ such that |f(x)| ≤ Ceǫh(x) and |f(x) − f(y)| ≤
Cd(x, y)eǫh(x) for all x, y in the same partition element. Young proves in [You98] that, if
ǫ is small enough, then L has a spectral gap on C: there exist C > 0 and ρ < 1 such that∥∥Lkf −

∫
f dµ

∥∥
C
≤ Cρk ‖f‖C .

We obtain
∥∥Lp−ifi −

∫
fi dµ

∥∥
C
≤ Cρp−i

∑i
j=0 Lipj(K)ρi−j . This bound in C gives in

particular a bound on the supremum for points at height 0, and in particular at the point
xp. Summing those bounds over i, we get the desired result exactly as in the proof of
Lemma 2.3. �

The next step of the proof is the following lemma. It is here that the Lipschitz constants
Lipj(K) should all be bounded by ǫ0. As before, let Kp = E(K|Fp), and Dp = Kp −Kp+1.

Lemma 3.3. There exist ǫ0 > 0, C1 > 0 and ρ < 1 such that any function K(x0, . . . , xn−1)
with Lipj(K) ≤ ǫ0 for all j satisfies, for any p,

E(eDp |Fp+1)(xp+1, . . . ) ≤ eC1
∑p

j=0 Lipj(K)2ρp−j

.

Proof. If the height of xp+1 is positive, then this point has a unique preimage y, and
Dp(y, xp+1, . . . ) = 0. Therefore, E(eDp |Fp+1)(xp+1, . . . ) = 1 and the estimate is trivial.

Assume now that h(xp+1) = 0. Let us denote by {zα} the preimages of xp+1 under
T (with zα ∈ ∆α,φ(α)−1). Let A(z) = Dp(z, xp+1, . . . ), we have E(eDp |Fp+1)(xp+1, . . . ) =∑
g(zα)e

A(zα).
Fix a point z = zα, with height h ≥ 0. If h ≤ p, consider the projection πz of z in

the basis of the tower. Since Kp(z, . . . ) = Kp−h(πz, . . . , z, . . . ), Lemma 3.2 shows that

Kp(z, . . . ) is equal to
∫
K(y, . . . , T p−hy, πz, . . . ) dµ(y) up to C

∑p−h−1
j=0 Lipj(K)ρp−h−1−j .
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Up to an additional error
∑p

j=p−h Lipj(K), this is equal to
∫
K(y, . . . , T py, xp+1, . . . ) dµ(y).

Applying again Lemma 3.2 (but to the point xp+1), we obtain

|A(z)| = |Kp(z, xp+1, . . . )−Kp+1(xp+1, . . . )| ≤ C
∑

j<p−h

Lipj(K)ρp−h−j +

p∑

j=p−h

Lipj(K).

This estimate is also trivially true if h > p (by convention, one sets Lipj(K) = 0 for j < 0).
In particular, since supLipj(K) ≤ ǫ0, we always get |A(z)| ≤ C0(h + 1)ǫ0 for some C0 > 0

(independent of the value of ǫ0). Using the inequality (x1 + · · · + xk)
2 ≤ k

∑
x2i , we get

|A(z)|2 ≤ C


 ∑

j<p−h

Lipj(K)ρp−h−j




2

+C(h+ 1)

p∑

j=p−h

Lipj(K)2

≤ C
∑

j<p−h

Lipj(K)2ρp−h−j + C(h+ 1)

p∑

j=p−h

Lipj(K)2,

(3.2)

where we used Cauchy-Schwarz inequality in the last inequality.
The function A satisfies a neat bound on points zα with small height, but it is unbounded

on points with large height. Therefore, Hoeffding-Azuma inequality does not apply (contrary
to the subshift of finite type case). While there are certainly exponential inequalities in the
literature that can handle this situation, it is simpler to reprove everything since we are not
interested in good constants.

We have |eA − 1−A| ≤ A2e|A| for any real number A. Therefore,

∣∣∣∣∣
∑

α

g(zα)(e
A(zα) − 1−A(zα))

∣∣∣∣∣ ≤
∑

g(zα)A(zα)
2e|A(zα)|.

In the right hand side, g(zα) ≤ Cµ(∆α,0) by bounded distortion, and |A(zα)| ≤ C0ǫ0(1 +
φ(α)) as we explained above. Together with (3.2), we get

∑
g(zα)A(zα)

2e|A(zα)|

≤ C
∑

h≥0

µ(φ = h)eC0ǫ0h



∑

j<p−h

Lipj(K)2ρp−h−j + (h+ 1)

p∑

j=p−h

Lipj(K)2


 .

Since the tower has exponential tails, we have µ(φ = h) ≤ ρh0 for some ρ0 < 1. If ǫ0 is small
enough, we get µ(φ = h)eC0ǫ0h ≤ ρh1 for some ρ1 < 1. Therefore, in the previous bound, the
coefficient of Lipj(K)2 is at most

∑

h<p−j

ρh1ρ
p−h−j +

∑

h≥p−j

(h+ 1)ρh1 ≤ (p− j)ρp−j2 + ρp−j2 ,

for some ρ2 < 1. This is bounded by Cρp−j for some ρ < 1. Hence, we have proved that
∣∣∣∣∣
∑

α

g(zα)(e
A(zα) − 1−A(zα))

∣∣∣∣∣ ≤ C
∑

j≤p

ρp−j Lipj(K)2.
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Since
∑
g(zα) = 1 and

∑
g(zα)A(zα) = 0, the left hand side if equal to

∣∣∑ g(zα)e
A(zα) − 1

∣∣.
Finally,

|E(eDp |Fp+1)(xp+1, . . . )| =
∣∣∣
∑

g(zα)e
A(zα)

∣∣∣ ≤ 1 +C
∑

j≤p

ρp−j Lipj(K)2

≤ eC
∑

j≤p ρ
p−j Lipj(K)2 .

This concludes the proof. �

Proof of Theorem 3.1. Consider a function K with Lipj(K) ≤ ǫ0 for all j. Using inductively
Lemma 3.3, we get for any P

E

(
e
∑P−1

p=0 Dp |FP
)
≤ eC1

∑P−1
p=0

∑p
j=0 Lipj(K)2ρp−j ≤ eC

∑
Lipj(K)2 .

Since
∑P−1

p=0 Dp converges to K − E(K) when P tends to infinity, we obtain E(eK−E(K)) ≤
eC

∑
Lipj(K)2 . This proves the exponential concentration inequality in this case. The general

case follows, as we explained after the statement of the theorem. �

The exponential concentration inequalities for uniform Young towers with exponential
tails easily extends to invertible situations, as follows. Consider TZ : ∆Z → ∆Z the natural
extension of such a Young tower, with bilateral separation time sZ, and distance dZ(x, y) =

βsZ(x,y) for some β < 1.

Theorem 3.4. The transformation TZ satisfies an exponential concentration inequality.

The proof is exactly the same as the proof of Theorem 2.4, exploiting the result for the
non-invertible transformation.

4. Non-uniform Young towers with polynomial tails

In this section, we consider Young towers in the sense of [You99], i.e., non-uniform Young
towers. The combinatorial definition is the same as in Section 3, the difference is on the
definition of the separation time (and therefore of the distance) as follows. Let ∆0 be the

basis of the tower, let T0 : ∆0 → ∆0 be the induced map on ∆0 (i.e., T0(x) = T φ(x)(x)
where φ(x) is the return time of x to ∆0). For x, y ∈ ∆0, let s(x, y) be the smallest integer
n such that T n0 (x) and T n0 (y) are not in the same partition element. This separation time
is extended to ∆ as follows. For x, y ∈ ∆, let s(x, y) = s(πx, πy) if x and y are in the
same partition element, and s(x, y) = 0 otherwise. In other words, s(x, y) is the number of
returns to the basis before the trajectories of x and y separate. Finally, the new distance is
d(x, y) = βs(x,y) for some β < 1.

Intuitively, we are now considering maps that are expanding only when one returns to
the basis, and can be isometries between successive returns, while the maps of Section 3 are
always expanding. The setting is not uniformly expanding any more, rather non-uniformly
expanding. For instance, intermittent maps can be modeled using non-uniform Young
towers.

If the tails are not exponential any more, one can not hope to get exponential concen-
tration inequalities. If the tails have a moment of order q ≥ 2, then the moments of order
2q−2 of Birkhoff sums are controlled, and this is optimal [MN08, Theorem 3.1]. Our goal in
this section is to generalize this result to a concentration inequality (with the same optimal
moment).
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Theorem 4.1. Let T : ∆ → ∆ be a non-uniform Young tower. Assume that, for some
q ≥ 2,

∑
φ(α)qµ(∆α,0) < ∞. Then T satisfies a polynomial concentration inequality with

moment 2q − 2, i.e., there exists a constant C > 0 such that, for any n ∈ N, for any
separately Lipschitz function K(x0, . . . , xn−1),

∫ ∣∣∣∣K(x, . . . , T n−1x)−
∫
K(y, . . . , T n−1y) dµ(y)

∣∣∣∣
2q−2

dµ(x) ≤ C


∑

j

Lipj(K)2



q−1

.

The proof is considerably more difficult than the arguments in the previous section (and
also than the arguments of [MN08] since the main inequality these arguments rely on, due
to Rio, is of no help in our situation). The general strategy is the same as in the previous
sections: decompose K−E(K) as

∑
Dp where Dp is a martingale difference sequence, obtain

good estimates on Dp, and then apply a martingale inequality (in our case, the Rosenthal-
Burkholder inequality) to obtain a bound on K − E(K). The difficulty comes from the
non-uniform expansion of the map: instead of a uniformly decaying geometric series as in
the previous sections, our estimates will be non-uniform, quantified by the number of visits
to the basis in a definite amount of time.

The rest of this section is devoted to the proof of Theorem 4.1. In particular, we will
always assume that ∆ is a non-uniform Young tower satisfying

∑
φ(α)qµ(∆α,0) < ∞ for

some q ≥ 2.

Remark 4.2. The arguments below also give an exponential concentration inequality in
non-uniform Young towers with exponential tails, thereby strengthening Theorem 3.1. Since
most interesting Young towers with exponential tails are uniform, we will not give further
details in this direction.

4.1. Notations. As usual, the letter C denotes a constant that may change from one oc-
currence to the next. Let us also introduce a similar notation for sequences. For Q ≥ 0, we

will write c
(Q)
n for a sequence of nonnegative numbers such that

∑
nQc

(Q)
n <∞, and we will

allow this sequence to change from one line to the other (or even on the same line). We will

also write d
(Q)
n for a generic nondecreasing sequence with

∑
nQd

(Q)
n <∞.

If un and vn are sequences, their convolution u ⋆ v is given by (u ⋆ v)n =
∑n

k=0 ukvn−k.
One easily checks that, for Q,Q′ ≥ 0,

(4.1) (c(Q) ⋆ c(Q
′))n ≤ c(min(Q,Q′))

n .

Following the above convention, this statement should be understood as follows: if two
sequences u and v satisfy, respectively,

∑
nQun < ∞ and

∑
nQ

′
vn < ∞, then w = u ⋆ v

satisfies
∑
nmin(Q,Q′)wn <∞. Indeed, letting Q′′ = min(Q,Q′),

∑
nQ

′′

wn =
∑

k,ℓ

(k + ℓ)Q
′′

ukvℓ ≤
∑

k,ℓ

(k + 1)Q
′′

(ℓ+ 1)Q
′′

ukvℓ

≤
(∑

(k + 1)Quk

)
·
(∑

(ℓ+ 1)Q
′

vℓ

)
<∞.

We also have for Q ≥ 1

(4.2)

∞∑

k=n

c
(Q)
k ≤ d(Q−1)

n .
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Indeed,

∑
nQ−1

∞∑

k=n

c
(Q)
k =

∑

k

(
k∑

n=0

nQ−1

)
c
(Q)
k ≤

∑

k

CkQc
(Q)
k <∞,

and the sequence
∑∞

k=n c
(Q)
k is nonincreasing.

4.2. Renewal sequences of operators, estimates on the returns to the basis. An
important tool for our study will be renewal sequences of operators, as developed by Sarig
and Gouëzel [Sar02, Gou04b, Gou04c], that we will now quickly describe.

Consider a function f , we wish to understand Lnf(x) =∑Tny=x g
(n)(y)f(y) for x ∈ ∆0.

For a preimage y of x under T n, we can consider its first entrance into ∆0, and then its
successive returns to ∆0. We obtain a decomposition

(4.3) 1∆0Ln =
∑

k+b=n

TkBb,

where Tk takes the successive returns to ∆0 (during time k) into account, and Bb deals with

the part of the trajectory outside ∆0. Formally, for x ∈ ∆0, Tkf(x) =
∑
g(k)(y)f(y) where

the sum is restricted to those y such that T ky = x and y ∈ ∆0. The operator Bb, in turn, is
given on ∆0 by Bbf(x) =

∑
g(b)(y)f(y) where the sum is restricted to those y with T by = x

and y, . . . , T b−1y 6∈ ∆0.
The operators Bb are essentially trivial to understand, their behavior being controlled

by the tails of the return time function φ. On the other hand, the operators Tk embody
most of the dynamics of the transformation. To understand them, we introduce yet another
operator Rj considering only the first return to ∆0 at time j, i.e., Rjf(x) =

∑
g(j)(y)f(y)

where the sum is restricted to those y such that T jy = x and y ∈ ∆0, Ty, . . . , T
j−1y 6∈ ∆0.

Splitting a trajectory into its successive excursions outside of ∆0, one obtains

Tk =
∑

ℓ≥1

∑

j1+···+jℓ=k

Rj1 · · ·Rjℓ .

Formally, this equation can be written as

(4.4)
∑

Tkz
k = (I −

∑
Rjz

j)−1.

In fact, the series defined in this equation are holomorphic for |z| < 1 (as operators acting
on the space C of Lipschitz functions on ∆0) and this equality is a true equality between
holomorphic functions. Moreover, the spectral radius of

∑
Rjz

j is at most 1 for |z| ≤ 1.
A powerful way to use the previous equality is Banach algebra techniques. Simple ex-

amples of Banach algebras are given by Banach spaces B of sequences cn such that, if
(cn)n∈N ∈ B and (c′n)n∈N ∈ B, then their convolution c ⋆ c′ still belongs to B. For instance,
this is the case of sequences with a moment of order Q ≥ 0 (by (4.1)), or of sequences
satisfying cn = O(1/nQ) for some Q > 1. Given such a Banach algebra of sequences B, one

can consider the Banach algebra B̃ of sequences of operators (Mn)n∈N (acting on some fixed

Banach space C) such that the sequence (‖Mn‖)n∈N belongs to B. One easily checks that B̃
is again a Banach algebra (for the convolution product).

When the Banach algebra of sequences B satisfies a technical condition (its characters
should all be given by evaluation of the power series

∑
cnz

n at a point z of the unit disk),
which is satisfied in all examples we mentioned above, then one can use the Wiener lemma to
obtain the following property: if a sequence of operators (Mn)n∈N belongs to B̃ and

∑
Mnz

n
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is invertible as an operator on C for any z in the closed unit disk, then (Mn)n∈N is invertible

in B̃. In particular, the power series
∑
M ′
nz

n = (
∑
Mnz

n)−1 satisfies (‖M ′
n‖)n∈N ∈ B.

Using Banach algebra arguments and the renewal equation (4.4), the following proposition
is proved in [Gou04c, Proposition 2.2.19].

Proposition 4.3. Consider a Banach algebra of sequences B satisfying several technical
conditions. If the sequence (

∑
k>n µ(φ = k))n∈N belongs to B, then this is also the case of

the sequence (‖Tn+1 − Tn‖)n∈N. Moreover, Tn converges to Π : f 7→ (
∫
∆0
f)1∆0.

The technical conditions on the Banach algebra (all the characters of B should be given by
the evaluation at a point of the closed unit disk, and the symmetrized version of B should
contain the Fourier coefficients of partitions of unity of the circle) will not be important
for us, let us only mention that they are satisfied for the Banach algebras of series with
moments of order Q ≥ 0.

The contraction properties of the dynamics T are dictated by the number of returns to
the basis. Their asymptotics are estimated in the next lemma.

Lemma 4.4. For x ∈ ∆, let ψn(x) = Card{0 ≤ k ≤ n − 1 : T kx ∈ ∆0} be the number of

visits to the basis of x before time n, and let Ψn(x) = ρψn(x), where ρ < 1. If the return

time on ∆0 has a moment of order q ≥ 1 (i.e., µ(φ = n) ≤ c
(q)
n ), we have

∫

T−n∆0

Ψn dµ(x) ≤ c(q−1)
n .

This bound is optimal: on ∆α,φ(α)−n (for α with φ(α) > n), we have Ψn = 1. Therefore,

the integral in the lemma is bounded from below by µ(
⋃
φ(α)>n∆α,0) ∼

∑∞
n+1 c

(q)
k ∼ c

(q−1)
n .

Proof. Let us define an operator Un by the series
∑
Unz

n =
∑∞

k=0(ρ
∑
Rnz

n)k = (I −
ρ
∑
Rnz

n)−1. Then Unf(x) =
∑
g(n)(y)Ψn(y)f(y), where the sum is restricted to those

y ∈ ∆0 with T ny = x. Integrating and changing variables, we obtain∫

∆0

Un1(x) dµ(x) =

∫

∆0∩T−n(∆0)
Ψn(y) dµ(y).

Since the spectral radius of
∑
Rnz

n is at most 1 for |z| ≤ 1, it follows that I − ρ
∑
Rnz

n

is invertible on C (since ρ < 1). Moreover, the sequence ‖Rn‖ satisfies ‖Rn‖ ≤ Cµ(φ =

n) ≤ c
(q)
n . It follows from Wiener’s Lemma that

∑
Unz

n = (I−ρ∑Rnz
n)−1 belongs to the

same Banach algebra of operators, i.e., ‖Un‖ ≤ c
(q)
n . We obtain

∫

∆0∩T−n∆0

Ψn(y) dµ(y) ≤ c(q)n .

To study the integral of Ψn on T−n∆0, denote by Λb the set of points in ∆ that enter ∆0

exactly at time b. On Λb, we have Ψn(y) = Ψn−b(T
by). A distortion control gives

∫

Λb∩T−n∆0

Ψn ≤ Cµ(Λb)

∫

∆0∩T−(n−b)∆0

Ψn−b ≤ Cµ(Λb)c
(q)
n−b.

Moreover, for b > 0, Λb =
⋃
φ(α)≥b∆α,φ(α)−b, hence µ(Λb) ≤

∑
ℓ≥b c

(q)
ℓ ≤ c

(q−1)
b . We obtain

∫

T−n∆0

Ψn(y) dµ(y) =

n∑

b=0

∫

Λb∩T−n∆0

Ψn(y) dµ(y) ≤ C

n∑

b=0

c
(q−1)
b c

(q)
n−b.

By (4.1), this is bounded by c
(q−1)
n . �
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4.3. Bounding Dp. To follow the same strategy as in the previous sections, we need to
show that Kp is close to an integral, as in Lemma 2.3. To do so, as in the proof of this lemma,
we define a function fi as in (2.1), and control its iterates under the transfer operator. The
first step is to control its Lipschitz constant.

Lemma 4.5. For z and z′ with zero height, |fi(z)| ≤ C Lipi(K) and

|fi(z)− fi(z
′)| ≤ Cd(z, z′)

i∑

j=0

Lipj(K)c
(q−1)
i−j .

Proof. The inequality |fi(z)| ≤ C Lipi(K) is trivial. To control the Lipschitz constant, as
in (2.2), we decompose

fi(z)− fi(z
′) =

∑
(g(i)(y)− g(i)(y′))H(y, . . . , T iy)

+
∑

g(i)(y′)(H(y, . . . , T iy)−H(y′, . . . , T iy′)).

Using distortion controls, we bound the first sum by C Lipi(K)d(z, z′). For the second sum,
we replace successively each T jy with T jy′, writing it as

∑

T iy′=z′

i∑

j=0

g(i)(y′)(H(y, . . . , T j−1y, T jy, T j+1y′, . . . , T iy′)

−H(y, . . . , T j−1y, T jy′, T j+1y′, . . . , T iy′)).

Since the distance between T jy and T jy′ is bounded by Ψi−j(T
jy′)d(z, z′), we obtain a

bound

∑

T iy′=z′

i∑

j=0

g(i)(y′)Ψi−j(T
jy′) Lipj(K)d(z, z′)

≤ d(z, z′)
i∑

j=0

∑

T i−j(y′j)=z
′

g(i−j)(y′j)Ψi−j(y
′
j) Lipj(K)

≤ Cd(z, z′)

i∑

j=0

Lipj(K)

∫

T−(i−j)∆0

Ψi−j,

by bounded distortion. With Lemma 4.4, this gives the result. �

To follow the strategy of proof of Lemma 2.3, we need to understand the iterates of fi
under the transfer operator. This is done in the next lemma.

Lemma 4.6. For any r ≥ 0 and any z ∈ ∆0, we have

∣∣∣∣L
rfi(z)−

∫

∆
fi

∣∣∣∣ ≤
i∑

j=0

Lipj(K)

(
r∑

k=0

c
(q−2)
k c

(q−1)
i−j+r−k

)
.

Proof. We will use the decomposition 1∆0Lr =
∑

k+b=r TkBb given by (4.3) to understand
Lrfi.

Let us first describe the asymptotics of Tk. Let C denote the space of Lipschitz functions
on the basis ∆0 of the tower. We define an operator Π on C by Πf = (

∫
∆0
f)1∆0. The
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operators Tn converge to Π. Since ‖Tn − Tn+1‖ ≤ c
(q−1)
n by Proposition 4.3, we have

(4.5) ‖Tk −Π‖ ≤
∞∑

n=k

‖Tn − Tn+1‖ ≤
∞∑

n=k

c(q−1)
n ≤ c

(q−2)
k ,

by (4.2).

We will now estimate ‖Bbfi‖C using Lemma 4.5. For z ∈ ∆0, we have

Bbfi(z) =
∑

φ(α)≥b

g(b)(zα)fi(zα),

where zα is the unique preimage of z under T b in ∆α,φ(α)−b. We have

(4.6) |Bbfi|∞ ≤ |fi|∞ · C
∑

φ(α)≥b

µ(∆α,0) ≤ C|fi|∞c(q−1)
b ≤ C Lipi(K)c

(q−1)
b .

Let us now estimate Bbfi(z)−Bbfi(z′) for z and z′ in the same partition element. If we form

the difference g(b)(zα) − g(b)(z′α), the resulting term is bounded by Cd(z, z′) Lipi(K)c
(q−1)
b

(using distortion controls and the same computation as in (4.6)). On the other hand, denot-
ing by hα = φ(α) − b the height of zα, we have

|fi(zα)− fi(z
′
α)| ≤ C



i−hα∑

j=0

Lipj(K)c
(q−1)
i−j−hα

+

i∑

j=i−hα+1

Lipj(K)


 d(z, z′).

This follows from Lemma 4.5 applied to the function fi−hα and the points πzα and πz′α.
Summing over α, we obtain a bound for the Lipschitz constant of Bbfi of the form

∑

φ(α)≥b

g(b)(zα)



i−hα∑

j=0

Lipj(K)c
(q−1)
i−j−hα

+
i∑

j=i−hα+1

Lipj(K)


 .

By bounded distortion, g(b)(zα) ≤ Cµ(∆α,0). Taking the union over α and writing ℓ = φ(α),
we get that the coefficient of Lipj(K) in this sum is bounded by

C

b+i−j∑

ℓ=b

µ(φ = ℓ)c
(q−1)
i−j−(ℓ−b) + C

∞∑

ℓ=b+i−j+1

µ(φ = ℓ).

The second term is bounded by c
(q−1)
i−j+b by (4.2), while the first term is bounded by

i−j+b∑

ℓ=0

c
(q)
ℓ c

(q−1)
i−j+b−ℓ ≤ c

(q−1)
i−j+b

by (4.1). We have shown that

‖Bbfi‖C ≤
i∑

j=0

Lipj(K)c
(q−1)
i−j+b.

(The contribution of (4.6) is compatible with this bound.)

Let us now study Lrfi on ∆0. We write Tk = Π+Ek with ‖Ek‖ ≤ c
(q−2)
k , by (4.5). Hence,

(4.7) Lrfi =
∑

k+b=r

TkBbfi =
∑

k+b=r

ΠBbfi +
∑

k+b=r

EkBbfi.
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The first term is a constant function equal to
∑r

b=0

∫
∆0
Bbfi. Denoting by Λb the set of

points that enter ∆0 exactly at time b, we have
∫
∆0
Bbfi =

∫
Λb
fi. As a consequence

r∑

b=0

∫

∆0

Bbfi −
∫
fi = −

∫
⋃

b>r Λb

fi ≤ |fi|∞
∑

b>r

µ(Λb) ≤ Lipi(K)
∑

b>r

c
(q−1)
b ≤ Lipi(K)c(q−2)

r ,

by (4.2). This bound is compatible with the statement of the lemma. The second term
of (4.7) is bounded (in C norm, thus in sup norm) by

∑

k+b=r

c
(q−2)
k ‖Bbfi‖C ≤

i∑

j=0

Lipj(K) ·
∑

k+b=r

c
(q−2)
k c

(q−1)
i−j+b.

This proves the lemma. �

We can now obtain the following lemma, which is the analogue in our setting of Lemma 2.3.

Lemma 4.7. For all xp ∈ ∆0,

∣∣∣∣Kp(xp, . . . )−
∫
K(y, . . . , T p−1y, xp, . . . ) dµ(y)

∣∣∣∣ ≤
p−1∑

j=0

Lipj(K)c
(q−2)
p−j .

Proof. Just like in the proof of Lemma 2.3

∣∣∣∣Kp(xp, . . . )−
∫
K(y, . . . , T p−1y, xp, . . . )

∣∣∣∣ ≤
p−1∑

i=0

∣∣∣∣L
p−ifi(xp)−

∫
fi

∣∣∣∣ .

By Lemma 4.6, this quantity is bounded by

C

p−1∑

i=0

i∑

j=0

Lipj(K)

(
p−i∑

k=0

c
(q−2)
k c

(q−1)
i−j+p−i−k

)
.

The coefficient of Lipj(K) in this sum is

p−j∑

k=0

c
(q−2)
k (p − k − j)c

(q−1)
p−k−j ≤

p−j∑

k=0

c
(q−2)
k c

(q−2)
p−k−j ≤ c

(q−2)
p−j

by (4.1). This proves the lemma. �

The previous lemma makes it possible to control the moments of Dp = Kp −Kp+1:

Lemma 4.8. For all κ ≤ 2q,

E(|Dp|κ|Fp+1)(xp+1, . . . ) ≤ C

p∑

j=0

Lipj(K)κc
(q−2)
p−j +C

∑

h≥0

c
(q−κ/2)
h




p∑

j=p−h+1

Lipj(K)2



κ/2

.

Proof. We follow closely the strategy of the proof of Lemma 3.3. If the height of xp+1

is positive, the estimate is trivial. Otherwise, let {zα} denote the preimages of xp+1

under T , with respective height hα = φ(α) − 1. Let A(z) = Dp(z, xp+1, . . . ), we have
E(|Dp|κ|Fp+1)(xp+1, . . . ) =

∑
g(zα)|A(zα)|κ.
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Fix a point z = zα with height h ≥ 0. If h ≤ p, consider the projection πz of z in the
basis of the tower. Using Lemma 4.7 (at time p− h for the point πz, and at time p+ 1 for
the point xp+1), we get

(4.8) |A(z)| ≤
∑

j≤p−h

Lipj(K)c
(q−2)
p−h−j +

p∑

j=p−h+1

Lipj(K).

This estimate also holds (trivially) if h > p.
To estimate |A(z)|κ, we first use the inequality (x+ y)κ ≤ Cxκ+Cyκ to separate the two

sums. Then, in the first sum, since c
(q−2)
p−h−j is summable, we may use Hölder inequality to

get
(∑

j≤p−h Lipj(K)c
(q−2)
p−h−j

)κ
≤ C

∑
j≤p−h Lipj(K)κc

(q−2)
p−h−j. For the second sum, we write

(∑p
j=p−h+1 Lipj(K)

)2
≤ h

∑p
j=p−h+1 Lipj(K)2, and we obtain

|A(z)|κ ≤
∑

j≤p−h

Lipj(K)κc
(q−2)
p−h−j + Chκ/2




p∑

j=p−h+1

Lipj(K)2



κ/2

.

Summing over α, we get that
∑
g(zα)|A(zα)|κ is at most

C

∞∑

h=0

µ(φ = h)



∑

j≤p−h

Lipj(K)κc
(q−2)
p−h−j + hκ/2




p∑

j=p−h+1

Lipj(K)2



κ/2

 .

In the first sum, the coefficient of Lipj(K)κ is at most

p−j∑

h=0

c
(q)
h c

(q−2)
p−h−j ≤ c

(q−2)
p−j

by (4.1). In the second sum, µ(φ = h)hκ/2 ≤ c
(q−κ/2)
h , yielding the statement of the

lemma. �

4.4. Proof of Theorem 4.1. We will use the following Rosenthal-Burkholder martingale
inequality [Bur73, Theorem 21.1 and Inequality (21.5)]. Let Fp be a decreasing sequence
of σ-algebras, and let Dp be a sequence of reverse martingale difference with respect to Fp
(i.e., Dp is Fp-measurable and E(Dp|Fp+1) = 0). For all Q ≥ 2,

∥∥∥
∑

Dp

∥∥∥
Q

LQ
≤ CE



[
∑

p

E(D2
p|Fp+1)

]Q/2
+ C

∑

p

E(|Dp|Q).

We apply this inequality to Fp the σ-algebra of sets depending only on xp, xp+1, . . . , to
Dp = Kp −Kp+1 and to Q = 2q − 2. By Lemma 4.8 with κ = 2, we have

(4.9) E(D2
p|Fp+1)(xp+1, . . . ) ≤ C

p∑

j=0

Lipj(K)2c
(q−2)
p−j +C

∑

h≥0

c
(q−1)
h

p∑

j=p−h+1

Lipj(K)2.
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The coefficient of Lipj(K)2 in this estimate is bounded by c
(q−2)
p−j +

∑
h≥p−j+1 c

(q−1)
h ≤ c

(q−2)
p−j .

Hence, the first term in Rosenthal-Burkholder inequality is bounded by

C


∑

p

p∑

j=0

Lipj(K)2c
(q−2)
p−j



q−1

≤ C


∑

j

Lipj(K)2



q−1

.

For the second term, we should bound
∑

p E(|Dp|2q−2). We sum the estimates of Lemma 4.8

(with κ = 2q − 2), to get
(4.10)

∑

p

E(|Dp|2q−2) ≤ C
∑

j

∑

p≥j

Lipj(K)2q−2c
(q−2)
p−j + C

∑

h≥0

c
(1)
h

∑

p




p∑

j=p−h+1

Lipj(K)2



q−1

.

In the first sum, the coefficient of Lipj(K)2q−2 is
∑

k c
(q−2)
k ≤ C, therefore this sum is

bounded by C
∑

j Lipj(K)2q−2 ≤ C
(∑

Lipj(K)2
)q−1

.

The second sum is more delicate. Let us fix h and p0 ∈ [0, h), and let us consider the
contribution of those p in p0 + Zh. The intervals [p − h+ 1, p] are disjoint. The inequality∑
xq−1
i ≤ (

∑
xi)

q−1 yields

∑

p≡p0 [h]




p∑

j=p−h+1

Lipj(K)2



q−1

≤


 ∑

p≡p0 [h]

p∑

j=p−h+1

Lipj(K)2



q−1

≤


∑

j

Lipj(K)2



q−1

.

Summing over the h possible value of p0, we get that the second sum of (4.10) is bounded
by

C
∑

h≥0

c
(1)
h h


∑

j

Lipj(K)2



q−1

≤ C


∑

j

Lipj(K)2



q−1

,

since
∑
hc

(1)
h <∞ by definition.

We have proved that ‖∑Dp‖2q−2
L2q−2 ≤ C

(∑
j Lipj(K)2

)q−1
. Since

∑
Dp = K − E(K),

this proves Theorem 4.1. �

5. Invertible non-uniform Young towers

Let T : X → X be a non-uniform Young tower, with invariant measure µ. Its natural
extension TZ : XZ → XZ preserves a probability measure µZ. There is a natural distance on
XZ, defined as follows. First, the positive separation time s(x, y) is defined as for T . One can
also define a negative separation time s−(x, y) in the same way, but towards the past: one
iterates towards the past until the points are in different elements of the Markov partition,
and one counts the number of visits to ∆0 in between. The distance dZ is then defined by
dZ(x, y) = βmin(s(x,y),s−(x,y)). Geometrically, this distance is interpreted as follows: when
one returns to the basis, there is uniform contraction along stable manifolds (corresponding
to the past), and uniform expansion along unstable manifolds. Two points are close in the

unstable direction if they remain close in the future for a long time (distance βs(x,y)), while

they are close in the stable direction if they have a long common past (distance βs−(x,y)).

Theorem 5.1. Let (TZ,XZ, µZ) be the natural extension of a Young tower in which the
return time function φ has a moment of order q. This system satisfies a concentration
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inequality with moment 2q − 2, i.e., there exists a constant C > 0 such that, for any n ∈ N,
for any function KZ(x0, . . . , xn−1) which is separately Lipschitz for the distance dZ,

∫ ∣∣∣∣KZ(x, . . . , T
n−1x)−

∫
KZ(y, . . . , T

n−1y) dµZ(y)

∣∣∣∣
2q−2

dµZ(x)

≤ C



∑

j

Lipj(KZ)
2



q−1

.

This implies Theorem 4.1 (if one considers a function KZ depending only on the future
of the points), but the converse is not true: since the contraction is not uniform, we are not
able to reduce this theorem to Theorem 4.1, contrary to what we have done for subshifts of
finite type or uniform Young towers.

For the proof, we will work with the non-invertible systemX, or rather with an augmented
space X∗ = X ∪ {x∗} where x∗ is a new point (at distance 1 of any point of X, with zero
measure).

Let us start with a function KZ on XZ, depending on the past and the future of points.
We define a new function K on Xn

∗ as follows. We let K(x0, . . . , xn−1) = KZ(y0, . . . , yn−1)
where the yi are defined inductively. For each element a of the partition, let us fix an
admissible past p(a). Let us also fix a point y∗ ∈ XZ. Let y0 = (p((x0)0), x0) (unless
x0 = x∗, in which case let y0 = y∗). If yi−1 is defined, let us define yi. If xi = x∗, we
take yi = y∗. If the transition from (xi−1)0 to (xi)0 is not permitted, let yi = (p((xi)0), xi).
Otherwise, let yi = ((yi−1)

0
−∞, xi).

We claim that this function K satisfies an inequality
(5.1)
∫

X∗

∣∣∣∣K(x, . . . , T n−1x)−
∫
K(y, . . . , T n−1y) dµ(y)

∣∣∣∣
2q−2

dµ(x) ≤ C



n−1∑

j=0

Lipj(KZ)
2



q−1

.

This implies Theorem 5.1 by using the same argument as in Subsection 2.2: let KN (y0, . . . ,

yn+N−1) = KZ(yN , . . . , yN+n−1), and let K̃N be the function obtained from KN by applying
the above procedure. After a change of variables, we get from (5.1)

∫

XZ

∣∣∣K̃N (T
−Nx, . . . , x, Tx, . . . , T n−1x)− E(K̃N )

∣∣∣
2q−2

dµZ(x) ≤ C



n−1∑

j=0

Lipj(KZ)
2



q−1

.

When N tends to ∞, K̃N (T
−Nx, . . . , x, Tx, . . . , T n−1x) converges to KZ(x, . . . , T

N−1x).
Hence, we obtain the desired concentration inequality by letting N tend to infinity in the
previous equation.

To prove (5.1), we follow the same strategy as in the previous section. Note that we can
not directly apply Theorem 4.1 since the Lipschitz constants of K are not easily bounded in
terms of those of KZ, due to the non-uniform expansion. Therefore, we have to reimplement
the strategy from scratch.

Let us first start with a crucial remark. When one controls the Lipschitz constants of K
in terms of those of KZ, a point x∗ blocks the propagation of modifications, in the following
sense: consider a difference K(x0, . . . , xn−1)−K(x′0, . . . , x

′
n−1) where xi and x′i coincide at

all indices but j. By construction of K, this is equal to KZ(y0, . . . , yn−1)−KZ(y
′
0, . . . , y

′
n−1)

for some points yi, y
′
i ∈ XZ. The definition shows that yi = y′i for i < j. On the other
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hand, yi and y′i might be different for all i ≥ j, not only for i = j. However, if there is an
index k > j such that xk = x′k = x∗, then yi = y′i for i ≥ k: this follows directly from the
construction. Therefore, K(x0, . . . , xn−1)−K(x′0, . . . , x

′
n−1) will be estimated only in terms

of Lipi(KZ) for j ≤ i < k.
To follow the same strategy as in the previous sections, we need to show that Kp is close

to an integral, as in Lemma 2.3. To do so, as in the proof of this lemma, we define a
function fi as in (2.1), and control its iterates under the transfer operator. We decompose

Kp(xp, . . . ) =
∑p−1

i=0 Lp−ifi(xp) +K(x∗, . . . , x∗, xp, . . . ), where

fi(z) =
∑

T iy=z

g(i)(y)(K(y, . . . , T iy, x∗, . . . , x∗, xp, . . . )

−K(y, . . . , T i−1y, x∗, . . . , x∗, xp, . . . ))

When i < p − 1, there is a point x∗ in the definition of fi, blocking the propagation of
modifications as we explained above. Therefore, we may follow the proofs of Lemmas 4.5
and 4.6 in this setting, to obtain the following:

Lemma 5.2. If i < p− 1, we have for any r ≥ 0 and any z ∈ ∆0

∣∣∣∣L
rfi(z)−

∫

∆
fi

∣∣∣∣ ≤
i∑

j=0

Lipj(KZ)

(
r∑

k=0

c
(q−2)
k c

(q−1)
i−j+r−k

)
.

On the other hand, there is no such blocking effect for fp−1, yielding a worse estimate.
Indeed, in fp−1, one considers averages of terms of the form K(y, . . . , T p−1y, xp, . . . ) −
K(y, . . . , T p−2y, x∗, xp, . . . ). Considering the definition of K in terms of KZ, this difference
reads KZ(y

′
0, . . . , y

′
n−1) − KZ(y

′′
0 , . . . , y

′′
n−1) where the points y′j, y

′′
j belong to XZ, coincide

for j < p−1 and may differ for j ≥ p−1. For j > p−1, the points y′j and y′′j have the same

future, and the same past up to the index j−p. Therefore, dZ(y
′
j , y

′′
j ) ≤ βCard{k∈[p,j] : xk∈∆0}.

Averaging over the points y with T p−1(y) = z, we get

|fp−1(z)| ≤
n−1∑

j=p−1

Lipj(KZ)β
Card{k∈[p,j] :xk∈∆0}.

The functions Lfp−1 and Lfp−1 −
∫
fp−1 also satisfy the same bound.

Still following the strategy of proof of Section 4, we deduce from those estimates an
analogue of Lemma 4.7, with an additional error term coming from fp−1: for all xp ∈ ∆0,

∣∣∣∣Kp(xp, . . . )−
∫
K(y, . . . , T p−1y, xp, . . . ) dµ(y)

∣∣∣∣

≤ C

p−1∑

j=0

Lipj(KZ)c
(q−2)
p−j + C

n−1∑

j=p

Lipj(KZ)β
Card{k∈[p,j] :xk∈∆0}.
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In turn, this yields an analogue of Lemma 4.8, still with an additional error term: for all
κ ≤ 2q, and for all xp+1 ∈ ∆0

E(|Dp|κ|Fp+1)(xp+1, . . . ) ≤ C


 ∑

j≥p+1

Lipj(KZ)β
Card{k∈[p+1,j] :xk∈∆0}



κ

+ C

p∑

j=0

Lipj(KZ)
κc

(q−2)
p−j + C

∑

h≥0

c
(q−κ/2)
h




p∑

j=p−h+1

Lipj(KZ)
2



κ/2

.

(5.2)

On the other hand, E(|Dp|κ|Fp+1)(xp+1, . . . ) = 0 if h(xp+1) > 0.
We can now conclude the proof of (5.1), following the strategy we used to prove Theo-

rem 4.1 in Subsection 4.4. By Rosenthal-Burkholder inequality, we have

E|K − EK|2q−2 = E

∣∣∣
∑

Dp

∣∣∣
2q−2

≤ CE



[
∑

p

E(D2
p|Fp+1)

]q−1

+ C

∑
E(|Dp|2q−2).

The conditional expectations are estimated thanks to (5.2). The terms that were already
present in the proof of Theorem 4.1 are handled exactly in the same way. Therefore, we only

need to deal with the additional term. Let us define a function Φj(x) = βCard{k∈[1,j] :T k(x)∈∆0}

for x ∈ ∆0, and Φj(x) = 0 elsewhere (it is closely related to the function Ψj of Lemma 4.4,
with the difference that it is supported in ∆0). The additional term in the Rosenthal-
Burkholder inequality is bounded by

C

∫ 

∑

p≥0



∑

j≥p+1

Lipj(KZ)Φj−p−1(T
p+1x)




2

q−1

dµ(x)

+ C
∑

p≥0

∫ 

∑

j≥p+1

Lipj(KZ)Φj−p−1(T
p+1x)




2q−2

dµ(x).

The inequality
∑
xq−1
i ≤ (

∑
xi)

q−1 shows that the second term is bounded by the first one.
Therefore, to conclude the proof, it is sufficient to prove the following inequality:

(5.3)

∫ 
∑

p≥0


 ∑

j≥p+1

Lipj(KZ)Φj−p−1(T
p+1x)




2

q−1

dµ(x) ≤ C
(∑

Lipj(KZ)
2
)q−1

.

This estimate is formulated solely in terms of the non-invertible system. Its proof is
technical and complicated. Therefore, we defer it to Theorem A.1 in Appendix A. Modulo
this result, this concludes the proof of (5.1), and of Theorem 5.1.

6. Weak polynomial concentration inequalities

The results of Section 4 are not completely satisfactory for the significant example of
intermittent maps. Indeed, for Pomeau-Manneville maps of index α ∈ (0, 1) (with T (x) =
x+ cx1+α(1 + o(1)) for small x, see (7.4) below), the return time function to the rightmost

interval satisfies a bound µ{φ = n} ∼ C/n1/α+1. Therefore, the corresponding Young tower
has a moment of order q for any q < 1/α (which yields a concentration inequality of order
Q for any Q < 2/α−2 when α < 1/2), but it does not have a moment of order 1/α. Indeed,
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it only has a weak moment of order 1/α, meaning that µ{φ > t} ≤ Ct−1/α. An optimal
concentration statement for such a map would therefore be formulated in terms of weak
moments. This is our goal in this section.

Theorem 6.1. Let T : ∆ → ∆ be a non-uniform Young tower. Assume that, for some
q > 2, the return time φ to the basis of the tower has a weak moment of order q, i.e.,
there exists a constant C > 0 such that µ{x ∈ ∆0 : φ(x) > t} ≤ Ct−q for all t > 0.
Then T satisfies a weak polynomial concentration inequality with moment 2q− 2, i.e., there
exists a constant C > 0 such that, for any n ∈ N, for any separately Lipschitz function
K(x0, . . . , xn−1), and any t > 0,

µ

{
x :

∣∣∣∣K(x, . . . , T n−1x)−
∫
K(y, . . . , T n−1y) dµ(y)

∣∣∣∣ > t

}

≤ Ct−(2q−2)


∑

j

Lipj(K)2



q−1

.

Let us introduce a convenient notation. When Z is a real-valued random variable and
Q ≥ 1, we write ‖Z‖LQ,w = sup tP (|Z| > t)1/Q, so that P(|Z| > t) ≤ t−Q ‖Z‖Q

LQ,w . This is

the weak LQ (semi)norm of Z. With this notation, the statement of the theorem becomes

‖K − E(K)‖2q−2
L2q−2,w ≤ C

(∑
j Lipj(K)2

)q−1
, in close analogy with the statement of Theo-

rem 4.1. Note that ‖Z‖LQ,w is not a true norm: the triangle inequality fails, and is replaced
by ‖Z + Z ′‖LQ,w ≤ C(‖Z‖LQ,w + ‖Z ′‖LQ,w). On the other hand,

∥∥max(|Z|, |Z ′|)
∥∥Q
LQ,w ≤ ‖Z‖Q

LQ,w +
∥∥Z ′
∥∥Q
LQ,w .

Since a sequence with a weak moment of order q > 2 has a strong moment of order 2,
we may use intermediate results of the proof of Theorem 4.1 (and especially Lemma 4.7) to
prove Theorem 6.1. The proofs diverge at the level of Lemma 4.8: the version we will need
in the weak moments case is the following.

Lemma 6.2. Assume that φ has a weak moment of order q > 2. For all t > 0,

P(|Dp| > t|Fp+1)(xp+1, . . . ) ≤ Ct−(2q−2)
p∑

j=0

Lipj(K)2q−2c
(0)
p−j

+ Ct−(2q−2)
(∑

Lipj(K)2
)q−2

sup
h>0


h−1

p∑

j=p−h+1

Lipj(K)




2

.

Proof. If h(xp+1) > 0, then xp+1 has a unique preimage xp, and Dp(xp, xp+1, . . . ) = 0.
Therefore, there is nothing to prove. Assume now that h(xp+1) = 0, and let {zα} denote
the preimages of xp+1 under T . Writing A(z) = Dp(z, xp+1, . . . ), we have

P(|Dp| > t|Fp+1)(xp+1, . . . ) =
∑

|A(zα)|>t

g(zα).

Since φ has a weak moment of order q > 2, it has a strong moment of order 2. Therefore,
(4.8) gives

|A(z)| ≤
∑

j≤p−h

Lipj(K)c
(0)
p−h−j +

p∑

j=p−h+1

Lipj(K) =: A1(z) +A2(z).



OPTIMAL CONCENTRATION INEQUALITIES FOR DYNAMICAL SYSTEMS 23

If |A(z)| > t, then A1(z) > t/2 or A2(z) > t/2. Therefore, P(|Dp| > t|Fp+1) is bounded by

(6.1)
∑

A1(zα)>t/2

g(zα) +
∑

A2(zα)>t/2

g(zα).

For the first sum,
∑

A1(zα)>t/2

g(zα) ≤ C
∑

g(zα)(A1(zα)/t)
2q−2

≤ C
∑

h≥0

µ(φ = h)t−(2q−2)


 ∑

j≤p−h

Lipj(K)c
(0)
p−h−j




2q−2

≤ Ct−(2q−2)
∑

h≥0

µ(φ = h)
∑

j≤p−h

Lipj(K)2q−2c
(0)
p−h−j.

The coefficient of Lipj(K)2q−2 in this expression is
∑p−j

h=0 c
(2)
h c

(0)
p−h−j ≤ c

(0)
p−j. Therefore, this

is bounded by Ct−(2q−2)
∑

j≤p Lipj(K)2q−2c
(0)
p−j.

The second sum of (6.1) is bounded by C
∑
µ(φ = ℓ), where the sum is restricted to

those ℓ with
∑p

p−ℓ+1 Lipj(K) > t/2. Let h be the smallest such ℓ, the sum is bounded by

µ(φ ≥ h) ≤ Ch−q ≤ Ch−q




p∑

p−h+1

Lipj(K)/t




2q−2

.

To bound the last sum, we use the inequality (
∑p

p−h+1 xj)
2 ≤ h

∑
x2j , to obtain

h−q




p∑

p−h+1

Lipj(K)




2q−2

= h−q




p∑

p−h+1

Lipj(K)




2

·




p∑

p−h+1

Lipj(K)




2q−4

≤ h−q




p∑

p−h+1

Lipj(K)




2

·


h

p∑

p−h+1

Lipj(K)2



q−2

≤ h−2




p∑

p−h+1

Lipj(K)




2

·


∑

j∈Z

Lipj(K)2



q−2

.

This concludes the proof. �

To proceed, we need an analogue of Rosenthal-Burkholder inequality for weak moments.
Although it is not written explicitly in Burkholder’s article [Bur73], it follows easily from
the techniques developed there, giving the following statement.

Theorem 6.3. Let (Dp) be a sequence of reverse martingale differences with respect to a
decreasing filtration Fp (i.e., Dp is Fp-measurable and E(Dp|Fp+1) = 0). For all Q ≥ 2,

∥∥∥
∑

Dp

∥∥∥
Q

LQ,w
≤ C

∥∥∥
∑

E(D2
p|Fp+1)

∥∥∥
Q/2

LQ/2,w
+ C ‖sup |Dp|‖QLQ,w .

In particular,
∥∥∥
∑

Dp

∥∥∥
Q

LQ,w
≤ C

∥∥∥
∑

E(D2
p|Fp+1)

∥∥∥
Q/2

LQ/2,w
+ C

∑
‖Dp‖QLQ,w .
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Proof. By a truncation argument, it suffices to prove the result for bounded random vari-
ables, and p ∈ [0, P ]. Define three random variables

X = sup
0≤p≤P

∣∣∣∣∣∣

P∑

k=p

Dk

∣∣∣∣∣∣
, Y =

(∑
E(D2

p|Fp+1)
)1/2

, Z = max
0≤p≤P

|Dp|.

The inequality (21.2) in [Bur73] gives, for any 0 < δ < β − 1,

P(X > βt,max(Y,Z) ≤ δt) ≤ ǫP(X > t),

where ǫ = δ2/(β − δ − 1)2. In particular,

(βt)QP(X > βt) ≤ (βt)QP(max(Y,Z) > δt) + (βt)QǫP(X > t)

≤ βQδ−Q ‖max(Y,Z)‖Q
LQ,w + βQǫ ‖X‖Q

LQ,w .

Taking the supremum over t, we obtain

‖X‖Q
LQ,w ≤ βQδ−Q ‖max(Y,Z)‖Q

LQ,w + βQǫ ‖X‖Q
LQ,w .

If β > 1 is fixed, and δ is chosen small enough so that βQǫ < 1, this yields ‖X‖Q
LQ,w ≤

C ‖max(Y,Z)‖Q
LQ,w . Since

∣∣∣
∑P

0 Dp

∣∣∣ ≤ X and ‖Y ‖Q
LQ,w =

∥∥Y 2
∥∥Q/2
LQ/2,w , this proves the theo-

rem. �

Proof of Theorem 6.1. We have K − E(K) =
∑
Dp, hence

‖K − E(K)‖2q−2
L2q−2,w ≤ C

∥∥∥
∑

E(D2
p|Fp+1)

∥∥∥
q−1

Lq−1,w
+ C

∑
‖Dp‖2q−2

L2q−2,w .

For the first term, we use the inequality ‖·‖LQ,w ≤ ‖·‖LQ . Therefore, this term is bounded
by

CE



[
∑

p

E(D2
p|Fp+1)

]q−1

 .

Since φ has a weak moment of order q, it has a strong moment of order 2. Therefore, (4.9)

gives E(D2
p|Fp+1) ≤ ∑

j≤p c
(0)
p−j Lipj(K)2. Hence, the first term in Rosenthal-Burkholder

inequality is bounded by

C


∑

p

p∑

j=0

Lipj(K)2c
(0)
p−j



q−1

≤ C


∑

j

Lipj(K)2



q−1

.

Let us now turn to ‖Dp‖L2q−2,w . Integrating the estimates of Lemma 6.2, we get
(6.2)

‖Dp‖2q−2
L2q−2,w ≤ C

∑

j≤p

Lipj(K)2q−2c
(0)
p−j+C

(∑
Lipj(K)2

)q−2
sup
h>0


h−1

p∑

j=p−h+1

Lipj(K)




2

.

We should sum those estimates over p. For the first sum, we obtain

∑

j

Lipj(K)2q−2
∑

p≥j

c
(0)
p−j ≤ C

∑

j

Lipj(K)2q−2 ≤ C


∑

j

Lipj(K)2



q−1

.

For the second sum, let us define a function f on Z by f(j) = Lipj(K). This function belongs

to ℓ2(Z). The corresponding maximal function Mf(p) = suph>0
1

2h+1

∑p+h
j=p−h f(j) also
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belongs to ℓ2(Z) and satisfies ‖Mf‖ℓ2 ≤ C ‖f‖ℓ2 , by Hardy-Littlewood maximal inequality.
In particular,

∑

p

sup
h>0


h−1

p∑

p−h+1

Lipj(K)




2

≤ C
∑

j

Lipj(K)2.

Therefore, the contribution of the second term in (6.2) is bounded by C
(∑

Lipj(K)2
)q−1

.
This concludes the proof of Theorem 6.1. �

Remark 6.4. In view of Theorems 5.1 and 6.1, it would seem natural to try to prove a
weak polynomial concentration inequality in invertible systems with weak moment controls
on the return time. We have not been able to prove such a statement.

7. Applications

In this section, we first give examples of dynamical systems satisfying an exponential con-
centration inequality or only a polynomial concentration inequality. We also give examples
of systems satisfying a weak polynomial concentration inequality. Second, we present several
applications of these inequalities to specific observables. We shall not attempt to be exhaus-
tive. Previous results are found in [CMS02, CCS05b, CCRV09]. For instance, we strengthen
the bounds obtained in [CCS05b] since for dynamical systems modeled by a uniform Young
tower with exponential tails, we can now use an exponential concentration inequality in-
stead of a polynomial concentration inequality with moment 2 as in [CCS05b]. For systems
modeled by a non-uniform Young tower, only a polynomial concentration inequality with
moment 2 was known for intermittent maps of the interval (under some restrictions on the
parameter). We now have at our disposal an optimal polynomial concentration inequality
for these maps, and more generally, for dynamical systems modeled by non-uniform Young
towers with polynomial tails.

7.1. Examples of dynamical systems. There are well-known dynamical systems (X,T )
which can be modeled by a uniform Young tower with exponential tails [You98]. Examples
of invertible dynamical systems fitting this framework are for instance Axiom A attractors,
Hénon attractors for Benedicks-Carleson parameters [BY00], piecewise hyperbolic maps like
the Lozi attractor, some billiards with convex scatterers, etc. Such systems admit an SRB
measure µ and there is an invertible uniform Young tower (∆Z, T̂Z, µ̂Z) and a projection

map π : ∆Z → X such that T ◦ π = π ◦ T̂Z and µ = µ̂Z ◦ π−1. In the non-invertible case,
there is a non-invertible Young tower (∆, T̂ , µ̂) and a corresponding projection map. A
non-invertible example is the quadratic family for Benedicks-Carleson parameters. In both
cases, it can also be ensured that the projection map is contracting, i.e., d(πx, πy) ≤ d̂β(x, y)

for every x, y in the same partition element. Here, d̂β denotes the (unilateral or bilateral)

symbolic distance in the tower given by d̂β(x, y) = βs(x,y) for some β < 1. In particular,
if f is a bounded Lipschitz function on X, it lifts to a function f ◦ π which is Lipschitz in
the tower. More generally, if f is Hölder continuous, then its lift is Lipschitz for d̂β if β is
close enough to 1. Therefore, all the results we proved in the previous sections for Lipschitz
observables K have a counterpart about Hölder ones, we will not give further details in this
direction and restrict to the Lipschitz situation for ease of exposition. We will also assume
for simplicity that X is bounded.

Theorem 7.1. Let (X,T ) be a dynamical system modeled by a uniform Young tower with
exponential tails and let µ be its SRB measure. There exists C > 0 such that, for any n ∈ N,
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for any separately Lipschitz function K(x0, . . . , xn−1),

(7.1)

∫
eK(x,Tx,...,Tn−1x) dµ(x) ≤ e

∫
K(x,...,Tn−1x) dµ(x)eC

∑n−1
j=0 Lipj(K)2 .

This theorem is an obvious consequence of Theorem 3.4 in the invertible case and of
Theorem 3.1 in the non-invertible case. Inequality (7.1) was previously known only for
uniformly piecewise expanding maps of the interval and subshifts of finite type equipped
with a Gibbs measure [CMS02]. Under the assumptions of the previous theorem, only a
polynomial concentration with moment 2 had been proven [CCS05a].

An immediate consequence of (7.1) is the following inequality for upper deviations: for
all t > 0 and for all n ∈ N

(7.2) µ

{
x ∈ X : K(x, Tx, . . . , T n−1x)−

∫
K(y, . . . , T n−1y) dµ(y) > t

}

≤ e
− t2

4C
∑n−1

j=0
Lipj (K)2 .

The same bound holds for lower deviations by applying (7.2) to −K.
Let us now consider dynamical systems modeled by a non-uniform Young tower with

polynomial tails. In the invertible case, there is an invertible non-uniform Young tower
(∆Z, T̂Z, µ̂Z) and a projection map π : ∆Z → X, and the SRB measure is µ = µ̂Z ◦ π−1

provided that
∑
φ(α)µ̂Z(∆α,0) < ∞. If

∑
φ(α)q µ̂Z(∆α,0) < ∞, we shall simply say that

the tower has Lq tails. Similarly, if
∑

φ(α)>n µ̂Z(∆α,0) ≤ Cn−q, we shall say that the tower

has weak Lq tails. We can of course rephrase what we have just said in the non-invertible
case.

Theorem 7.2. Let (X,T ) be a dynamical system modeled by a non-uniform Young tower
with Lq tails, for some q ≥ 2. Then T satisfies a polynomial concentration inequality with
moment 2q − 2, i.e., there exists a constant C > 0 such that, for any n ∈ N, for any
separately Lipschitz function K(x0, . . . , xn−1),

∫ ∣∣∣∣K(x, . . . , T n−1x)−
∫
K(y, . . . , T n−1y) dµ(y)

∣∣∣∣
2q−2

dµ(x) ≤ C



n−1∑

j=0

Lipj(K)2



q−1

.

Using Markov’s inequality we get at once that, for any t > 0 and for any n ∈ N,

(7.3) µ

{
x ∈ X :

∣∣K(x, Tx, . . . , T n−1x)−
∫
K(y, . . . , T n−1y) dµ(y)

∣∣ > t

}

≤ C

(∑n−1
j=0 Lipj(K)2

)q−1

t2q−2
.

If the tails are only in weak Lq, Theorem 6.1 shows that (7.3) still holds.
The fundamental example is an expanding map of the interval with an indifferent fixed

point [You99]. For the sake of definiteness, we consider for α ∈ (0, 1) the so-called “inter-
mittent” map T : [0, 1] → [0, 1] defined by

(7.4) T (x) =

{
x(1 + 2αxα) if 0 ≤ x ≤ 1/2,

2x− 1 if 1/2 < x ≤ 1.

There is a unique absolutely continuous invariant probability measure dµ(x) = h(x) dx such
that h(x) ∼ x−α as x→ 0. This map is modeled by a non-uniform Young tower (∆, µ̂) such
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that µ̂{φ = n} ∼ C/n
1
α
+1. The return time has a weak moment of order 1/α. Thus, for

α ∈ (0, 1/2), the previous results yield:

Corollary 7.3. Let T be the map (7.4) and µ its absolutely continuous invariant probability
measure. There exists a constant C > 0 such that, for any n ∈ N, for any separately
Lipschitz function K(x0, . . . , xn−1),

µ

{
x ∈ X :

∣∣K(x, Tx, . . . , T n−1x)−
∫
K(y, . . . , T n−1y) dµ(y)

∣∣ > t

}

≤ C

(∑n−1
j=0 Lipj(K)2

)1/α−1

t
2
α
−2

.

This estimate readily gives bounds for the moments of order q 6= 2/α − 2. Indeed, if
Z is a random variable satisfying P(|Z| > t) ≤ (A/t)Q, then using the formula E(|Z|q) =∫
qtq−1

P(|Z| > t) dt and the tail estimates, one gets

E(|Z|q) ≤ Q

Q− q
Aq for q < Q,

and if Z is bounded

E(|Z|q) ≤ q

q −Q
AQ ‖Z‖q−QL∞ for q > Q.

For q < 2/α−2, this generalizes to arbitrary separately Lipschitz functions of n variables
the moment bounds obtained for ergodic sums of Lipschitz functions in [MN08] (while the
moment bounds for q > 2/α − 2 are apparently new, even for ergodic sums). On the other
hand, we improve the result in [CCRV09] in two respects: first, we obtain a polynomial

concentration inequality with moment 2 for any α ∈ (0, 1/2) instead of (0, 4−
√
15); second,

we also obtain a polynomial concentration inequality with a moment whose order is larger
than 2 and depends on α ∈ (0, 1/2).

Remark 7.4. There is a difference between Theorems 4.1 (about strong moments) and 6.1
(about weak moments): in the former, the range of parameters is q ≥ 2, while we require
q > 2 in the latter. It turns out that Theorem 6.1 is false for q = 2, as testified by the
map (7.4) with α = 1/2. For such a map, if f is a Hölder function with

∫
f dµ = 0

and f(0) 6= 0, then Snf/
√
n log n converges in distribution to a gaussian [Gou04a, Page

88]. If Theorem 6.1 were true for q = 2, we would have µ{|Snf | > t} ≤ Ct−2n, hence
µ{|Snf/

√
n log n| > t} ≤ Ct−2(n log n)−1n → 0, implying that Snf/

√
n log n tends in

probability to 0 and giving a contradiction.

There are also invertible examples exhibiting an intermittent behavior, notably coming
from billiards. Indeed, apart from the stadium billiard (with a weak moment of order 2 and
therefore not covered by our results), Chernov and Zhang studied in [CZ05a, CZ05b] sev-

eral classes of billiards for which the decay of correlations behaves like O((log n)C/n1/α−1),
for some parameter α that can be chosen freely in (0, 1/2] and some C > 0. This decay
rate is obtained by modeling those billiards by nonuniform invertible Young towers with
well controlled tails. Therefore, we can apply Theorem 7.2 to those maps, yielding poly-
nomial concentration inequalities for any exponent p < 2/α − 2, just like in the above
one-dimensional non-invertible situation.
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7.2. Empirical covariance. For a Lipschitz observable f such that
∫
f dµ = 0, the auto-

covariance of the process {f ◦ T k} is defined as usual by

(7.5) Cf (ℓ) =

∫
f · f ◦ T ℓ dµ.

An obvious estimator for Cf (ℓ) is

Ĉf (n, ℓ, x) =
1

n

n−1∑

j=0

f(T jx)f(T j+ℓx).

We could as well consider the covariance between {f ◦T k} and {g◦T k}, for a pair of Lipschitz

observables f, g. For each ℓ ≥ 0, the ergodic theorem tells us that Ĉf (n, ℓ, x) → Cf (ℓ) µ-
almost surely, as n → ∞. Considering the function of n+ ℓ variables K(x0, . . . , xn+ℓ−1) =
1
n

∑n−1
j=0 f(xj)f(xj+ℓ), we obtain immediately (noting that

∫
Ĉf (n, ℓ, x) dµ(x) = Cf (ℓ)) the

following theorems.

Theorem 7.5. Let (X,T ) be a dynamical system modeled by a uniform Young tower with
exponential tails and µ its SRB measure. Let f : X → R be a Lipschitz function. There
exists a constant c > 0 such that, for any n, ℓ ∈ N and for any t > 0,

µ
{
x ∈ X :

∣∣Ĉf (n, ℓ, x)− Cf (ℓ)
∣∣ > t

}
≤ 2e−c

n2t2

n+ℓ .

Theorem 7.6. Let (X,T ) be a dynamical system modeled by a non-uniform Young tower
with weak Lq tails, for some q ≥ 2, and µ its SRB measure. Let f : X → R be a Lipschitz
function. There exists a constant c > 0 such that, for any n, ℓ ∈ N and for any t > 0,

µ
{
x ∈ X :

∣∣Ĉf (n, ℓ, x)− Cf (ℓ)
∣∣ > t

}
≤ c

(n+ ℓ

n2

)q−1 1

t2q−2
.

7.3. Empirical measure. Given x ∈ X in an ergodic compact dynamical system (X,T, µ),
let

En(x) =
1

n

n−1∑

j=0

δT jx

be the associated empirical measure. By Birkhoff’s ergodic theorem, En(x) vaguely converges
to µ, for µ-almost every x. Our aim is to quantify the ‘speed’ at which this convergence
takes place. We use the Kantorovich distance (compatible with vague convergence): for two
probability measures µ1, µ2 on X, let

distK(µ1, µ2) = sup

{∫
g dµ1 −

∫
g dµ2 : g : X → R is 1-Lipschitz

}
.

Set

Dn(x) = distK(En(x), µ).
We have the following general bounds.

Theorem 7.7. Let (X,T ) be a dynamical system modeled by a uniform Young tower with
exponential tails and µ its SRB measure. Let f : X → R be a Lipschitz function with∫
f dµ = 0. There exists a constant C > 0 such that, for any n ∈ N and for any t > 0,

µ

{
x ∈ X :

∣∣∣Dn(x)−
∫

Dn(y) dµ(y)
∣∣∣ > t√

n

}
≤ 2e−Ct

2
.
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Theorem 7.8. Let (X,T ) be a dynamical system modeled by a non-uniform Young tower
with weak Lq tails, for some q ≥ 2, and µ its SRB measure. Let f : X → R be a Lipschitz
function with

∫
f dµ = 0. There exists a constant C > 0 such that, for all n ∈ N and all

t > 0,

µ

{
x ∈ X :

∣∣∣Dn(x)−
∫

Dn(y) dµ(y)
∣∣∣ > t√

n

}
≤ C

t2q−2
.

These bounds follow at once by applying either (7.2) or (7.3) to the function

K(x0, . . . , xn−1) = sup





1

n

n−1∑

j=0

g(xj)−
∫
g dµ : g : X → R is 1− Lipschitz





whose Lipschitz constants are uniformly bounded by 1/n. The natural next step is to seek
for an upper bound for

∫
Dn(y) dµ(y). We are not able to obtain an a priori sufficiently

good estimate unless we restrict to one-dimensional systems.

Corollary 7.9. Let (X,T ) be a one-dimensional dynamical system satisfying the assump-
tions of Theorem 7.7. There exist some constants B,C > 0 such that, for any n ∈ N and
for any t > 0,

µ

{
x ∈ X : Dn(x) >

t

n1/2
+

B

n1/4

}
≤ e−Ct

2
.

Corollary 7.10. Let (X,T ) be a one-dimensional dynamical system satisfying the assump-
tions of Theorem 7.8. There exist some constants B,C > 0 such that, for any n ∈ N and
for any t > 0,

µ

{
x ∈ X : Dn(x) >

t

n1/2
+

B

n1/4

}
≤ C

t2q−2
.

These two corollaries follow immediately if we can prove that there exists B > 0 such
that, for any n ∈ N, ∫

Dn dµ ≤ B

n1/4
.

The proof is found in [CCS05b, Theorem 5.2]. The point is that in dimension one, there is
a special representation of Kantorovich distance in terms of the distribution functions. The
estimate then follows easily using the fact that the auto-covariance of Lipschitz observables
is summable under the above assumptions.

For the map (7.4), we can use Corollary 7.3 to get the bound

µ

{
x ∈ X : Dn(x) >

t

n1/2
+

B

n1/4

}
≤ C

t
2
α
−2
,

for any n ∈ N and for any t > 0.

Remark 7.11. What explains the power 1/4 of n is the fact that at some stage, one has
to approximate a characteristic function of a set by a Lipschitz function. If one can control
the auto-covariance of functions with bounded variation, one gets

∫
Dn dµ ≤ B√

n
.

This is the case for uniformly piecewise expanding maps of the interval [CMS02]. This is
also the case for the quadratic map with Benedicks-Carleson parameters [You92]. Since we
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proved that this system satisfies an exponential concentration inequality, we get

µ

{
x ∈ X : Dn(x) >

t√
n

}
≤ e−Ct

2
,

for any n ∈ N and for any t greater than some t0 > 0.

7.4. Kernel density estimation. The estimation from an orbit of the density h of the
invariant measure of a one-dimensional dynamical system (X,T ) is based on the estimator

hn(s;x) =
1

nan

n−1∑

j=0

ψ
(s− T jx

an

)

where an is a sequence of positive numbers going to 0 but such that nan goes to ∞, and ψ
is a ‘kernel’, that is, a non-negative Lipschitz function with compact support. We suppose
that it is fixed in the sequel.

As proved in [CCS05a, Appendix C], the density of the invariant measure for a one-
dimensional system modeled by a uniform Young tower with exponential tails has the fol-
lowing property: there exist some constants B > 0 and τ > 0 such that

(7.6)

∫ ∣∣h(s)− h(s − t)
∣∣ds ≤ B|t|τ , ∀t ∈ R.

We have the following result about the L1 convergence of empirical densities.

Theorem 7.12. Let (X,T ) be a one-dimensional dynamical system modeled by a uniform
Young tower with exponential tails and µ its SRB measure. There exist c1, c2 > 0 such that,
for any t > c1(a

τ
n + 1/(

√
na2n)) and for any n ∈ N

µ

{
x ∈ X :

∫ ∣∣hn(s;x)− h(s)
∣∣ ds > t

}
≤ e−c2na

2
nt

2
.

The proof is similar to the proof of Theorem 5.2 in [CCS05a] except that we use an
exponential concentration inequality instead of a polynomial concentration inequality with
moment 2; hence we obtain a much stronger bound. (See also [CMS02, Theorem III.2] for
uniformly piecewise expanding maps of the interval.) The property (7.6) is used to obtain
an upper bound for

∫ ∣∣hn(s;x)− h(s)
∣∣ ds dµ.

We do not know if the property (7.6) holds for the density of the invariant measure of all
one-dimensional system modeled by a non-uniform Young tower with polynomial tails. But
for the special case of the intermittent map (7.4), it is easy to check that (7.6) is true with
τ = 1− α. Therefore, applying Corollary 7.3 we get the following result.

Theorem 7.13. Let T be the map (7.4) and µ its absolutely continuous invariant probability
measure. There exist c1, c2 > 0 such that for any t > c1(a

1−α
n + 1/(

√
na2n)) and for any

n ∈ N

µ

{
x ∈ X :

∫ ∣∣hn(s;x)− h(s)
∣∣ ds > t

}
≤ c2

n
1
α
−1a

2
α
−2

n t
2
α
−2
.

7.5. Tracing orbit properties. Let A be a measurable subset of X such that µ(A) > 0
and define for all n ∈ N

SA(x, n) =
1

n
inf
y∈A

n−1∑

j=0

d(T jx, T jy),

where d is the distance on X. This quantity, between 0 and 1, measures how well we can
trace the orbit of some initial condition not in A by an orbit from an element of A.
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Theorem 7.14. Let (X,T ) be a dynamical system modeled by a uniform Young tower with
exponential tails and µ its SRB measure. There exist constants c1, c2 > 0 such that, for any
measurable subset A ⊂ X with µ(A) > 0, for any n ∈ N and for any t > 0

µ

{
x ∈ X : SA(x, n) > c1

√
log n

µ(A)
√
n
+

t√
n

}
≤ e−c2t

2
.

Again, the proof is the same as [CMS02, Theorem IV.1] because it relies only on the
exponential concentration inequality.

Theorem 7.15. Let (X,T ) be a dynamical system modeled by a non-uniform Young tower
with weak Lq tails, for some q ≥ 2, and µ its SRB measure. There exist constants c1, c2 > 0
such that, for any measurable subset A ⊂ X with µ(A) > 0, for any n ∈ N and for any t > 0

µ

{
x ∈ X : SA(x, n) >

1

n(q−1)/(2q−1)

(
t+

c1
µ(A)

)}
≤ c2

n(q−1)/(2q−1)t2q−2
.

The proof follows the lines of that of [CMS02, Theorem IV.1] except that one uses the weak
polynomial concentration inequality instead of the exponential concentration inequality as
in the previous theorem.

For the intermittent maps (7.4), we can use Corollary 7.3. We get that there exist
constants c1, c2 > 0 such that for any subset A ⊂ [0, 1] with µ(A) > 0, for any n ∈ N and
for any t > 0

µ

{
x ∈ [0, 1] : SA(x, n) >

1

n(1/α−1)/(2/α−1)

(
t+

c1
µ(A)

)}
≤ c2

n(
1
α
−1)/( 2

α
−1)t

2
α
−2
.

We now formulate similar results for the number of mismatches at a given precision. Let
A be a measurable subset of X such that µ(A) > 0 and ǫ > 0. For all n ∈ N define

MA(x, n, ǫ) =
1

n
inf
y∈A

Card{0 ≤ j ≤ n− 1 : d(T jx, T jj) > ǫ}.

We have the following result.

Theorem 7.16. Let (X,T ) be a dynamical system modeled by a Young tower with expo-
nential tails and µ its SRB measure. There exist constants c1, c2 > 0 such that, if A ⊂ X
is such that µ(A) > 0, then for any 0 < ǫ < 1/2, for any n ∈ N and for any t > 0

µ

{
x ∈ X : MA(x, n, ǫ) > c1ǫ

−1

√
log n

µ(A)
√
n
+
tǫ−1

√
n

}
≤ e−c2t

2
.

Theorem 7.17. Let (X,T ) be a dynamical system modeled by a non-uniform Young tower
with weak Lq tails, for some q ≥ 2, and µ its SRB measure. There exist constants c1, c2 > 0
such that, if A ⊂ X is such that µ(A) > 0, then for any 0 < ǫ < 1/2, for any n ∈ N and for
any t > 0

µ

{
x ∈ X : MA(x, n, ǫ) >

1

ǫ(q−1)/(q−1/2)n(q−1)/(2q−1)

(
t+

c1
µ(A)

)}

≤ c2

ǫ(q−1)/(q−1/2)n(q−1)/(2q−1)t2q−2
.

Once more, the proofs are almost the same as [CMS02, Theorem IV.2].
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7.6. Integrated periodogram. Let (X,T, µ) be a dynamical system and f : X → R be
a Lipschitz function such that

∫
f dµ = 0. Define the empirical integrated periodogram

function of the process {f ◦ T k}k≥0 by

Jn(x, ω) =

∫ ω

0

1

n

∣∣∣
n−1∑

j=0

e−ijsf(T jx)
∣∣∣
2
ds, ω ∈ [0, 2π].

Let

J(ω) = Cf (0)ω + 2

∞∑

ℓ=1

sin(ωℓ)

ℓ
Cf (ℓ),

where Cf (ℓ) is defined in (7.5).

Theorem 7.18. Let (X,T ) be a dynamical system modeled by a uniform Young tower with
exponential tails and µ its SRB measure. Let f : X → R be a Lipschitz function such that∫
f dµ = 0. There exist some positive constants c1, c2 such that for any n ∈ N and for any

t > 0

µ

{
x ∈ X : sup

ω∈[0,2π]

∣∣Jn(x, ω)− J(ω)
∣∣ > t+

c1(1 + log n)3/2√
n

}
≤ e−c2nt

2/(1+log n)2 .

The observable supω∈[0,2π]
∣∣Jn(x, ω)− J(ω)

∣∣ was studied in [CCS05b] in the same setting
but using the polynomial concentration inequality with moment 2. We get here a stronger
result since we now have the exponential concentration inequality at hand.

Proof. Let

(7.7) K(x0, . . . , xn−1) = sup
ω∈[0,2π]

∣∣∣∣∣∣

∫ ω

0

1

n

∣∣∣
n−1∑

j=0

e−ijsf(xj)
∣∣∣
2
ds− J(ω)

∣∣∣∣∣∣
.

The reader can verify that

(7.8) sup
0≤ℓ≤n−1

Lipℓ(K) ≤ c(1 + log n)

n

for some constant c > 0. Let

(7.9) Qn(x) = sup
ω∈[0,2π]

∣∣Jn(x, ω)− J(ω)
∣∣.

The major task is to estimate from above
∫
Qn dµ. We partly proceed as in [CCS05b, Page

2345]: We discretize ω, that is, given any integer N ∈ N, we define the finite sequence of
numbers (ωp) by ωp = 2πp/N , p = 0, . . . , N . We then define

Qn(x) := sup
0≤p≤N

∣∣Jn(x, ωp)− J(ωp)
∣∣.

One can then show that there exists some C > 0 such that

(7.10) Qn(x) ≤ Qn(x) +
C

N
for all x ∈ X and for all integers n,N ∈ N.

We shall also use the fact (see [CCS05b] for more details) that there exists some C > 0
such that, for all ω and for any n ∈ N,

(7.11)
∣∣J(ω)−

∫
Jn(x, ω) dµ(x)

∣∣ ≤ C

n
.



OPTIMAL CONCENTRATION INEQUALITIES FOR DYNAMICAL SYSTEMS 33

We now depart from [CCS05b] and use that for any real β > 0

(7.12)

∫
eβQn dµ ≤

N∑

p=0

∫
eβ[Jn(x,ωp)−J(ωp)] dµ(x) +

N∑

p=0

∫
eβ[J(ωp)−Jn(x,ωp)] dµ(x).

We estimate each term in the first sum of the right-hand side of this inequality by using the
exponential concentration inequality (7.1), (7.8) and (7.11):
∫
eβ[Jn(x,ωp)−J(ωp)] dµ(x) =

∫
eβ[Jn(x,ωp)−

∫
Jn(y,ωp) dµ(y)] dµ(x) · eβ[

∫
Jn(y,ωp) dµ(y)−J(ωp)]

≤ eCβ
2(1+log n)2/n · eCβ/n.

We get the same bound for each term in the second sum of the right-hand side of (7.12),
hence ∫

eβQn dµ ≤ 2(N + 1)eCβ
2(1+logn)2/n · eCβ/n.

We now use Jensen’s inequality, (7.10) and (7.9) to get

∫
sup

ω∈[0,2π]

∣∣Jn(x, ω)− J(ω)
∣∣ dµ(x) ≤

inf
N∈N

{
1

β
log[2(N + 1)] + Cβ

(1 + log n)2

n
+
C

n
+
C

N

}
.

It remains to optimize over N ∈ N and β > 0 to obtain
∫

sup
ω∈[0,2π]

∣∣Jn(x, ω)− J(ω)
∣∣ dµ(x) ≤ c1(1 + log n)3/2√

n
.

We conclude the proof by applying (7.2) to the function (7.7), taking into account (7.8) and
the previous estimate. �

Appendix A. A technical lemma

Our goal in this section is to prove a technical result that was required to obtain poly-
nomial concentration estimates in non-uniform invertible Young towers. Let us consider
a non-invertible non-uniform Young tower in which the return time has a moment of or-
der q ≥ 2 (i.e.,

∑
hqµ{x ∈ ∆0 : φ(x) = h} < ∞). We define a function Φn by

Φn(x) = βCard{j∈[1,n] : T jx∈∆0} for x ∈ ∆0, and Φn = 0 otherwise, where β < 1 is fixed.
The estimate we need in (5.3) is given in the following theorem.

Theorem A.1. For all nonnegative real numbers Lk,

∫ 

∑

r



∑

k≥r

LkΦk−r ◦ T r



2

q−1

≤ C
(∑

L2
k

)q−1
.

For the proof, let us expand the square on the left, the resulting function is bounded
by
∑

r

∑
k≥ℓ≥r LkLℓΦk−r ◦ T r since Φℓ−r ◦ T r ≤ 1. Bounding LkLℓ by L2

k + L2
ℓ , we get

two terms that will be studied separately (but with very similar techniques). The theorem
follows from the following lemmas.
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Lemma A.2. We have

∫ 
∑

r

∑

k≥r

L2
k(k − r + 1)Φk−r ◦ T r



q−1

≤ C
(∑

L2
k

)q−1
.

Lemma A.3. We have

∫ 
∑

r

∑

k≥r

k−1∑

ℓ=r

L2
ℓΦk−r ◦ T r



q−1

≤ C
(∑

L2
k

)q−1
.

We will prove a more general result, encompassing those two lemmas and better suited
to induction. We will need the following notion.

Definition A.4. A weight system is a set of numbers u(r, k) for r < k such that

(1) either u(r, k) =Mk for all r < k,

(2) or u(r, k) = (
∑k−1

j=r Mj)/(k − r) for all r < k,

where Mk is a summable sequence of nonnegative real numbers. In both cases, let Σ =
∑
Mk

be the sum of the weight system.

Weight systems satisfy the following property.

Lemma A.5. Let u(r, k) be a weight system. For all m > 0, we have
∑

r u(r, r +m) ≤ Σ.

Proof. If u(r, k) = Mk, then
∑
u(r, r + m) =

∑
Mr+m ≤ ∑

Mr = Σ. If u(r, k) =

(
∑k−1

j=r Mj)/(k − r), then

∑
u(r, r +m) = m−1

∑

r

m−1∑

j=0

Mr+j ≤ m−1
m−1∑

j=0

Σ = Σ. �

We will also need the following fact.

Lemma A.6. Let u(r, k) be a weight system with sum Σ, and let c
(1)
n be a sequence with a

moment of order 1. There exists a weight system v(r, k) with sum at most CΣ such that,

for all s < k, we have
∑

r<s u(r, k)c
(1)
s−r ≤ v(s, k).

Proof. Let w(s, k) =
∑

r<s u(r, k)c
(1)
s−r . If u(r, k) is of the first type (i.e., u(r, k) =Mk), then

w(s, k) =
∑

r<sMkc
(1)
s−r ≤ CMk, and one can take v(s, k) = CMk. If u(r, k) is of the second

type (i.e., u(r, k) = (
∑k−1

j=r Mj)/(k − r)), then

w(s, k) =
∑

r<s

u(r, k)c
(1)
s−r =

∑

r<s

1

k − r



k−1∑

j=r

Mj


 c

(1)
s−r

≤ 1

k − s


∑

j<s

Mj

∑

r≤j

c
(1)
s−r +

k−1∑

j=s

Mj

∑

r<s

c
(1)
s−r




≤ 1

k − s



∑

j<s

Mjc
(0)
s−j + C

k−1∑

j=s

Mj


 .
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Let M ′
s = CMs+

∑
j<sMjc

(0)
s−j, we get w(s, k) ≤ 1

k−s(M
′
s+C

∑k−1
j=s+1Mj), which is bounded

by 1
k−s

∑k−1
j=s M

′
j . Moreover,

∑
M ′
j ≤ C

∑
Mj since the sequence c

(0)
n is summable. This

shows that w is bounded by a weight system v with sum at most CΣ. �

The main lemma is the following:

Lemma A.7. Consider a weight system u(r, k), and real numbers γ ≥ 1 and Q ≥ 1 with
γQ ≤ q − 1. We have

∫ (∑

k>r

u(r, k)(k − r)γΦk−r ◦ T r
)Q

≤ CΣQ.

This result implies Lemmas A.2 and A.3, using it with γ = 1, Q = q− 1 and the weights

L2
k for the former, (

∑k−1
ℓ=r L

2
ℓ )/(k − r) for the latter.

We will prove the lemma directly for Q ∈ [1, 2], while an induction will be required for
Q > 2. When u is a weight system, let us write S(γ, u) =

∑
k>r u(r, k)(k − r)γΦk−r ◦ T r.

We will construct another weight system v(r, k) (with sum at most CΣ) such that
∫

|S(γ, u)|Q ≤ CΣQ + CΣQ/2
∫

|S(2γ, v)|Q/2.

By induction, the last integral is bounded by CΣQ/2, and we obtain the desired result.

Let us explain the strategy of the proof. First, since
∫
Φn ≤ c

(q−1)
n by Lemma A.8 below,

we have

E(S(γ, u)) ≤
∑

k>r

(k − r)γu(r, k)c
(q−1)
k−r =

∑

m

mγc(q−1)
m

(
∑

r

u(r, r +m)

)
≤
∑

m

mγc(q−1)
m Σ,

by Lemma A.5. As γ ≤ γQ ≤ q − 1, the sum in m is finite, and we get E(S(γ, u)) ≤ CΣ.
Consequently, to prove the lemma, it suffices to bound

∫
|S(γ, u) − E(S(γ, u))|Q.

We decompose S = S(γ, u) as E(S)+
∑

s≥0 Ss ◦T s, where Ss ◦T s is a sequence of reverse

martingale differences: writing F0 for the Borel σ-algebra and Fs = T−sF0, the function
Ss ◦ T s is Fs-measurable and E(Ss ◦ T s|Fs+1) = 0, i.e., E(Ss|F1) = 0. For any function f ,
one has E(f |Fs) = (Lsf) ◦ T s, where L is the transfer operator. Therefore, Ss is given by
Ss(z) = LsS(z)− Ls+1S(Tz).

For Q ∈ [1, 2], the von Bahr-Esseen inequality [vBE65] yields
∫

|S − E(S)|Q ≤
∑

s

E(|Ss|Q|),

while for Q > 2 Rosenthal-Burkholder inequality gives an additional term as follows:

∫
|S − E(S)|Q ≤ E

(
∑

s

E(S2
s |F1) ◦ T s

)Q/2
+
∑

s

E(|Ss|Q).

We will split each function Ss into several parts that will be estimated separately. Plug-
ging those bounds into the inequalities of von Bahr-Esseen (for Q ∈ [1, 2]) and Rosenthal-
Burkholder (for Q > 2) will give the desired result.

More precisely, if h(x) 6= 0, we have E(|Ss||F1) = 0 at the (unique) preimage of x and
there is nothing to estimate. On the other hand, if h(x) = 0 and if z is a preimage of x
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under T , we have

Ss(z) = LsS(z)− Ls+1S(x) =
∑

k>r

(k − r)γu(r, k)(Ls(Φk−r ◦ T r)(z) − Ls+1(Φk−r ◦ T r)(x)).

When estimating E(S2
s |F1) or E(|Ss|Q|F1), there is a contribution coming from Ls+1S(x)

(involving a sum over k > r), and a contribution coming from the sum over the preimages
z of x of LsS(z) (involving a sum over z and over k > r). We will treat separately those
contributions depending on the positions of k and r with respect to s and to s− h (where
h is the height of the preimage z of x one is considering). Let πz be the projection of z
in the basis of the tower. If h ≤ s, we have LsS(z) = Ls−hS(πz). (This is the interesting
case: if h > s, then all the following estimates become easier, we will not indicate the trivial
modifications to be done in this case.)

We will study separately the following cases:

(1) k > r ≥ s+ 1, contribution of Ls−hS(πz) − Ls+1S(x);
(2) k > s+ 1 > r, contribution solely of Ls+1S(x);
(3) k > s− h, min(s+ 1, k) > r, contribution solely of Ls−hS(πz);
(4) s+ 1 ≥ k > s− h, r < k, contribution solely of Ls+1S(x);
(5) s− h ≥ k > r, contribution of Ls−hS(πz) −Ls+1S(x).

We will treat separately those five contributions, and see that all of them satisfy the desired
bounds. We will need very precise estimates on the transfer operator, given in the following

lemma. We recall that the notation d
(Q)
n indicates a non-increasing sequence with a moment

of order Q.

Lemma A.8. We have
∫
Φm ≤ c

(q−1)
m . For h(z) = 0, we have LnΦm(z) ≤ c

(q)
n Φm−n(z) if

n ≤ m, and ∣∣∣∣∣∣
Ln(LmΦm)(z)−

∑

b≤n

e(b,m)

∣∣∣∣∣∣
≤

n∑

b=0

d
(q−2)
n−b

m∑

i=0

c
(q)
b+m−ic

(q)
i ,

where the scalar e(b,m) only depends on b and m and is bounded by
∑m

i=0 c
(q)
b+m−ic

(q)
i .

The function Φm involves m iterates of the transformation. While the transfer operator
is eliminating some number n ≤ m of those iterates, the improvement in the estimates
depends on n, and m − n iterates remain ready to be used (under the form of Φm−n).
Once all the variables are eliminated, Ln(LmΦm) converges to the integral of Φm (which is
equal to

∑
b≥0 e(b,m)), with a more complicated error term whose precise form will play an

important role later on.

Proof. Let us first assume n ≤ m. In this case, LnΦm(z) = Φm−n(z) · Un1(z), where the

operator Un was introduced in the proof of Lemma 4.4. We proved there that ‖Un‖ ≤ c
(q)
n ,

the desired estimate follows.
For any point x with height i ∈ [0,m], we obtain LmΦm(x) = Lm−iΦm(πx) ≤ c

(q)
m−i. On

the other hand, if h(x) = i > m, we have LmΦm(x) = Φm(T
−mx) = 0, since Φm vanishes

on points with positive height by definition. Let Γ = LmΦm.
We obtain

∫
Φm =

∫
Γ ≤

m∑

i=0

µ{h = i}c(q)m−i ≤
m∑

i=0

c
(q−1)
i c

(q)
m−i ≤ c(q−1)

m .
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Let us now study Ln(LmΦm) = LnΓ, using the previous information regarding Γ. We
will use the operators Tk and Bb that were introduced in Subsection 4.2, so that LnΓ(z) =∑

k+b=n TkBbΓ(z) for h(z) = 0. We explained there that Tk = Π+Ek where Πf = (
∫
f)1∆0 ,

and ‖Ek‖ ≤ d
(q−2)
k . Hence,

LnΓ(z) = Π ·
∑

b≤n

BbΓ +
∑

k+b=n

EkBbΓ(z).

We estimate first ‖BbΓ‖. We have BbΓ(x) =
∑
g(b)(y)Γ(y), where we sum over the points

y ∈ T−b(x) not returning to ∆0 before time b. If h(y) = i, the point πy has a return time

to the basis equal to b+ i. Therefore, |BbΓ(x)| ≤
∑m

i=0 c
(q)
b+ic

(q)
m−i =

∑m
i=0 c

(q)
b+m−ic

(q)
i (in view

of the bound on Γ at height i). The Lipschitz norm of BbΓ is estimated in the same way.
Thus,

∑

k+b=n

‖EkBbΓ‖ ≤
∑

k+b=n

d
(q−2)
k

m∑

i=0

c
(q)
b+m−ic

(q)
i .

Finally, the statement of the lemma is satisfied letting e(b,m) =
∫
BbΓ = Π(BbΓ). This

scalar is independent of n and bounded by
∑m

i=0 c
(q)
b+m−ic

(q)
i . �

We will use the following simple remark. For κ ≥ 2 and x, y ≥ 0, we have (x + y)κ ≤
xκ + Cy(x+ y)κ−1 (by Taylor’s formula). By induction, this implies

(A.1)

(
n∑

i=1

xi

)κ
≤ C

n∑

i=1

xi ·




i∑

j=1

xj



κ−1

.

A.1. The case k > r ≥ s + 1. When k > r ≥ s + 1, we have Ls+1(Φk−r ◦ T r)(x) =
Φk−r ◦ T r−s−1(x), while Ls−h(Φk−r ◦ T r)(πz) = Φk−r ◦ T r−s+h(πz). Since T h+1(πz) = x,
those terms coincide, and their contribution to Ss(z) vanishes.

A.2. The case k > s+1 > r, contribution of Ls+1S(x). The contribution from Φk−r◦T r
satisfies

Ls+1(Φk−r ◦ T r) = Ls+1−rΦk−r ≤ c
(q)
s+1−rΦk−s−1(x),

by Lemma A.8. Summing those contributions to Ss(z) (for varying k and r) gives a term
which is bounded by

S(2)
s =

∑

k>s+1>r

(k − r)γu(r, k)c
(q)
s+1−rΦk−s−1(x).

Let us note that this term does not depend on z. Since k − r = (k − s− 1) + (s+ 1− r) ≤
2(k − s− 1)(s + 1− r) and since (s+ 1− r)γc

(q)
s+1−r ≤ c

(q−γ)
s+1−r, we have

S(2)
s ≤

∑

k>s+1

∑

r≤s

u(r, k)c
(q−γ)
s+1−r(k − s− 1)γΦk−s−1(x).

By Lemma A.6, there exists a new weight system v such that
∑

r≤s u(r, k)c
(q−γ)
s+1−r ≤ v(s+1, k),

yielding S
(2)
s ≤∑k>s+1 v(s + 1, k)(k − s− 1)γΦk−s−1(x). Moreover, the sum of the weight

v is at most CΣ.



OPTIMAL CONCENTRATION INEQUALITIES FOR DYNAMICAL SYSTEMS 38

Let κ ≥ 1, we estimate |S(2)
s (z)|κ. We apply the inequality (A.1) to xk = v(s+ 1, k)(k −

s− 1)γΦk−s−1, yielding

|S(2)
s |κ ≤

∑

k>s+1

v(s + 1, k)(k − s− 1)γΦk−s−1 ·


 ∑

s+1<ℓ≤k

v(s+ 1, ℓ)(ℓ − s− 1)γ



κ−1

.

We claim that the last sum is bounded by C(k − s − 1)γΣ. Indeed, if the weight v is of
the first type (i.e., v(r, ℓ) = Mℓ), then we bound (ℓ − s − 1)γ by (k − s − 1)γ , to obtain

(k− s− 1)γ
∑k

ℓ=s+2Mℓ ≤ C(k− s− 1)γΣ. On the other hand, if v is of the second type (i.e.,

v(r, ℓ) = (
∑ℓ−1

j=rMj)/(ℓ− r)), then the sum is bounded by

k∑

ℓ=s+2

ℓ−1∑

j=s+1

Mj(ℓ− s− 1)γ−1 ≤ (k − s− 1)γ−1
k−1∑

j=s+1

Mj(k − j)

≤ (k − s− 1)γ
k−1∑

j=s+1

Mj ≤ (k − s− 1)γΣ.

We have proved that, for all κ ≥ 1,

(A.2) |S(2)
s |κ ≤ C

∑

k>s+1

v(s + 1, k)(k − s− 1)κγΦk−s−1Σ
κ−1.

Let us now assume that Q ∈ [1, 2], and let us consider the contribution of S
(2)
s to von

Bahr-Esseen inequality. It is given by
∑

s

E(|S(2)
s |Q) =

∑

s

E(E(|S(2)
s |Q|F1)) ≤

∑

s

C
∑

k>s+1

v(s+1, k)(k− s−1)QγE(Φk−s−1)Σ
Q−1,

by (A.2). Since E(Φk−s−1) ≤ c
(q−1)
k−s−1, this can be written (letting k = s + 1 + m) as

ΣQ−1
∑

mm
Qγc

(q−1)
m

∑
s v(s+ 1, s+ 1+m). For fixed m, the sum

∑
s v(s+ 1, s+ 1+m) is

bounded by CΣ by Lemma A.5. As Qγ ≤ q − 1, mQγc
(q−1)
m is summable, and we obtain a

bound CΣQ as desired.
Assume now Q > 2. In this case, the second term in the Rosenthal-Burkholder inequality

is bounded by CΣQ as above. Using (A.2) (with κ = 2), the first term is at most

C

∫ (∑

s

∑

k>s+1

v(s+ 1, k)(k − s− 1)2γΦk−s−1 ◦ T s+1 · Σ
)Q/2

= CΣQ/2
∫

|S(2γ, v)|Q/2.

Since γ′ = 2γ and Q′ = Q/2 satisfy γ′Q′ ≤ q − 1, we can argue by induction to show that
this term is again bounded by ΣQ.

A.3. The case k > s − h, min(s + 1, k) > r, contribution of Ls−hS(πz). We should

study S
(3)
s (z) = Ls−h(∑k>s−h

∑
r≤min(s,k−1) u(r, k)(k − r)γΦk−r ◦ T r)(πz).

If k > s − h and r ∈ (s − h, s] with r < k, we have Ls−h(Φk−r ◦ T r)(πz) = Φk−r ◦
T r−(s−h)(πz). Since the point T r−(s−h)(πz) has positive height, the function Φk−r vanishes
here. Therefore, we only have to consider the contribution of k > s − h ≥ r. This is
exactly the same thing as in the previous subsection, but for the point πz instead of x. The
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inequality (A.2) gives, for all κ ≥ 1,

|S(3)
s (z)|κ ≤ C

∑

k>s−h

v(s− h, k)(k − s+ h)κγΦk−s+h(πz)Σ
κ−1,

where v is a weight system with sum at most CΣ. For k ∈ (s − h, s + 1], we simply bound
Φk−s+h(πz) by 1, while for k > s + 1 we bound it by Φk−s−1(x), since T h+1(πz) = x.
Summing over the preimages z of x, we get

E(|S(3)
s |κ|F1) ≤ CΣκ−1

∑

h≥0

c
(q)
h

(
s+1∑

k=s−h+1

v(s− h, k)(k − s+ h)κγ

+
∑

k>s+1

v(s − h, k)(k − s+ h)κγΦk−s−1(x)

)
.

In the first sum, we bound k−s+h by h+1 and we use the inequality (h+1)κγc
(q)
h ≤ c

(q−κγ)
h .

In the second sum, we have c
(q)
h (k − s+ h)κγ ≤ c

(q−κγ)
h (k − s− 1)κγ by the same argument.

If κγ ≤ q − 1, the quantity
∑

h≥0 c
(q−κγ)
h v(s − h, k) is bounded by w(s + 1, k) where w is a

weight system with sum at most CΣ, by Lemma A.6. We obtain

E(|S(3)
s |κ|F1) ≤ CΣκ−1

(
∑

h≥0

s+1∑

k=s−h+1

c
(q−κγ)
h v(s − h, k)

+
∑

k>s+1

w(s + 1, k)(k − s− 1)κγΦk−s−1(x)

)
.

(A.3)

The second term is identical to the term appearing in the previous subsection, in (A.2). It
follows in the same way that its contribution to the inequalities of von Bahr-Esseen (case
Q ∈ [1, 2]) and Rosenthal-Burkholder (case Q > 2) is bounded by CΣQ.

Let us consider the first term, first in von Bahr-Esseen inequality (case Q ∈ [1, 2]). Thanks
to (A.3) (with κ = Q), its contribution is given by

∑

s

CΣQ−1
∑

h≥0

s+1∑

k=s−h+1

c
(q−Qγ)
h v(s− h, k) = CΣQ−1

∑

h≥0

c
(q−Qγ)
h

h+1∑

m=1

∑

s

v(s− h, s − h+m)

≤ CΣQ−1
∑

h≥0

c
(q−Qγ)
h

h+1∑

m=1

Σ = CΣQ
∑

h≥0

c
(q−Qγ−1)
h ,

where we used Lemma A.5 for the inequality. Since Qγ ≤ q − 1, this is bounded by CΣQ.
When Q > 2, we use the Rosenthal-Burkholder inequality. As above, the last term in

this inequality is bounded by CΣQ. Using (A.3) (with κ = 2), the first term is bounded by


∑

s

CΣ
∑

h≥0

s+1∑

k=s−h+1

c
(q−2γ)
h v(s − h, k)



Q/2

.

The same computation as above shows that this is bounded by (CΣ2)Q/2.
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A.4. The case s + 1 ≥ k > s − h, r < k, contribution of Ls+1S(x). The contribution
coming from Φk−r ◦ T r satisfies

Ls+1(Φk−r ◦ T r) = Ls+1−kLk−rΦk−r,
which is controlled by Lemma A.8. Summing over k ∈ [s−h+1, s+1] and r < k, we obtain

that the resulting contribution S
(4)
s is bounded by

s+1∑

k=s−h+1

∑

r<k

u(r, k)(k − r)γ

(
∑

b≤s+1−k

k−r∑

i=0

c
(q)
b+k−r−ic

(q)
i

+
∑

b≤s+1−k

d
(q−2)
s+1−k−b

k−r∑

i=0

c
(q)
b+k−r−ic

(q)
i

)
.

Since d
(q−2)
s+1−k−b is bounded, the second term is bounded by the first one. Since k−r ≤ (b+k−

r−i)+i, we have k−r ≤ (b+k−r−i+1)(i+1), yielding (k−r)γc(q)b+k−r−ic
(q)
i ≤ c

(q−γ)
b+k−r−ic

(q−γ)
i .

For κ ≥ 1, we obtain (letting m = k − r)

E(|S(4)
s |κ|F1) ≤

∑

h≥0

c
(q)
h




s+1∑

k=s−h+1

∑

b≤s+1−k

∑

i≥0

c
(q−γ)
i

∑

m≥i

u(k −m,k)c
(q−γ)
b+m−i



κ

.

Summing over s and using the inequality
∑
xκi ≤ (

∑
xi)

κ, we get

∑

s

E(|S(4)
s |κ|F1) ◦ T s ≤

∑

h≥0

c
(q)
h


∑

s

s+1∑

k=s−h+1

∑

b≤s+1−k

∑

i≥0

c
(q−γ)
i

∑

m≥i

u(k −m,k)c
(q−γ)
b+m−i



κ

.

We reorganize the sums as follows. First, we write s+1 = k+ a for some a ∈ [0, h], so that

the first three sums are replaced by
∑h

a=0

∑
k

∑
b≤a. Then, we move the sum over k to the

end: since
∑

k u(k −m,k) ≤ Σ for all m by Lemma A.5, we get a bound

Σκ
∑

h≥0

c
(q)
h




h∑

a=0

∑

b≤a

∑

i≥0

c
(q−γ)
i

∑

m≥i

c
(q−γ)
b+m−i



κ

.

The sum over m ≥ i is bounded by d
(q−γ−1)
b . The (finite) quantity

∑
i≥0 c

(q−γ)
i can be

factorized out, giving a multiplicative constant. Since the sum
∑

b≤a d
(q−γ−1)
b is uniformly

bounded, we get an upper bound Σκ
∑

h≥0(h+ 1)κc
(q)
h ≤ CΣκ, when κ ≤ q.

This readily implies that the contributions of S
(4)
s to the inequalities of von Bahr-Esseen

(case 1 ≤ Q ≤ 2) and Rosenthal-Burkholder (case Q > 2) are bounded by ΣQ, as desired.

A.5. The case s− h ≥ k > r. The contribution coming from Φk−r ◦ T r reads

Ls−h(Φk−r ◦ T r)(πz)−Ls+1(Φk−r ◦ T r)(x) = Ls−h−kLk−rΦk−r(πz)−Ls+1−kLk−rΦk−r(x).
To estimate those contributions, we use Lemma A.8. The main terms e(b, k − r) simplify
partially: only those corresponding to s− h− k < b ≤ s+ 1− k remain. As a consequence,

the global contribution S
(5)
s (z) is bounded by

∑

s−h≥k>r

(k − r)γu(r, k)

(
s+1−k∑

b=s−h−k+1

k−r∑

i=0

c
(q)
b+k−r−ic

(q)
i +

s−h−k∑

b=0

d
(q−2)
s−h−k−b

k−r∑

i=0

c
(q)
b+k−r−ic

(q)
i

)
.
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Let us first note that (k − r)γc
(q)
b+k−r−ic

(q)
i ≤ c

(q−γ)
b+k−r−ic

(q−γ)
i as in the previous subsection.

We will then handle separately the two pieces S
(5.1)
s (z) and S

(5.2)
s (z) of this expression.

Summing over h and then over s, and using the inequality
∑
xκi ≤ (

∑
xi)

κ as in the
previous subsection, we get

∑

s

E(|S(5.1)
s |κ|F1)◦T s ≤

∑

h≥0

c
(q)
h



∑

s

∑

k≤s−h

s+1−k∑

b=s−h−k+1

∑

i≥0

c
(q−γ)
i

∑

m≥i

u(k −m,k)c
(q−γ)
b+m−i



κ

.

Let us reorganize the sums essentially as in the previous subsection. First, let s+1−h = k+a

for some a ≥ 1, so that the first sums become
∑

a≥1

∑
k

∑a+h
b=a . Then, we move the sum

over k to the end, and we use the inequality
∑

k u(k −m,k) ≤ Σ for all m. This yields a
bound

Σκ
∑

h≥0

c
(q)
h



∑

a≥1

a+h∑

b=a

∑

i≥0

c
(q−γ)
i

∑

m≥i

c
(q−γ)
b+m−i



κ

.

The last sum over m is bounded by d
(q−γ−1)
b , which is independent of i. Therefore, we may

factorize out the sum over i, since
∑

i c
(q−γ)
i <∞. Since d

(q−γ−1)
b is nonincreasing, we have∑a+h

b=a d
(q−γ−1)
b ≤ (h+1)d

(q−γ−1)
a . As q−γ−1 ≥ 0, the sequence d

(q−γ−1)
a is summable, giving

yet another multiplicative constant. We obtain a bound CΣκ
∑

h≥0(h+1)κc
(q)
h ≤ CΣκ when

κ ≤ q.

Let us now study S
(5.2)
s (z). We have

∑

s

E(|S(5.2)
s |κ|F1) ◦ T s

≤
∑

h≥0

c
(q)
h


∑

s

∑

k≤s−h

s−h−k∑

b=0

d
(q−2)
s−h−k−b

∑

i≥0

c
(q−γ)
i

∑

m≥i

u(k −m,k)c
(q−γ)
b+m−i



κ

.

We proceed exactly as above, with the difference that the sum over b goes from 0 to a− 1.
We get a bound

CΣκ
∑

h≥0

c
(q)
h


∑

a≥1

a−1∑

b=0

d
(q−2)
a−1−b · d

(q−γ−1)
b



κ

.

Since q−γ−1 ≤ q−2, the convolution between d
(q−2)
a−1−b and d

(q−γ−1)
b is bounded by c

(q−γ−1)
a−1 .

As γ + 1 ≤ q, the sum over a is finite, and we obtain a bound Σκ.

Gluing the two pieces together, we have shown that
∑

s E(|S
(5)
s |κ|F1) ◦ T s ≤ CΣκ for

all κ ≤ q. This readily implies that the contributions of S
(5)
s to the inequalities of von

Bahr-Esseen (case 1 ≤ Q ≤ 2) and Rosenthal-Burkholder (case Q > 2) are bounded by ΣQ,
as desired.
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