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In a previous paper, two of the authors have proposed and analyzed an entire hierarchy of optimized Schwarz methods for Maxwell's equations both in the time-harmonic and time-domain case. The optimization process has been perfomed in a particular situation where the electric conductivity was neglected. Here, we take into account this physical parameter which leads to a fundamentally different analysis and a new class of algorithms for this more general case. From the mathematical point of view, the approach is different, since the algorithm does not encounter the pathological situations of the zero-conductivity case and thus the optimization problems are different. We analyze one of the algorithms in this class in detail and provide asymptotic results for the remaining ones. We illustrate our analysis with numerical results.

2. Presentation of the problem. The system of Maxwell's equations describes mathematically the propagation of electromagnetic waves

ε ∂E ∂t -curlH + σE = -J , µ ∂H ∂t + curlE = 0, (2.1) 
where E and H denote the electric and magnetic field, ε is the electric permittivity and µ the magnetic permeability. Here σ denotes the conductivity and J the applied current density. We are interested in solving the time-harmonic Maxwell equations, which are obtained from their time-domain counterpart (2.1) by assuming that the electric field E and the magnetic field H follow a harmonic dependence on time (as a result of the time-harmonic dependence of the current density J (x, t) = Re(J (x) exp(iωt))), E(x, t) = Re(E(x) exp(iωt)), H(x, t) = Re(H(x) exp(iωt)),

where the positive real parameter ω is the pulsation of the harmonic wave. The unknow complex-valued vector fields E and H are the solutions of the time-harmonic Maxwell's equations

iωεE -curl H + σE = -J , iωµH + curl E = 0. (2.2)
Equations (2.2) are solved in a bounded domain Ω. On the boundary ∂Ω = Γ a ∪ Γ m , the following boundary conditions are imposed:

• a perfect electric conductor condition on Γ m : n × E = 0,

• an impedance condition on Γ a : B n (E, H) = B n (E inc , H inc ), where the vector (E inc , H inc ) represents an incident electromagnetic wave and n denotes the unit outward normal at any point of ∂Ω. The impedance operator is given by

B n (E, H) = n × E Z -n × (H × n).
Note that this condition is equivalent to imposing Dirichlet conditions on the incoming characteristics if we consider the hyperbolic nature of the underlying time-dependent system, and can be seen also as an approximation of a transparent boundary condition.

3. Schwarz Methods for Maxwell's Equations. We introduce here a domain decomposition method based on a Schwarz algorithm. The computational domain Ω with boundary ∂Ω is partitioned into N subdomains Ω i , i = 1, .., N , such that Ω = N i=1 Ωi . We set Γ ij = ∂Ω i ∩ Ω j \ ∂Ω where ∂Ω i is the boundary of Ω i . For a simple decomposition of the domain into two subdomains (as shown in Figure 3.1), the classical Schwarz algorithm consists in computing (E j,n+1 , H j,n+1 ) from (E j,n , H j,n ), for j = 1, 2 by the iterative process

-iωεE 1,n + curl H 1,n -σE 1,n = J in Ω 1 , iωµH 1,n + curl E 1,n = 0 in Ω 1 , B n1 (E 1,n , H 1,n ) = B n1 (E 2,n-1 , H 2,n-1 ) on Γ 12 , -iωεE 2,n + curl H 2,n -σE 2,n = J in Ω 2 , iωµH 2,n + curl E 2,n = 0 in Ω 2 , B n2 (E 2,n , H 2,n ) = B n2 (E 1,n-1 , H 1,n-1 ) on Γ 21 . (3.1)
For the classical Schwarz method, we see that at the interfaces (artificial boundaries between subdomains), characteristic information is exchanged. This type of conditions have been proposed for the first time in [START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF] for the second order version of the time-harmonic Maxwell equations.

In the constant coefficient case, an estimate of the convergence factor of this algorithm has been obtained in [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] using Fourier analysis. The convergence factor (the reduction of the error between two successive interations) for each Fourier mode k is given by

ρ cla (k, ω, σ, Z, L) = |k| 2 -ω2 + iωσZ -iω |k| 2 -ω2 + iωσZ + iω e -|k| 2 -ω 2 +iωσZL ,
where ω = ω √ εµ denotes the adimensionalized frequency and L is the overlap between domains. From this result, we see that if σ > 0, the method converges also without overlap (L = 0). But for the high frequencies, the convergence factor is close to one and therefore the algorithm is not very efficient, see Figure 3.2.

The convergence can be improved by modifying the transmission conditions in the classical Schwarz algorithm (3.1), namely

-iωεE 1,n +curl H 1,n -σE 1,n = J in Ω 1 , iωµH 1,n + curl E 1,n = 0 in Ω 1 , (B n1 +S 1 B n2 )(E 1,n , H 1,n ) = (B n1 +S 1 B n2 )(E 2,n-1 , H 2,n-1 ) on Γ 12 , -iωεE 2,n +curl H 2,n -σE 2,n = J in Ω 2 , iωµH 2,n + curl E 2,n = 0 in Ω 2 , (B n2 +S 2 B n1 )(E 2,n , H 2,n ) = (B n2 +S 2 B n1 )(E 1,n-1 , H 1,n-1 ) on Γ 21 , (3.2)
where S j , j = 1, 2 are tangential, possibly pseudo-differential operators. For σ = 0, different choices of S j , j = 1, 2 have been developed in [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] and lead to different optimized Schwarz algorithms for Maxwell's equations. In the next section, we develop different choices of S j for the case σ > 0. This leads to optimization problems which are very different from the case σ = 0. The min-max problems can now have interior maxima, which complicates the mathematical analysis substantially, but their solution is necessary to obtain optimized transmission conditions in the case σ > 0.

4. Convergence Analysis for Non-Zero Electric Conductivity. We present here an analysis of algorithm (3.2) for the case where the electric conductivity is nonzero, σ > 0. In [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF], it was proved that if the operators S l , l = 1, 2 have the Fourier symbol

F(S l ) = 1 (λ + iω)(λ + iω + σZ) k 2 y -k 2 z -λσZ -2k y k z -2k y k z k 2 z -k 2 y -λσZ , (4.1) 
where λ = |k| 2 -ω2 + iωσZ, then the algorithm (3.2) converges in two iterations.

It was also shown that these symbols can be written in different forms,

F(S l ) = 1 (λ+iω)(λ+iω+σZ) M = 1 |k| 2 +λσZ λ-iω λ+iω M = 1 |k| 2 -λσZ λ-iω-σZ λ+iω+σZ M = (λ-iω)(λ-iω -σZ) M -1 ,
where M and M are given by

M = k 2 y -k 2 z -λσZ -2k y k z -2k y k z k 2 z -k 2 y -λσZ , M = k 2 y -k 2 z + λσZ -2k y k z -2k y k z k 2 z -k 2 y + λσZ ,
and λ = |k| 2 -ω2 + iωσZ. This motivates different approximations of the transparent conditions in the context of optimized Schwarz methods. In the following we will denote by M s and Ms the matrices M and M where we replaced the non-local operator λ by a constant s. Corollary 4.1. For different symbols of the operators S j (which approximate the non local operators 4.1) we get the following convergence factors: Algorithm 1 If S j , j = 1, 2, have the symbols

σ j = F(S j ) = 0, (4.2)
then the Schwarz algorithm (3.2) has the convergence factor

ρ 1 (|k|, ω, σ, Z, L) = |k| 2 -ω2 + iωσZ -iω |k| 2 -ω2 + iωσZ + iω e -|k| 2 -ω 2 +iωσZL . (4.3)
This algorithm is the classical Schwarz algorithm.

Algorithm 2 If S j , j = 1, 2, have the Fourier symbols

σ j = F(S j ) = s -iω (s + iω)(|k| 2 + sσZ) M s , s ∈ C, (4.4) 
then the Schwarz algorithm (3.2) has the convergence factor

ρ 2 (|k|, ω, σ, Z, L, s) =   |k| 2 -ω2 + iωσZ -s |k| 2 -ω2 + iωσZ + s   e -|k| 2 -ω 2 +iωσZL .
(4.5) Algorithm 3 If S j , j = 1, 2, have the Fourier symbols

σ j = F(S j ) = 1 |k| 2 -2ω 2 + 2iωσZ + (2iω + σZ)s M s , s ∈ C, (4.6) 
then (3.2) has the convergence factor

ρ 3 (|k|, ω, σ, Z, L, s) =   |k| 2 -ω2 + iωσZ -iω |k| 2 -ω2 + iωσZ -iω   ρ 2 (|k|, ω, σ, Z, L, s).
(4.7) Algorithm 4 If S j , j = 1, 2, have the Fourier symbols

σ j = F(S j ) = s j -iω (s j + iω)(|k| 2 + s j σZ) M sj , s j ∈ C, (4.8) 
then the Schwarz algorithm (3.2) has the convergence factor

ρ 4 (|k|, ω, σ, Z, L, s 1 , s 2 ) = 2 l=1 |k| 2 -ω2 + iωσZ -s l |k| 2 -ω2 + iωσZ + s l e -2 |k| 2 -ω 2 +iωσZL 1 2
.

(4.9) Algorithm 5 If S j , j = 1, 2, have the Fourier symbols

σ j = F(S j ) = 1 |k| 2 -2ω 2 + 2iωσZ + (2iω + σZ)s j M sj , s j ∈ C, (4.10)
then the Schwarz algorithm (3.2) has the convergence factor

ρ 5 (|k|, ω, σ, Z, L, s 1 , s 2 ) =   |k| 2 -ω2 + iωσZ -iω |k| 2 -ω2 + iωσZ + iω   ρ 4 (|k|, ω, σ, Z, L, s 1 , s 2 ).
(4.11) The different symbols σ j depend on the choice of the parameters s, s 1 and s 2 . In order to obtain an efficient algorithm, we will choose σ j , j = 1, 2 such that ρ l , l = 2, .., 5 is minimum over a range of frequencies. Therefore the parameters are solutions of the min-max problems min s∈C max |k|∈K ρ j (|k|, ω, σ, Z, L, s), j = 2, 3, min s1, s2∈C max |k|∈K ρ j (|k|, ω, σ, Z, L, s 1 , s 2 ), j = 4, 5, (4.12) where K denotes the set of relevant numerical frequencies. In the next section, we will analyze these min-max problems for each of the algorithms in Corollary 4.1.

Optimized transmission conditions.

In this section, we solve the various min-max problems seen in (4.12). The fundamental difference with the case σ = 0 is that here we do not need to exclude the resonance frequencies (see [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF]). This changes the nature of the min-max problems. We have more local maxima in |k|, and balancing these maxima by the equioscillation principe, is more difficult. In a numerical implementation, the range of frequencies is bounded, i.e |k| ∈ K := [k min , k max ], where the minimum frequency k min > 0 is a constant depending on the geometry, and the maximum numerical frequency that can be represented on a mesh is k max = C h where C is a constant and h is the mesh size.

Before solving the min-max problems in (4.12), we give an asymptotic expression for the maximum of the convergence factor (4.3) of the classical Schwarz algorithm over |k| ∈ K. This allows us to see the behavior of the algorithm (3.1) when h goes to zero.

Corollary 5.1. The asymptotic convergence factor of the classical Schwarz method (Algorithm 1), for small mesh size h is

max |k|∈K ρ 1 (|k|, ω, σ, Z, L) = 1 -4 3 9ω 4 σ 2 µ 3 εC 6 L 1 8 h 3 4 + O(h 5 4 ), L = C L h, 1 - ω 2 σ √ µ 3 ε C 3 h 3 + O(h 5 ), L = 0. (5.1)
Proof. The proof is obtained by expanding the maximum of ρ 1 over |k| ∈ K for h small. 5.1. Optimization of Algorithm 2. We look for s under the form s = p + iq, with (p, q) ∈ R 2 + and p = q, such that p is solution of the min-max problem min

p≥0 max |k|∈K ρ 2 (|k|, ω, σ, Z, L, p(1 + i)) . (5.2) 
We choose p = q in order to simplify the computations, this choice being justified for the Helmholtz equation case in [START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF]. The case where p = q is discussed in [START_REF] Bouajaji | Comparison of a one and two parameter family of transmission conditions for Maxwells equations with damping[END_REF].

The non-overlapping case. Using the change of variables

ξ(|k|) := ℜ |k| 2 -ω2 + iσ ωZ , y := σ ωZ,
the convergence factor simplifies to

ρ 2 (ω, Z, σ, 0, |k|, p(1 + i)) = 4ξ 2 (ξ -p) 2 + (y -2ξp) 2 4ξ 2 (ξ + p) 2 + (y + 2ξp) 2 =: R(ξ, y, p).
Since the mapping |k| → ξ(|k|) is increasing, the optimization problem (5.2) can be re-written as

min p≥0 max kmin≤|k|≤kmax ρ 2 (ω, Z, σ, 0, |k|, p(1 + i)) = min p≥0 max ξmin≤ξ≤ξmax R(ξ, y, p) ,
where ξ min = ξ(k min ) and ξ max = ξ(k max ). We can prove the following result Theorem 5.2. In the non-overlapping case, the solution of the problem

min p≥0 max ξmin≤ξ≤ξmax R(ξ, y, p)
is given by

p * = min(p 2 , p 23 ), if y < 2 ξ max ξ min , min(p 1 , p 12 ), if y ≥ 2 ξ max ξ min , (5.3) 
where p 1 , p 2 , p 12 , and p 23 are constants defined by

p 12 = y 1 4 ξmin(y+2 ξ 2 min +ξmin √ 2y) 2 3 4 ξmin , p 23 = y 1 4 ξmax(y+2 ξ 2 max +ξmax √ 2y) 2 3 4 ξmax , p 1 = √ 8 ξ 4 min +2 y 2 4 ξmin , p 2 = √ 8 ξ 4 max +2 y 2 4 ξmax
.

Proof. We start by computing the partial derivative of R with respect to p in order to restrict the range of p in the min-max problem,

E 1 := ∂R ∂p (ξ, y, p) = 1 R(ξ,y,p) (32 ξ 3 y+64 ξ 5 ) p 2 -1 8 4ξ 4 +y 2 ξ 2 (4ξ 4 +8ξ 3 p+8ξ 2 p 2 +y 2 +4yξp) 2 .
(5.4)

E 1 is negative for p ∈ [0, √ 8 ξ 4 +2 y 2 4 ξ
] and positive for p ∈ [ √

8 ξ 4 +2 y 2 4 ξ , +∞). Moreover the minimum of the mapping ξ → √ 8 ξ 4 +2 y 2 4 ξ
is y 2 . This implies that for p ≤ y 2 , R decreases with p for all ξ ∈ [ξ min , +∞). Hence we can restrict the range of p to the interval [ y 2 , +∞).

We now look for the eventual extrema of ξ → R(ξ, y, p) by computing the zeros of the derivative of R with respect to ξ,

∂R ∂ξ (ξ, y, p) = 4 p(ξ 2 -1 2 y)(8 ξ 4 +16 (y-p 2 )ξ 2 +2 y 2 ) R(ξ,y,p)(4 ξ 4 +8 ξ 3 p+8 ξ 2 p 2 +y 2 +4 yξ p) 2 .
(5.5)

The polynomial P (ξ) = ξ 2 -1 2 y 8 ξ 4 + 16 y -p 2 ξ 2 + 2 y 2 has at most three positive roots, and ξ 2 = y 2 is always a root. The other roots are given by

ξ 1,3 = 1 2 -4 y + 4 p 2 ∓ 2 (3 y -2 p 2 )(y -2 p 2 ).
We now show that for p ≥ 3y/2, ξ 2 is a maximum and the other two roots of P cannot be maxima. The second partial derivative of R with respect to ξ at ξ 2 is

∂ 2 R ∂ξ 2 (ξ 2 , y, p) = -4 2 y (2p 2 -3y)p | √ 2p - √ y|( √ 2p + √ y) 3 ,
which shows that ξ 2 is a local maximum if p < 3y/2. Moreover in this case, the other two roots are real and these are minima because ξ 1 ≤ ξ 2 ≤ ξ 3 . In the case p ≥ 3y/2, ξ 2 is a local minimum and the other two roots are not real. Therefore the maximum of R is either at ξ min , ξ 2 or ξ max .

From the expression (5.4) we can derive the following properties of R:

(a) The mapping p → R(ξ min , y, p) is decreasing on [ y 2 , p 1 ] and increasing on [p 1 , +∞). (b) The mapping p → R(ξ 2 , y, p) is increasing on [ y 2 , +∞). (c) The mapping p → R(ξ max , y, p) is decreasing on [ y 2 , p 2 ] and increasing on [p 2 , +∞).
To conclude the proof of the theorem, we need the following lemmas: Lemma 5.3. Let p 13 be the constant defined by

p 13 = 2 ξ min ξ max (y 2 + 2yξ 2 min + 4yξ min ξ max + 2yξ 2 max + 4ξ 2 min ξ 2 max ) 4ξ min ξ max .
Then the following properties are verified: i) p 12 is the unique solution of the equation R(ξ min , y, p) = R(ξ 2 , y, p) on R + \{0}.

ii) p 13 is the unique solution of the equation R(ξ min , y, p) = R(ξ max , y, p) on Proof. To prove the first three properties, we compute

R + \{0}. iii) p 23 is the unique solution of the equation R(ξ 2 , y, p) = R(ξ max , y, p) on R + \{0}. iv) We have max(p 1 , p 2 ) = p 2 , if y < 2 ξ max ξ min , p 1 , if y ≥ 2 ξ max ξ min . v) We have max(p 12 , p 23 ) = p 23 , if y < 2 ξ max ξ min , p 12 , if y ≥ 2 ξ max ξ min . vi) We have 3y 2 ≤ p 12 , p 23 ≤ p 13 . vii) We have max ξmin≤ξ≤ξmax R(ξ, y, p) =        R(ξ max ,
R (ξ b , y, p) 2 -R (ξ m , y, p) 2 = 8 p(ξm-ξ b )(2 ξmξ b -y)(8 ξ b ξm p 2 -4 ξ 2 b ξ 2 m -2 ξ 2 b y-4 yξm ξ b -2 yξ 2 m -y 2 ) (4 ξ 2 b (ξ b +p) 2 +(y+2 ξ b p) 2 )(4 ξ 2 m (ξm+p) 2 +(y+2 ξmp) 2 )
.

(5.6) This quantity is zero if

p = 2 ξ b ξ m (y 2 + 2yξ 2 b + 4yξ b ξ m + 2yξ 2 m + 4ξ 2 b ξ 2 m ) 4ξ b ξ m .
By replacing successively the pairs {ξ b , ξ m } by {ξ min , ξ 2 }, {ξ min , ξ max } and {ξ 2 , ξ max } in (5.6) we get the desired result.

To prove property iv), we compute

p 2 1 -p 2 2 = (ξ max -ξ min ) (ξ min + ξ max ) (y -2 ξ max ξ min ) (y + 2 ξ max ξ min ) 8 ξ 2 max ξ 2 min , which shows that p 1 ≤ p 2 if y < 2 ξ max ξ min and p 1 ≥ p 2 if y ≥ 2 ξ max ξ min .
To prove property iv), we compute

p 2 12 -p 2 23 = - √ y √ 2 (ξ max -ξ min ) (2 ξ max ξ min -y) 4 ξ max ξ min .
We can see that p 12 ≤ p 23 if y < 2 ξ max ξ min and p 12 ≥ p 23 if y ≥ 2 ξ max ξ min .

We now show vi) by computing

p 2 12 -p 2 13 = - (2 y+4 ξ 2 min )(ξmax-1/2 √ y √ 2) 2 8 ξmaxξmin ≤ 0, p 2 23 -p 2 13 = - (4 ξ 2 max +2 y)(ξmin-1/2 √ y √ 2) 2 8 ξmaxξmin ≤ 0, p 2 12 -3y 2 = √ y √ 2(ξmin-1/2 √ y √ 2) 2 2 ξmin ≥ 0, p 2 23 -3y 2 = √ y √ 2(ξmax-1/2 √ y √ 2) 2 2 ξmax ≥ 0.
This shows that p 2 i2 -3y 2 ≥ 0 and p 2 i2 -p 2 13 ≤ 0, i = 1, 2.

Finally we treat the last point. After some computations we obtain

E 2 := R (ξ min , y, p) 2 -R (ξ max , y, p) 2 = 64 pξminξmax(ξmax-ξmin)(2 ξmaxξmin-y)(p 2 -p13 2 ) (4 ξ 2 min (ξmin+p) 2 +(y+2 ξminp) 2 )(4 ξ 2 max (ξmax+p) 2 +(y+2 ξmaxp) 2 ) , E 3 := R (ξ max , y, p) 2 -R (ξ 2 , y, p) 2 = - 32 pξmax(ξmax-1/2 √ y √ 2) 2 (p 2 -p 2 23 ) (4 ξ 2 (ξ+p) 2 +(y+2 ξ p) 2 )(y+2 √ y √ 2p+2 p 2 ) , E 4 := R (ξ min , y, p) 2 -R (ξ 2 , y, p) 2 = - 32 pξmin(ξmin-1/2 √ y √ 2) 2 (p 2 -p 2 12 ) (4 ξ 2 (ξ+p) 2 +(y+2 ξ p) 2 )(y+2 √ y √ 2p+2 p 2 ) .
From the expression above we can easily see that This Lemma proves that the solution of the min-max problem (5.2) depends mainly on the sign of y -2ξ max ξ min . We can see on Figure 5 Corollary 5.6. For h sufficiently small in the non-overlapping case, L = 0, the solution of the min-max problem (5.2) is given by p * = (ωσµ)

1 4 √ C 2 1 4 √ h and ρ * 2 = 1 - 2 3 4 (ωσµ) 1 4 √ h √ C + O(h).
(5.7)

Proof. If we assume h sufficiently small, then ξ max = ξ(C/h) is large. By this assumption, the solution of the min-max problem (5.2) is given by the first equation of (5.3), i.e

p * = 4 √ 2y ξ max y + 2ξ max 2 + ξ max √ 2 √ y 2ξ max .
By expanding p * for h small, using that ξ max = ξ(C/h), we get the desired result. Corollary 5.6 gives the optimal parameter p * and the corresponding convergence factor of algorithm 2 in terms of the mesh size h. In some practical situations, where we consider high frequencies, it is interesting to give the optimized parameters in term of ω. For the high frequencies, it has been shown in [START_REF] Babuska | Is the pollution effect of the fem avoidable for the Helmholtz equation considering high wave numbers?[END_REF] that it is necessary, to avoid the pollution effect, to couple the frequency ω with h by the relation h = C h /ω γ ; where γ ≥ 1 depends on the discretization method. In [START_REF] Babuska | Is the pollution effect of the fem avoidable for the Helmholtz equation considering high wave numbers?[END_REF], it has been shown that γ = 3 2 for a P 1 finite element method. We have the following corollary:

Corollary 5.7. Let h = C h /ω γ . If γ = 1, then for ω large, the solution of the min-max problem (5.2) is given by

p * = (σµ) 1 4 (C 2 -εµC 2 h ) 1 4 2 1 4 √ C h ω 3 4
and ρ * 2 = 1 -

2 3 4 (σµ) 1 2 √ C h (C 2 -εµC 2 h ) 1 4
ω -1 4 .

(5.8)

If γ > 1, for ω large, the solution is

p * = (σµ) 1 4 √ C 2 1 4 √ C h ω 2γ+1 4
and ρ * 2 = 1 -

2 3 4 (σµ) 1 4 √ C h √ C ω 1-2γ 4 
.

(5.9)

Proof. If we assume ω sufficiently large, then ξ max = ξ(ωC/C h ) is large. By this assumption, the solution of the min-max problem (5.2) is given by the first equation of (5.3), i.e

p * = 4 √ 2y ξ max y + 2ξ max 2 + ξ max √ 2 √ y 2ξ max .
By expanding p * for ω large, using that ξ max = ξ(ωC/C h ), we get the desired result.

The overlapping case. After the complete analysis of the best approximation problem without overlap in the previous paragraph, we focus in the remainder of this paper on asymptotic analysis, in order to be able to present a complete set of optimized transmission conditions for all algorithms. We start with the case of the previous paragraph, but now consider an overlapping method. We set L = h, k min = 0, k max = π h and denote by p * the solution of the min-max problem (5.2). Solving this min-max problem numerically for different parameter values and different mesh sizes h, we observe that the solution of (5.2) equioscillates once, i.e. p * is solution of

ρ 2 (k 1 , ω, σ, Z, L, p * (1 + i)) = ρ 2 (k 2 , ω, σ, Z, L, p * (1 + i)), (5.10) 
where k 1 and k 2 are two interior local maxima of ρ 2 . For small h, we see numerically that these maxima and the optimized parameter p * behave like

k 1 = C b1 , k 2 = C b2 h -2 3 , and p * = C p h -1 3 , for some constants C p , C b1 , C b2 .
In order to determine the constants C b1 , C b2 and C p , we solve now the corresponding equations asymptotically: since k 1 and k 2 are local maxima of the convergence factor, the corresponding derivatives must vanish, and we find asymptotically

∂ρ2 ∂k (k 1 , ω, σ, Z, L, p * (1 + i)) = 0 ⇒ C b1 = ω, ∂ρ2 ∂k (k 2 , ω, σ, Z, L, p * (1 + i)) = 0 ⇒ C b2 = 2 C p .
The equioscillation equation (5.10) must also be satisfied, which gives asymptotically

ρ 2 (k 1 , ω, σ, Z, L, p * (1 + i)) = ρ 2 (k 2 , ω, σ, Z, L, p * (1 + i)) ⇒ √ 2 √ ω σ Z Cp = C b 2 2 +2 Cp C b 2
.

Solving the three equations obtained for the constants C b1 , C b2 and C p , and expressing the results in the original problem parameters ω, ǫ, µ and σ, we find the asymptotic result

p * = (2 ω σ µ) 1 3 2 h 1 3 , ρ * 2 = 1 -2 7 
6 (ω σ µ) Proof. The parmeter p * is a local minimum, if there exists no variation δp such that ρ 2 (k, ω, σ, Z, 0, (p

* + δp)(1 + i)) ≤ ρ 2 (k, ω, σ, Z, 0, p * (1 + i)), for k = k 1 , k 2 .
By the Taylor formula, it suffices to prove that there is no variation δp such that δp ∂ρ2 ∂p (k, ω, σ, Z, 0, p * (1 + i)) < 0, for k = k 1 , k 2 . To prove this, it is necessary to obtain the next higher order terms in the expansions of p * , k 1 and k 2 . After a lengthy computation, we find that

k 1 ∼ ω + Cb1 h 2 3 , k 2 ∼ C b2 h -2 3 + Cb2 , p * ∼ C p h -1 3 + Cp h 1 3 .
With these new three constants determined, we obtain for the derivative of ρ 3

∂ρ 2 ∂p (k 1 , ω, σ, Z, h, p * (1 + i)) ∼ 4 2 5 6 h 2 3
(ωσµ)

1 6 , ∂ρ 2 ∂p (k 2 , ω, σ, Z, h, p * (1 + i)) ∼ -2 2 5 6 h 2 3 (ωσµ) 1 6 
.

Since these leading terms differ in sign, there can not be a variation δp which diminishes the contraction factor obtained for p * , and we have asymptotically a local minimum.

In Figure 5.2 we can see the convergence factor in the non-overlapping and overlapping case for the algorithm 2 compared to the classical one.

Optimization of algorithm 3.

Here, we look for s of the form s = p(1+i), such that p is solution of the min-max problem min p≥0 max k∈K ρ 3 (k, ω, σ, Z, L, p(1 + i)) .

(5.12)

Again we are only searching for an asymptotic solution of this best approximation problem.

The non-overlapping case. Setting L = 0, k min = 0, k max = C h and denoting by p * the solution of (5.12), we obtain from numerical experiments that the solution of (5.12) equioscillates once, i.e. p * is solution of

ρ 3 (k max , ω, σ, Z, 0, p * (1 + i)) = ρ 3 (k, ω, σ, Z, 0, p * (1 + i)), (5.13) 
where k b is an interior local maximun of ρ 3 . For small h we find the asymptotic be-

havior k = C b h -1 7 , p * = C p h -4 7
, and to determine C b and C p , we solve asymptotically

∂ρ 3 ∂k (k, ω, σ, Z, 0, p * (1 + i)) = 0 ⇒ C p = C 4 b 3 ω2 σZ ,
and the equioscillation equation (5.13), which leads to

C b = (6 C ω4 σ 2 Z 2 ) 1 7
. Solving the two equations for the two constants, and using again the original parameters ω, ǫ, µ and σ, we find

p * = 1 3 6 4 7 C 4 7 ω 2 7 µ 3 14 ǫ 1 14 σ 1 7 h -4 7 , ρ * 3 = 1 - 4 3 6 4 7 ω 2 7 µ 3 14 ǫ 1 14 σ 1 7 h 3 7 C 3 7 
.

(

Lemma 5.9. Asymptotically, the parameter p defined in (5.14) is a local minimum of the min-max problem (5.12).

Proof. The proof follows the same argument as the proof of Lemma 5.8. We obtain after a lengthy computation that

k ∼ C b h -1 7 + C b2 h 1 7 , p * ∼ C p h -4 7 + C p2 h -2 7 .
Determining the constants in the higher order terms as well, we can show that , which shows by the opposite sign that p * is indeed a local minimum. The overlapping case. Also with L = h the solution of the min-max problem (5.12) equioscillates once, i.e. p * is solution of

∂ρ 3 ∂p (k max , ω, σ, Z, 0, p * (1 + i)) ∼ - 4h C , ∂ρ 3 ∂p (k, ω, σ, Z, 0, p * (1 + i)) ∼ 1 
ρ 3 (k 1 , ω, σ, Z, L, p * (1 + i)) = ρ 3 (k 2 , ω, σ, Z, L, p * (1 + i)),
where k 1 and k 2 are two interior local maxima of ρ 3 . For small h, we get

k 1 = C b1 h -1 10 , k 2 = C b2 h -7 10 , p * = C p h -2 5 ,
and solving the corresponding equations asymptotically, we find in the original parameters ω, ǫ, µ and σ p * = 1 3 (5.15)

In Figure 5.2 we can see the convergence factor in the non-overlapping and overlapping case for algorithm 3 compared to the classical one and algorithm 2.

Optimization of algorithm 4.

Here, we look for s 1 and s 2 of the form s l = p l (1 + i), l = 1, 2 such that the p l are solution of the min-max problem min p1,p2≥0 max k∈K ρ 4 (k, ω, σ, Z, L, p 1 (1 + i), p 2 (1 + i)) .

(5.16)

As for algorithm 3, we proceed directly with the asymptotic analysis.

The non-overlapping case. Letting L = 0, k min = 0, k max = C h and denoting by (p * 1 , p * 2 ) the solution of the min-max problem (5.16), we find numerically that the solution of (5.16) equioscillates twice, i.e. (p * 1 , p * 2 ) is solution of

ρ 4 (k 1 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 4 (k 2 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 4 (k max , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)),
where k 1 and k 2 are two interior local maxima of ρ 4 . One can to show that k 1 = ω, and for small h we get

k 2 = C b2 h -1 2 , p * 1 = C p h -3 4 , p * 2 = C q h -3 4 .
To determine the constants C b2 , C p and C q , we solve asymptotically the equioscillation conditions and the equation stating that k 2 is a maximum, which leads to the system

C b2 = 2 C p C q , C q = 1 2 C 3 p C 2 , C p = ( 2 ωσZ) 1 8 C 3 4 . 
Solving this system, we obtain in the original parameters ω, ǫ, µ and σ the asymptotic result

p * 1 =
(2 ω σ µ)

1 8 C 3 4 h 3 4
, p * 2 =

(2 ω σ µ)

3 8 C 1 4 2 h 1 4 , ρ * 4 = 1 - (2 ω σ µ) 1 8 h 1 4 C 1 4
.

(5.17)

The overlapping case. Also with overlap, L = h, the solution of of the min-max problem (5.16) equioscillates twice, and we find that (p * 1 , p * 2 ) is solution of

ρ 4 (k 1 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 4 (k 2 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 4 (k 3 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)),
where k 1 , k 2 and k 3 are three interior local maxima of ρ 4 . For small h, we get

k 1 = C b1 , k 2 = C b2 h -2 5 , k 3 = C b2 h -4 5 , p * 1 = C p h -3 5 ,
and solving the corresponding equations asymptotically, we find after a lengthy calculation for the constants the system

C b1 = ω, C b2 = 2 C p C q , C b3 = C p , C p = 4 C 3 q ωσZ , C q = 2 C 2 p .
After its solution, we obtain in the original parameters ω, ǫ, µ and σ p * 1 =

(ω σ µ)

1 5 2 h 3 5 , p * 2 = (ω σ µ) 2 5 2 h 1 5 , ρ * 4 = 1 -4 √ 2 (ω σ µ) 1 10 h 1 5 .
In Figure 5.2 we show again a comparison of the convergence factors.

5.4. Optimization of the algorithm 5. We finally look for s 1 and s 2 of the form s l = p l (1 + i), l = 1, 2 such that p l are solution of the min-max problem min p1,p2≥0 max k∈K ρ 5 (k, ω, σ, Z, L, p 1 (1 + i), p 2 (1 + i)) .

(5.18)

The non-overlapping case. We set L = 0, k min = 0, k max = C h and let (p * 1 , p * 2 ) be the solution of the min-max problem (5.16). We observe numerically that this solution equioscillates twice, where (p * 1 , p * 2 ) solves

ρ 5 (k 1 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 5 (k 2 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 5 (k max , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)),
and k 1 and k 2 are two interior local maxima of ρ 5 . Asymptotically, we obtain the behavior

k 1 = C b1 h -1 13 , k 2 = C b2 h -7 13 , p * 1 = C p h -10 13 , p * 2 = C q h -4 13 .
Proceeding as in the other cases, we find for the constants the system

C 4 b1 = 6C q ωσZ, C b2 = 2 C p C q , C q = 1 2 C p 3 C 2 , C p =
(2 8 ω2 σZC 10 ) .

1 13
The overlapping case. We finally treat the overlapping case L = h, where the solution of (5.18) equioscillates twice, In Figure 5.2 we show the convergence factor in the non-overlapping and overlapping cases for the algorithm 5 compared to the classical one, algorithm 2, algorithm 3 and algorithm 4. Table 5.1 summarizes the asymptotic results that have been obtained for all algorithms.

ρ 5 (k 1 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 5 (k 2 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)) = ρ 5 (k 3 , ω, σ, Z, L, p * 1 (1 + i), p * 2 (1 + i)),
6. Numerical results. We present here some numerical experiments in order to illustrate the performance of the optimized algorithms developed in the previous sections. The domain Ω is partitioned into several subdomains Ω j . The Maxwell's equations are approximated by a discontinuous Galerkin method (DG -P p ), see [START_REF] Bouajaji | Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains[END_REF] for further details. In short, given a mesh T h of Ω j such that Ω j = τ k ∈T h , the (DG -P p ) method consists in searching an approximate solution of each field component in the set Table 5.1 Asymptotic convergence factor and optimal choice of the parameters in the transmission conditions.

V h = V ∈ L 2 (Ω) / ∀τ k ∈ T h , V |τ k ∈ P p [τ k ] , P p [τ k ] = {polynomial function on τ k of degree ≤ p}.
p 1 = (2 ω σ µ) 1 8 C 3 4 h 3 4 , p 2 = (2 ω σ µ) 3/8 C 1/4 2 h 1 4 5 
6.1. Performance for a two subdomain decomposition. We first test the propagation of a plane wave in a homogeneous and conductor medium using a TM formulation. The domain is Ω = (0, 1) 2 , and the parameters are constant in Ω, with ε = µ = 1, σ = 5 and ω = 2π. We impose on the boundary an incident field

W inc = (H inc x , H inc y , E inc z ) = ( ky µω , -kx µω , 1)e -ik•x with k = (k x , k y ) = (ω ε -i σ ω , 0), x = (x, y). The domain Ω is decomposed into two subdomains Ω 1 = (0, 1/2 + L) × (0, 1)
and Ω 2 = (1/2, 1) × (0, 1); L is the size of the overlap and is equal to the mesh size h for the methods with overlap and is equal to zero for the methods without overlap. For this test, we use a DG -P 2 method, i.e. a uniform polynomial approximation of order two. The performance of the algorithms is shown in Figure 6.1. In this figure, we show the number of iterations as a function of the mesh size h for both the non-overlapping and overlapping cases. We have also represented in this figure the theoretical asymptotic results denoted by O(h α ). The numerical results are in good agreement with the theoretical asymptotic results which are summarized in Table 5.1, except for algorithm 1 (the classical algorithm) without overlap where we get better results. The fact that the discretization can improve the performance of Schwarz algorithms has also been observed and explained in [START_REF] Dolean | Can the Discretization Modify the Performance of Schwarz Methods?[END_REF] for Cauchy-Riemann equations.

6.2.

A more realistic application. We present now a second more realistic test which consists in the simulation of electromagnetic wave propagation in a heterogenous subsurface medium. This kind of simulation is very important in imaging, see [START_REF] Bouajaji | Discountinuous Galerkin frequency domain forward modeling dor the inversion of electric permittivity in 2d case[END_REF] for details. The configuration of the subsurface is shown in Figure 6.2 and is constituted of media which are characterized by various parameter values ε and σ, ε = 1.5, 2.25, 3.25, 4.25 and σ = 10 -6 , 10 -5 , 10 -4 10 -3 . The computational domain is decomposed into several subdomains without overlap (a decomposition into eight subdomains is shown for example in Figure 6.3). We test here the performance of the algorithms for a decomposition into two, four, eight and sixteen subdmains. In Table 6.1, we have summarized the number of iterations needed for convergence, i.e to attain a relative residual of 10 -8 , depending on the number of subdomains. These results show that the optimized algorithms converge much faster than the classical algorithm (i.e. algorithm 1). We can also see that the hierarchy, in terms of number of iterations, of the optimized algorithms is respected as predicted by the theoretical results in Corollary 4.1.

Conclusions.

We have developed several domain decomposition algorithms based on optimized transmission conditions for Maxwell's equations with non-zero electric conductivity. Two algorithms are obtained by approximating the transparent operator by zeroth order transmission conditions while two further algorithms are based on second order transmission conditions. We have shown that the convergence factor of each algorithm can be written as 1 -O(h αi ), i = 1..5. Our results are well confirmed by the first numerical test with a decomposition into two subdomains where we obtained also numerical convergence factors in the form 1 -O(h βi ), i = 1..4, with α i ≈ β i . The first test shows also that optimized Schwarz algorithms converge much faster than the classical one. This is also confirmed by the second more realistic test which shows also that these optimized algorithms can be effective for more complex problems and for arbitrary decompositions.
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